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Extracellular and intracellular components
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ABSTRACT Electric phenomena in brain tissue can be measured using extracellular potentials, such as the local field poten-
tial, or the electro-encephalogram. The interpretation of these signals depends on the electric structure and properties of extra-
cellular media, but the measurements of these electric properties are still debated. Some measurements point to a model in
which the extracellular medium is purely resistive, and thus parameters such as electric conductivity and permittivity should
be independent of frequency. Other measurements point to a pronounced frequency dependence of these parameters, with
scaling laws that are consistent with capacitive or diffusive effects. However, these experiments correspond to different prepa-
rations, and it is unclear how to correctly compare them. Here, we provide for the first time, impedance measurements (in the
1–10 kHz frequency range) using the same setup in various preparations, from primary cell cultures to acute brain slices, and a
comparison with similar measurements performed in artificial cerebrospinal fluid with no biological material. The measurements
show that when the current flows across a cell membrane, the frequency dependence of the macroscopic impedance between
intracellular and extracellular electrodes is significant, and cannot be captured by a model with resistive media. Fitting a mean-
field model to the data shows that this frequency dependence could be explained by the ionic diffusion mainly associated with
Debye layers surrounding the membranes. We conclude that neuronal membranes and their ionic environment induce strong
deviations to resistivity that should be taken into account to correctly interpret extracellular potentials generated by neurons.
SIGNIFICANCE The electro-encephalogram recorded at the scalp surface and local field potentials recorded within
neural tissue are generated by electric currents in neurons, and thus depend on the impedance of neural tissue. Different
measured values were proposed, and it is currently unclear what is the real impedance of neural tissue. Here, we show that
the impedance depends on the measurement technique. If the measurement is exclusively extracellular, the system
appears as equivalent to a simple resistor. However, if the measurement includes an intracellular electrode, a more
complex impedance is observed, because the current must flow through the membrane, as happens in the brain. Thus, we
provide an explanation for apparent disagreements, and indicate in which cases each impedance should be used.
INTRODUCTION

The genesis of extracellular electric potentials in the brain
depends on the electric properties of the extracellular me-
dium. The exact nature of these electric properties is impor-
tant, because nonresistive media will necessarily impose
frequency-filtering properties to electric signals (1,2) and
therefore will influence any source localization. Early
studies modeled the genesis of extracellular potentials
assuming that the medium is analogous to a resistance (3).
Evidence for such resistive media was provided by different
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measurements (4–6), while other measurements (7–9) re-
vealed a more complex situation, where the measured elec-
tric parameters displayed a dependence on frequency in
contrast to the frequency-independence of resistive systems.
Computational models showed that such a dependence on
frequency can be obtained if there are strong spatial varia-
tions of conductivity and/or permittivity (10). Further
models showed that frequency-dependent electric parame-
ters can also result from electric polarization of the medium
(11), or from ionic diffusion (12).

The extracellular medium properties were also estimated
indirectly by correlating intracellular and local field poten-
tials (LFPs) (13) or by the frequency dependence between
electro-encephalogram (EEG) and magneto-encephalogram
signals (MEG) (14). Although a framework was proposed to
Biophysical Journal 121, 869–885, March 15, 2022 869

mailto:alain.destexhe@cnrs.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2022.02.022&domain=pdf
https://doi.org/10.1016/j.bpj.2022.02.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bedard et al.
explain the contradictory measurements (15), the electric
nature of the extracellular medium is still debated (15–17).

The main problem to resolve this debate is that different
experiments correspond to very different preparations, and it
is not clear how to correctly compare them. For example,
impedance was either measured intracellularly (9) or extra-
cellularly (5,6). Could this account for discrepancies
observed across studies? In the present study, we provide
for the first time, impedance measurements, either with an
intracellular electrode or extracellularly, in different prepa-
rations, in acute brain slices, in primary cell cultures, and
we compare to measurements using the same setup in artifi-
cial cerebrospinal fluid (ACSF).
MATERIALS AND METHODS

In vitro electrophysiology

Animals

C57BL/6 and Swiss mice were housed by groups of 3 to 5 mice, in a 12-h

light/dark cycle, with food and water available ad libitum. All experiments

were performed in accordance with local animal welfare committee (Center

for Interdisciplinary Research in Biology, and Institut de Biologie Paris-

Seine, IBPS, Ethical Committees) and EU guidelines (Directive 2010/63/

EU). Every precaution was taken to minimize stress and the number of an-

imals used in each series of experiments.

