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1. SHAPE EVOLUTION OF QUASI-SPHERICAL VESICLE IN A UNIFORM ELECTRIC FIELD

A. Summary of the theoretical model
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Fig. S 1: (A)-(C) Physical mechanisms of the frequency-dependent membrane polarization and vesicle dipole in an applied
uniform AC field. The lines correspond to constant electric field. Upon application of an external electric field, charges
accumulate on the two sides of the membrane setting up a potential difference, i.e., the membrane acts as a capacitor. (A) At
low frequencies, ω � ωc, the membrane capacitor is fully charged, the induced charge density on the two membrane surfaces
is the same but of opposite sign. (B) and (C) At intermediate frequencies, ω > ωc, it is short-circuited and there is charge
imbalance between the inner and outer membrane surfaces Q = εE0Q0 cos θ. (B) If the enclosed solution is more conducting
than the suspending medium, Λ > 1, vesicle is pulled into an prolate ellipsoid. (C) The polarization is reversed in the
opposite case Λ < 1 and the vesicle deforms into an oblate ellipsoid. (D) Variation with frequency of the transmembrane
potential (red) and apparent charge at the pole (blue).

Let us consider a vesicle made of a charge-free lipid bilayer membrane with bending rigidity κ, tension σeq, capaci-
tance Cm. The vesicle is suspended in a solution with conductivity λex and permittivity εex, and filled with a different
solution characterized by λin and εin.

An axisymmetric stress, such as generated by uniform electric field or extensional flow, deforms the vesicle into
a spheroid with symmetry axis aligned with the extensional axis. The spheroid aspect ratio is ν = a/b, where a
is the length of the symmetry axis and b is the length of the axis perpendicular to the symmetry axis. For small
deformations, ν . 1.3, the shape is well approximated by

rs(θ) = R
(

1 +
s

2
(1 + 3 cos 2θ)

)
, (S1)

where rs is the position of the surface, R is the initial radius of the vesicle, s is the deformation parameter, and θ is
the angle with the applied field direction; θ = 0 and π/2 correspond to the pole and the equator, respectively. The
ellipsoid aspect ratio is related to the deformation parameter by ν = (1 + s)/(1− 2s).

The theory developed by Vlahovska et al. [1–4] predicts that the deformation parameter evolution is given by the
balance of imposed and membrane stresses

ṡ =
1

32 + 23χ+ 16χm

(
εexE

2
0p

el

η
− 24s(6κ+ σ(s)R2)

1

ηR3

)
(S2)
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For small deformations, s� 1, ν ∼ 1 + 3s and the above equation yields Eq. 1 in the main text.
The AC field, E(t) = E0 sin(ωt), generates an electric stress which has two components, a steady one pel and an

oscillatory one with frequency twice the applied one

p = pel + pcω cos(2ωt) + psω sin(2ωt)

In the experiments typically ω̄ � 1 and the oscillatory component only drives very small oscillations about the
deformation induced by the steady stress component.

The steady electric stress is given by

pel = 2(1− P rex) +
1

2
P 2
ex − 2SP 2

in (S3)

and the amplitudes of the unsteady stress are

pcω =
1

2

(
4(1− P rex)−

(
P iex
)2

+ (P rex)
2 − 4S

((
P iin
)2

+ (P rin)
2
))

psω = 2P iex − P iexP rex + 4SP iinP
r
in

(S4)

where

Pex =
Kex +Kin(Vm − 1)

Kin + 2Kex
, Pin =

Kex(3− 2Vm)

Kin + 2Kex
,

Vm =
3KinKex

2KinKex + iCm (Kin + 2Kex) ω̄

(S5)

Here ω̄ = ωεex/λex and C̄m = CmR/εex are the dimensionless frequency and membrane capacitance. Kin = 1 + iω̄
and Kex = Λ + iω̄S are the dimensionless complex permittivities. S = εin/εex and Λ = λin/λex are the ratios of
permittivities and conductivities of the fluids interior and exterior to the vesicle. P r and P i denote the real and
imaginary part of P , and P 2 = PP ∗, where the superscript * denotes complex conjugate. The electric stress in DC
field is obtained by setting ω̄ = 0 and the electric field amplitude to E0

√
2.