Neuronal primary cultures

The brains (from Swiss mice) were removed from day 14 embryos, and

striata were isolated and dissociated by gently pipetting in phosphate-buff-

ered saline-0.6% glucose. Cells were collected by centrifugation at 1000 �
g for 5 min. Cell pellets were resuspended in Neurobasal medium supple-

mented with B27 (Invitrogen, Thermo Fisher Scientific, Illkirch, France),

500 nM L-glutamine, 60 mg/mL penicillin-streptomycin, and 25 mM b-mer-

captoethanol (Sigma, Saint-Quentin Fallavier, France), and then plated into

24-well (1.8 � 105 cells per well) plates coated with 50 mg/mL poly-d-

lysine (Sigma). After removal of the coating solution, cells were seeded

in the Neurobasal medium on glass coverslips and cultured at 37�C in

95% air and 5% CO2. When placed in the recording chamber, the cell cul-

ture was initially superfused with a 95% O2/5% CO2-bubbled Neurobasal

medium, and then progressively diluted in ACSF solution. Patch-clamp re-

cordings were made from day 3 to day 10 after seeding.

Brain slices preparation

Horizontal brain slices (from C57BL/6) with a thickness of 300 mm were

prepared from postnatal P30-40 mice using a vibrating blade microtome

(VT1200S; Leica Biosystems, Nussloch, Germany). Brains were sliced in

a 95% O2/5% CO2-bubbled, ice-cold cutting ACSF solution containing

NaCl 125 mM, KCl 2.5 mM, glucose 25 mM, NaHCO3 25 mM, NaH2PO4

1.25 mM, CaCl2 1 mM, MgCl2 1 mM, and pyruvic acid 1 mM, and then

transferred into the same solution at 34�C for 1 h before cell recording.

Whole-cell patch-clamp recordings and experimental setup

Electrophysiological recordings were performed in the dorsal striatum,

which has the advantage of having no laminar organization (with neurons

presenting a relatively constricted dendritic arbor with a spherical distribu-

tion), which hence limits the influence on the current trajectories and avoids

strong anisotropic equipotential surfaces. Patch-clamp recordings were

combined with extracellular recording using a 2- to 3.5-MU patch-clamp

glass pipette. The latter was located within a close vicinity (z5–10 mm)
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of the patched neuron (Fig. 1 A). In the primary cell culture experiments,

the average distance separating neighboring cells was on average

17.4 mm (57.1, n ¼ 14) and 12.8 mm (56.4, n ¼ 25) for immature and

mature cells, respectively, thus about three times larger than the distance

separating the two pipettes. Borosilicate glass pipettes of 5- to 7-MU

impedance contained for whole-cell recordings: K-gluconate 122 mM,

KCl 13 mM, HEPES 10 mM, phosphocreatine 10 mM, ATP-Mg 4 mM,

GTP-Na 0.3 mM, and EGTA 0.3 mM (adjusted to pH 7.35 with KOH).

The composition of the extracellular solution and inside the extracellular

pipette was the same ACSF solution that was used for brain slice incuba-

tion. Signals were amplified using EPC9-2 amplifiers (HEKA Elektronik,

Lambrecht, Germany) with a very high input impedance (1 TU) to ensure

there was no appreciable signal distortion imposed by the high-impedance

electrode (18,19). All recordings were performed at 34�C using a tempera-

ture control system (Bath-Controller V; Luigs & Neumann, Ratingen, Ger-

many) and brain slices or primary cell cultures were continuously

superfused at 2 mL/min with the extracellular solution. The extracellular

solution used in the recording chamber had the same ionic composition

for all the experimental conditions. Neurons were visualized on a

BX51WI microscope (Olympus, Rungis, France) using a 40�/0.80 water-

immersion objective for localizing cells for whole-cell recordings and

extracellular electrode positioning. Series resistance was not compensated.