Typically, both the inner and outer fluids are aqueous solutions with similar permittivities, εin ≈ εex = ε, hence S
can be set to 1. In this case Eq. S3 reduces to

pel =
9
[
ω̄2
(
C̄2

m(Λ + 2)2 (Λ− 1) (Λ + 3) + 2C̄mΛ
(
Λ2 + Λ− 2

)
+ 9Λ2

)
+ Λ2(Λ + 2)2

]
2 ((Λ + 2)2 + 9ω̄2)

(
C̄2

m(Λ + 2)2ω̄2 + 4Λ2
) , (S6)

where σ̄ = σR2/κ. At low frequencies, ω̄ → 0, the membrane capacitor is fully charged, and pel = 9/16 and we obtain
Equation 1 in the main text.

The imbalance between the induced charge of the two membrane surfaces is Q = εE0Q0 cos θ, where the maximum
charge is

Q0 =
3ω̄Cm (Λ− 1) (Λ + 2)

[((2 + Λ)2 + 9ω̄2) (4Λ2 + C2
mω̄

2(2 + Λ)2)]
1/2

(S7)

At low frequencies, ω̄ → 0 the charge imbalance vanishes.

B. Linear approximation of the evolution equation

The tension in Eq. S2 is of entropic origin and depends nonlinearly on deformation [5]. For a quasi-spherical vesicle

σ = σ0 exp

(
8πκ

kBT
α

)
(S8)

where α = (A−A0)/A0 is the area strain (the difference between the area of the deformed vesicle A and a sphere with
the same volume A0). For small deformations, α = 8s2/5 [6]. For aspect ratios smaller than 1.1, such as during the
early deformation, the area strain is very small and tension remains close to the equilibrium tension σ0. Assuming
constant tension, Eq. 2 in the main text can be integrated to yield

ν(t) = 1 +
pR

24σ

(
1− exp

(
− 24σ

ηR (55 + 16χm)
t

))
(S9)
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If

24σt

ηR (55 + 16χm)
� 1

the exponent is expanded in Taylor series to yield the linear evolution, Eq. 2 in the main text.
The time limit for the linear approximation can be estimated by comparing the linear and quadratic terms in the

Taylor series of the exponential term in Eq. S9. The Taylor series of the exponential function is

exp (−ct) = 1− ct+
(ct)2

2
+ h.o.t. where for Eq. S9 c =

24σ

ηR (55 + 16χm)

It shows that the quadratic correction becomes comparable to the linear term when

ct =
(ct)2

2
=⇒ t =

2

c

which gives the estimate for the time up to which the linear approximation is reasonable

t

td
=
εE2

0R (55 + 16χm)

12σ

Considering typical parameters, σ0 = 10−8 N/m, κ = 25kBT , E0 = 10 kV/m, R = 10µm gives εE2
0R/σ ∼ 1,

where σ is evaluated from Eq. S8 using aspect ratio ν = 1.2 . Thus the linear regime extends to t/td ∼ 1 if χm ∼ 1.
Higher membrane viscosity lengthens the linear deformation regime, e.g., if χm ∼ 10, as in polymersomes made of
PBd22-b-PEO14, the cut-off time becomes t/td ∼ 15, see Fig. Fig. S2a

Fig. S 2: a) Vesicle deformation as a function of the dimensionless time t/td. (b) Fit of the deformation/relaxation curve of
the POPC vesicle shown on Figure 1 in the main text. Solid line is computed from Eq. S2 with parameters χm = 10 while field
is on, χm = 0 after the field is turned off, bending rigidity κ = 25kBT and initial tension σ0 = 3 × 10−8 N/m. (c) Zoom into
the initial deformation showing the initial slopes χm = 10 (red) and ±25% deviation, χm = 12.5 (black) and χm = 7.5 (blue).

In principle, Eq. S2 could be used to fit he whole deformation and relaxation curve (note that Eq. S9 is an
approximation derived from Eq. S2 assuming constant tension, which implies very small vesicle deformation, aspect
ratio <1.1) If the whole data set were to be used, this would require a nonlinear fit using Eq. S2 (since it can not be
analytically integrated to give ν(t) because tension increases exponentially with area strain, see Eq. S8) with at least
two parameters – viscosity and initial tension (if bending rigidity is known). Such fit is challenging. Furthermore,
the effect of the deformation in the theory (second term in Eq. S2) is an approximation - it only includes the linear
correction for the deviation from a sphere and as a result there is an error introduced by neglecting the higher order
terms; this error can become significant as aspect ratio increases. Figure Fig. S2b,c does show that the theory does
not match well the vesicle deformation at times where the tension is operational, indicating limitations of the theory
that likely arise from a break-down of the small deformation assumption and/or modification of the membrane elastic
properties (tension and bending rigidity) by the electric field (for example, there could be an electric field induced
contribution to the tension [7, 8])

Thus, the errors arising from the nonlinear fit and the shape approximation are likely to negatively affect the
accuracy with which the viscosity is determined. It is really fortuitous that vesicles have the initial linear deformation
regime, due to their very low tension, which leads to a large difference between the rate with which electric stresses
deform the vesicle,t−1

d ∼ η/εE2
0 , and the rate with which the tension pulls the vesicle back to its equilibrium spherical

shape,t−1
σ ∼ ηR/σ0. The ratio of these two rates t−1

d /t−1
σ = σ/εE2

0R � 1 indicates that the initial deformation is
entirely dominated by the electric stresses (and insensitive to tension).
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2. ADDITIONAL DATA

A. Batch reproducibility for homogeneous (DOPC) and mixed membrane compositions (DOPC:DPPC:Chol
(1:1:1))

Fig. S 3: Method reproducibility for the same system across different batches: Membrane viscosity for DOPC and
DOPC:DPPC:Chol (1:1:1) for three different batches of prepared vesicles. The applied frequency and field strength are 1 kHz
and 10 kV/m for respectively. For DOPC:DPPC:Chol (1:1:1), the applied frequency is 2 kHz and and applied field strength is
6 kV/m. The solid symbols show measurements on individual vesicles. The box-plot represents the standardized distribution
of data based on five numbers minimum value, first quartile (Q1), median, third quartile (Q3), and maximum value. The
open square represents the mean value. The numerical data is summarized in Table S3.

Figure Fig. S3 shows the box plot presentation for apparent membrane viscosity values obtained for the same system
across three different batches of vesicles prepared from DOPC and DOPC:DPPC:Chol (1:1:1). The zero charge or
frequency membrane viscosity data is given in the main text.

B. Deformation curves of bilayers at different field strength and frequency

Figure Fig. S4A represents deformation curves of POPC vesicles at different field strength (6-10 kV/m) at frequency
1 kHz. In Figure Fig. S4B the data is re-plotted again in rescaled time with td. The inverse of td can be expressed as
shear rate, γ̇ which in this case ranges from, γ̇ ∼10-100 s−1. The collapse of the data on single curve indicates that
the deformation rate of POPC bilayers are not affected at a given shear rate and they exhibit Newtonian rheology.

Eq. 2 in the main text shows that the slope depends on td, which depends on the field amplitude E0, and pel, which
depends on frequency. Hence to isolate the viscosity, one needs to plot the deformation data as a function of time
rescaled as t/tdp

el, see Figure Fig. S5.

C. Bending rigidity values from Flickering Spectroscopy and capacitance measurements for
electrodeformation method

The method for flickering spectroscopy is detailed in [9, 10]. Here, we summarize the electrodeformation method to
extract out membrane capacitance. The procedure follows the original approach developed by Salipante et al. [11].
The vesicle shape morphology with conductivity ratio Λ > 1 is always prolate. However, for Λ < 1, the conductivity
of the outer solution is higher than the vesicle solution and the aspect ratio/deformation parameter s (ω) is positive
at low frequencies that is prolate shape. As the frequency increases, the vesicles becomes less prolate and adopts a
spherical shape at a certain frequency. Above this critical frequency, the vesicles adopt an oblate shape. The critical
frequency can be approximated as:

ωc =
λin
RCm

1√
(1− Λ) (3 + Λ)

(10)
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Fig. S 4: (A) Deformation curves for a POPC vesicle (R= 30.1 µm) exposed to fields of different amplitudes (at 1 kHz). (B)
The initial slope of the data in (A) re-plotted as a function of the re-scaled time t/td yields an apparent membrane viscosity
ηm = 2.63 ± 0.41 × 10−7 Pa.s.m.