Current-clamp recordings were sampled at 50 kHz using the Patchmaster

v2x73 program (HEKA Elektronik).

White noise stimulation protocols and signal analyses

Frozen white noise stimuli were applied via the recording patch-clamp elec-

trode in current-clamp mode. A quantity of 20 s of Gaussian white noise

with zero mean and 5, 10, or 20 pA variance was injected. For each cell,

we injected up to 71 times the same sequence of white noise (Fig. 1 A).

For each neuron, we computed the IV-curve by applying hyperpolarizing

current steps of different intensities in current-clamp. Neurons for which

the recording voltage of the responses was not inside the linear region of

the IV-curve were excluded (only two neurons from brain slices had to

be excluded for this reason in this study). For each trial, we calculated as

a function of the frequency the modulus and Fourier phase of the voltage

difference between the intracellular recording and extracellular reference

electrode, as well as between the extracellular reference and ground elec-

trode. We then averaged these measures to obtain a Fourier spectrum,

ranging from 1 to 10 kHz, for each cell. Going at higher frequencies was

challenging because of the limitations in sampling frequency of our electro-

physiological setup and because the power of the signal becomes weak and

dominated by instrumental noise. In addition, the 10 kHz upper limit was

sufficient to observe the capacitive effect between the extracellular and

intracellular electrodes, because of their close proximity.

Importantly, the numerical measurement of the phase induces a small

delay Dt between the real and digitally measured voltage, and this delay de-

pends on the sampling frequency. This delay is likely due to the electronics

and does not affect the modulus of the impedance, but is proportional to fre-

quency. We have measured and corrected for this effect by using the mea-

surement of the resistance between the two electrodes in ACSF. Without

this correction, we would have F(n) ¼ 0 because saline is resistive for n be-

tween 0 and 10 kHz.With the delay, we haveFðnÞ ¼ � 0:5
ne
n, where ne is the

sampling frequency.

We have fitted the models on the experimentally measured phase values

to minimize the mean square distance between experimental and theoretical

values. To do this, we computed the average values on small intervals of fre-

quency (z1 Hz) in the impedance modulus of the experimental data in each

example. In other words, we calculated min
h

1
N�1

PN
i¼1ðYi � ZiÞ2

i
; where Z

and Y are, respectively, the average value over a segment of length equal to

1 Hz in the model and experimental data. We adjusted the parameters of the

different models to minimize the largest absolute distance between the

modulus of the average experimental and model values over the ensemble

of intervals. This choice simplifies the comparison between the different

models and experimental results. Importantly, log-log graphs give the false
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Neural tissue impedance
impression that there is more noise at high frequencies, but this is due to the

high density of points.

Finally, we fitted numerically the polar representation of the experi-

mental data in Fourier frequency space, using a filtering with the cubic

spline method (20). This method has a smooth derivative, which is appro-

priate for very noisy modulus and phase values. Also, the data were fit to

models that are plausible biophysically (resistive, diffusive, etc.), so that

the parameters have a clear biological or physical interpretation. In all

cases, each biophysical model has a few parameters (which number remains

very small compared with the data set), and provides us with estimates of

these parameters, as we describe in the results section.
Mathematical and physical models used to
simulate the experimental data

To model the experimental data, we use Maxwell equations under the

electric quasistatic approximation, which was formulated in mean-field

in previous studies (12,21). (The electric quasistatic approximation con-

sists of neglecting electromagnetic induction such that we have V� ~E ¼
0. It is important to note that in this approximation, the displacement cur-

rent is taken into account and accumulation of charges can occur. There

exists another approximation, the magnetic quasistatic approximation, in

which electromagnetic induction is not neglected (22)). At the first order

of this mean-field theory, the macroscopic impedance (corresponding

here to the definition of the impedance as in electronics, and different

from the macroscopic impedance used at large scales, in the centimeter
range) of a point neuron in a heterogeneous medium is given by the

following:

ZðuÞ ¼ VðuÞ
IgðuÞ ¼ Rm

1þ iutm
þ Aw

1þ ffiffiffiffiffiffiffiffi
i u
uwT

p þ Rasymp þ FðuÞ

(1)
where Aw ¼ Ao þ Bo

1þiutmw
. This expression was written by explicitly

following physical phenomena. The first right-hand term corresponds to

the usual R-C circuit of the membrane, and the second term is due to ionic

diffusion (in a linear approximation), as well as to electric polarization (if

the polarization relaxation time is negligible). The last term F(w) takes into

account other physical phenomena that may introduce a frequency depen-

dence in the extracellular medium, such as electromagnetic induction, elec-

tric viscosity, etc., but these phenomena seem to have a negligible impact on

the impedance values for the frequency range <1000 Hz investigated here

(7). The physical meaning of the parameters is as follows: Rm is the macro-

scopic membrane resistance, tm¼ RmCm is the membrane time constant, Au

is the amplitude of the diffusive impedance, which is a real number when

the polarization relaxation time (Maxwell-Wagner time tMW) is negligible,

Rasymp is the asymptotic resistance for very high frequencies, and nwT ¼
uwT/2p is its Warburg threshold frequency (for details, see Online Appen-

dix C).

The model used to take into account the effect of dendrites is the same as

used previously (9), and consists of a model with a soma and a dendrite.
Biophysical Journal 121, 869–885, March 15, 2022 871
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Because we have a monopolar current source (electrode injection), the elec-

trotonic length of a dendritic branch is given by the following:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm
zi

�
1þ z

ðmÞ
e

rm
ð1þ iutmÞ

�s
(2)

where the following quantities are defined in the generalized cable: zi is the

cytoplasm impedance per unit length, rm is the specific membrane resis-

tance, and zðmÞe is the specific input impedance of the extracellular medium

as seen by the membrane.

We have zðmÞe ¼ zintra þ zextra (from Fig. 1). The physical link between the

generalized cable is the following. The current density in the dendritic stick

has a component in parallel to the axis of the stick, and a component

perpendicular to it. However, the electric conductivity is different for these

two components. zi is associated with the parallel component, where the

current density is physically related to the cytoplasm, and zintra is associated

with the perpendicular component, which is physically related to the Debye

layers in the inner side of the membrane. We have8>>><
>>>:

Vm

Ig
¼ lzi

k
coth

�
kl

l

�
ðaÞ

Vi

Ig
¼ ZaZsZd

ZaZs þ ZsZd þ ZdZa

þ Rg ðbÞ
(3)

where the neuronal cable model in an ‘‘open configuration’’ (i.e., without

return current) was used, as defined in (23).

Because the current that goes from the neuron to the extracellular space

separates into several parts, one part that flows through the soma membrane,

and another part that flows in the dendrite, we have used several impedances

(Fig. 1): Za: the impedance of the extracellular medium in contact with the

isopotential surface S (which touches the extracellular electrode and sur-

rounds the intracellular electrode), Zs: the impedance of the current flowing

through the soma membrane (in contact with this surface S), and Zd: the

input impedance of the dendritic tree. When measuring the equivalent

impedance, we have ðZajjZsjjZdÞ4Rg, where Rg is the impedance between

the ground and the first isopotential surface, which comprises the neuron

(Online Appendix A). Note that the isopotential surfaces are necessarily

continuous, but may be more irregular in shape than that schematized.