A) B) C)

Fig. S 5: (A) Deformation curves for a POPC vesicle (R= 14.7 µm) exposed to fields of different frequency but same field
amplitude E0 = 8 kV/m. (B) The initial slope of the data in (A) re-plotted as a function of the re-scaled time t/td, see Figure
Fig. S5. The electric stress pel increases with frequency but the slope in (B) remains the same indicating that apparent
surface viscosity also increases. (C) Indeed, when data are plotted vs t/tdp

el the slope decreases with increasing frequency
yielding the frequency dependence of the apparent viscosity. Extrapolation to zero frequency gives the membrane viscosity

Hence, the membrane capacitance can be determined from the experimentally measured critical frequency based
on prolate-oblate transition with a frequency sweep [11]. The measured bending rigidity and capacitance values are
summarized in Table I.
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Table S I: Membrane bending rigidity and capacitance of phospholipids, polymers PBdx-b-PEOy and mixed system of
DOPC:DPPC:Chol at 25 oC determined in this study. Bending rigidity was measured with flickering spectroscopy and
membrane capacitance was measured with the electrodeformation method. Mw and Mh refer to the total and hydrophobic
molecular weight, respectively. NA means not available.

Composition Mw [kDa] Mh [kDa] κ (kB T ) Cm (µF/cm2)

POPC 0.760 0.448 27.8±2.3 0.72 ± 0.04

SOPC 0.787 0.476 30.1±3.1 0.71 ± 0.02

DOPC 0.786 0.474 22.2±2.0 0.72 ± 0.04

OMPC 0.732 0.420 27.1±2.6 0.71 ± 0.03

DOPC:Chol (1:1) NA NA 27.8±4.6 0.50 ± 0.09

DPPC:Chol (1:1) NA NA 121.3±11.0 0.45 ± 0.05

DOPC:DPPC:Chol (1:1:1) NA NA 72.0±8.4 0.51 ± 0.16

DOPC:DPPC:Chol (1:1:2) NA NA 69.2±7.9 0.63 ± 0.10

PBd13-b-PEO11 1.19 0.7 17.1±1.5 0.36 ± 0.05

PBd22-b-PEO14 1.80 1.35 31.0±5.1 0.27 ± 0.03

PBd33-b-PEO20 2.60 1.85 54.4 ±6.4 0.23 ± 0.04

PBd46-b-PEO24 3.54 2.60 NA 0.18 ± 0.03

PBd54-b-PEO29 4.19 3.10 154± 16.0 0.18 ± 0.04

PBd120-b-PEO78 9.91 6.80 NA 0.07 ± 0.01

Table S II: Membrane viscosities and values of a dye diffusion coefficient (DiC18) for the DOPC:DPPC:Chol ternary system.
The values in brackets indicate lipid molar ratios (first column) and the number of measured vesicles (third column). All the
experiments were performed at 25.0 oC. Ld and Lo denote liquid disordered and liquid ordered, respectively. The diffusion
coefficient were taken from [12]

Multi-component Phase state ηm [nPa.s.m] D [µm2/s [12]]

DOPC Ld 4.11±2.63 (20) 6.30±0.13

DPPC:Chol (1:1) Lo 56.4±4.63 (25) 0.48±0.06

DOPC:DPPC:Chol (1:1:2) Lo 15.4±2.40 (25) 1.85±0.13

DOPC:DPPC:Chol (1:1:1) Ld 17.7±3.06 (18) 2.50±0.20

DOPC:Chol (1:1) Ld 7.00±4.77 (25) 3.25±0.25
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3. MOVIE DESCRIPTION

Videos showing the deformation and relaxation of GUVs made of POPC (left) and PBd33-b-PEO20 (right) with
radii of 31 and 24 µm, respectively. The videos were acquired with phase contrast microscopy at Eo= 10 kV/m at 1
kHz. The time stamps show the actual time.
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