The electric potentials Vi and Ve are taken at the inside and outside bor-

ders of the membrane, respectively, at the level of the soma and relative to a

reference point outside the neuron. According to the law of generalized cur-

rent conservation, we have Ve

z
ðmÞ
e

¼ Vmð1þiutmÞ
rm

. Note that the parameters Rm ¼
rm/DS and ZðmÞ

e ¼ zðmÞe =DS (where DS is an element of surface area of the

membrane) are macroscopic parameters, whereas rm and zðmÞe characterize

the membrane at a microscopic level. This explains the difference between

expressions 3a and 3b, because by definition we have Vi ¼ Vm þ Ve. Note

that if
��zðmÞe

�� � rm, then expression 3b becomes equivalent to the input

impedance of the dendrite (stick) in parallel with a portion of soma mem-

brane (Fig. 1).

zðmÞe is the specific input impedance of the extracellular medium, as

sensed by the membrane, as also defined by the generalized cable theory

(23). This parameter also can be applied to the intracellular medium, in

case of a current source from an intracellular electrode, to take into account

the impedance of the intracellular medium between the tip of the electrode

and the membrane. In the open configuration, zðmÞe can be a resistance for a

resistive extracellular medium, but can be more complex when taking into

account effects such as polarization, ionic diffusion, capacitive effects, etc.

Thus, the form of this frequency dependence contains the contribution from

the extracellular medium. Note that the expression in Eq. 2 shows that, in

the open configuration, the electrotonic length depends on frequency,

even for a resistive extracellular medium.
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Also, in a ‘‘closed configuration’’ (where the neuron is electrically a

closed system, where all currents loop back to the neuron), for a resistive

medium, we have zðmÞe ¼ � rmre
ðriþreÞð1þiutmÞ and l ¼

ffiffiffiffiffiffiffiffi
rm

riþre

q
. zi ¼ ri is the cyto-

plasm resistance per unit length and re is the extracellular medium resis-

tance per unit length, as defined in the Rall-Tuckwell model. In this

simplified and resistive model of the neurons, one assumes that the extracel-

lular current flows parallel to the axis of the dendrite. In this case, we see

that l does not depend on frequency. This is in accordance with the classic

Rall-Tuckwell cable theory (24,25). In contrast, in an open configuration

with resistive media (zðmÞe and zi are real positive), the modulus of l in-

creases with frequency (Eq. 2). Thus, in general, the electrotonic length

(jlj) of a ball-and-stick neuron depends on frequency, which is not the

case in the Rall-Tuckwell model, as shown above.

An interesting consequence of this is that, if one measures the impedance

zðmÞe in a resistive configuration (for example in an isolated neuron

embedded in ACSF), one should see the frequency dependence, which

would validate the open configuration, as we describe in the results section.
RESULTS

We first describe the experimental results and the different
experimental configurations, then we propose different
models to fit the experimental measurements.
Experimental measurements

The experimental protocol consisted of in vitro whole-cell
patch-clamp recordings of striatal neurons, either from pri-
mary cell cultures or in acute brain slices, while simulta-
neously recording the potential in the vicinity (5–10 mm)
of the neuron using a second reference electrode (Figs. 1
A and 2). The setup thus consists of three electrodes: the
intracellular electrode, the reference electrode, and the
ground. Frozen white Gaussian noise is injected in the cell
via the patch-clamp electrode, and is measured according
to two configurations: either one measures the intracel-
lular-to-extracellular (intracellular electrode with respect
to reference electrode) potential, or the extracellular-to-
ground (reference electrode with respect to ground).

Several templates (from 1 to 71) of the same Gaussian
white noise with a flat spectrum between 0 and 10,000 Hz,
were injected into each recorded neuron. Importantly, for
the subthreshold range of voltage responses considered here
(�67mV5 2.3mV), themembrane I-V curve of striatal neu-
rons was linear and only subthreshold responses to current in-
jections (55 to 20 pA, adjusted according to the membrane
resistance) were considered for analysis. More precisely, re-
cordings, using the very same electrophysiological setup,
were obtained in four different experimental preparations
(Figs. 2 and 3). We describe below the experimental results
from the simplest experimental preparation in which two
electrodes were added to a homogeneous ACSF solution
without biological sample (Fig. 2 A1), to a more complex
preparation, in which recordings were obtained from neurons
within an acute brain slice (Fig. 2 D1). We also tested the in-
fluence of the dendritic arborization by recording either in
nonarborized neurons with almost no neurites (Fig. 2 B1) or
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Neural tissue impedance
in arborized neurons with extended dendrites (Fig. 2 C1) in
primary cell cultures. For each experiment, the Fourier
modulus and phase of the voltage difference between the
whole-cell recording electrode and the reference electrode
were calculated and then averaged (as illustrated in Figs. 1
and 2). The same analysis was also applied to the voltage dif-
ference between the reference and ground electrodes (Fig. 3).

We describe below the experimental results from the
simplest configuration of the two electrodes in ACSF, then
primary cell cultures in a quasi-homogeneous medium (to
to contrast with the high heterogeneity seen in acute brain
slices), and finally a more complex configuration of neurons
in acute brain slices.
Measurements in ACSF

In this section, we examine the simplest configuration
consisting of two electrodes in a homogeneous medium
solely constituted by ACSF (Figs. 2 A and 3 A). The glass
pipettes containing the electrodes were situated at a dis-
tance of 5 to 10 mm. Fig. 4 shows the measured impedance
between the two electrodes. The observed frequency
dependence appears above 2 kHz for the modulus
(Fig. 4 A) and above 500 Hz for the phase (Fig. 4 B).
This frequency dependence of the impedance modulus is
negligible for frequencies lower than 2 kHz, but not for
higher frequencies because Dlog10V z 50% between 2
kHz and 10 kHz, similar to previous measurements using
Biophysical Journal 121, 869–885, March 15, 2022 873
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FIGURE 3 Measurements between the extracellular electrode and the ground (extracellular-to-ground impedance). Same arrangement of panels as in

Fig. 2. Left: scheme of the recordings in the different preparations; Middle: modulus of the impedance; Right: phase of the impedance. To see this figure

in color, go online.
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patch electrodes in the extracellular medium (6). The
phase of the impedance also shows a frequency depen-
dence. It is negligible for frequencies smaller than 0.5
kHz, but for frequencies between 0.5 and 10 kHz, it varies
by about 50�. Our interpretation is that these frequency
dependences come from the capacitive effect between
the two electrodes (which was estimated of C z
874 Biophysical Journal 121, 869–885, March 15, 2022
3.25 pF). We found that this capacitive effect is present
in all experiments shown in the next sections, for intracel-
lular and extracellular recordings.

Importantly, in this part of the experiments, we observe a
linear phase lag F ¼ �kn on the phase F of the impedance,
as if electrode polarization had a non-negligible impact on
the measurement. However, we observe that the constant k
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Neural tissue impedance
is inversely proportional to the sampling frequency, which
rules out a polarization effect (because with polarization,
we would haveF¼�(kþ kp)n, with kp independent of sam-
pling frequency). Thus, the phenomenon of electrode polar-
ization seems negligible here, contrary to Miceli et al. (6).
This difference probably occurs because we applied smaller
amplitude currents (about 20 pA here, compared with 175–
500 pA in (6)). Note that the linear phase lag was removed
in Fig. 3 A3.

According to Miceli et al. (6) and Wagner et al. (8), the
electric conductivity of ACSF (‘‘ACSFc’’ in Miceli et al.
(6)) is similar to the conductivity measured between two
points in the extracellular medium (around 0.5 S/m). We
did not evaluate the value of this conductivity here, because
the very short distance between electrodes (5–10 mm) in-
duces capacitive effects. In this case, one would have to
solve the Laplace equation to estimate the conductivity
from the macroscopic impedance measurement. In previ-
ous experiments, such as (6), the interelectrode distance
(100–125 mm) was sufficiently large to avoid capacitive
effects.
Measurements in primary cell culture

Nonarborized neurons

In this section, we first examine a relatively simplified sys-
tem of immature neurons with little dendritic arborization,
and laying in a simplified extracellular medium (primary
cell culture); n ¼ 6 neurons (with few or no dendrites)
were recorded in this quasi-homogeneous medium
(Fig. 2 B).

Figs. 5, 6, and 7 show the fitting of different models to
experimental measurements obtained with isolated cells
immersed in saline, which is a medium that can be consid-
ered as homogeneous and resistive as a first approximation.
The fitting to these measurements shows that the intracel-
lular-to-extracellular and extracellular-to-ground macro-
scopic impedance clearly depends on frequency.

Fig. 6 also depicts the real and imaginary part of the
impedance. Note that the instrumental noise on the phase
is large compared with that on the modulus, the real
jZjcosF and imaginary jZjsinF components are both more
noisy than the modulus. However, the representations of
Im(Z)/n(Z) and Re(Z)/n(Z) complement well the analyses
given in the paper.

The gray curve in Fig. 5 shows the measured impedance
between the intracellular and extracellular electrodes. An
RC circuit (membrane) in series with a resistance Rmedium

(medium) cannot account for these impedance measure-
ments (green curves in Fig. 5). Simulating the impedance
with different values of Rmedium (Online Appendix B), could
not mimic the experimental results. The red curve corre-
sponds to Rmedium ¼ 0, which is equivalent to consider
that the membrane impedance is much larger than that of
the extracellular medium. In this case also, it was not
possible to properly fit the measurements.

The magenta curves in Fig. 5 are cubic spline fits of the
experimental data. We observed a capacitive effect between
the two intracellular and extracellular electrodes, as
observed in ACSF, but larger. This indicates that the mean
electric permittivity of the intracellular medium is larger
than that of ACSF. This capacitive effect is responsible for
a steep decrease of the phase values at high frequencies.
This is consistent with a diffusive effect, because a resistive
model with membrane would have a phase around p/2 rad.
for n> 100 Hz, which is difficult to reconcile with this phase
measurement.

The gray curve in Fig. 7 shows the measured impedance
between the extracellular electrode and the ground. A model
with a simple dendrite (stick) with resistive intracellular and
extracellular media could not account for these experi-
mental measurements. The red curve corresponds to an
extracellular medium with negligible resistivity compared
to that of the membrane (z

ðmÞ
e z0). This case is equivalent

to applying expression 3a. The green curve is such that
z
ðmÞ
e ¼ 0:5rms0.
In contrast, for the intracellular-extracellular measure-

ment, we observed that the NMD model (F(u) ¼ 0 and
Aw˛R; see Eq. 1) simulates (with some error) these experi-
mental measurements with a macroscopic RC circuit in se-
ries with a resistance and a diffusive impedance (blue curve
in Fig. 5). However, the residual error between experimental
Biophysical Journal 121, 869–885, March 15, 2022 875
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FIGURE 5 Cell-to-extracellular impedance Z as a function of frequency

n for a non-arborized neuron (no dendrites) in a primary culture (quasi-ho-

mogeneous medium). (A) Modulus of Z as a function of n. (B) phase of Z as

a function of n. The different models tested were Red: ðRmjjCmÞ model,
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with’’ and the symbol jj means ‘‘in parallel with.’’ Magenta: cubic spline

fit of the experimental data. Parameters: Rm ¼ 810 MU, tm ¼ 30 ms;

Aw ¼ 495 MU, nwT ¼ 0.1 Hz, Rextra ¼ 4 MU and Rasymp z 0.5 MU. To

see this figure in color, go online.
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measurements and the diffusive model is very similar to
what we observed for two electrodes in ACSF (Fig. 4).
This model also fits the extracellular-to-ground measure-
ment, despite the noise on the phase, for a stick where
both intracellular and extracellular Debye layers are
modeled with a diffusive model (blue curve in Fig. 7). We
propose an interpretation of these results in the analysis of
the experiments section.

Arborized neurons

We now follow the same approach as in the previous section,
but in the case of recordings made from more mature neu-
rons with extended dendritic arborizations, in primary cell
cultures (n ¼ 6 cells), which corresponds to Fig. 2 C. Using
the same scheme as in Fig. 5, we also investigate how the
presence of dendrites influences the measured macroscopic
impedance in this quasi-homogeneous medium.

By comparing the intracellular-to-extracellular imped-
ances in Figs. 5 and 8, one can observe that the presence
of dendrites has a negligible influence on the measured
intracellular-to-extracellular impedance. The quality of the
fit of the extracellular-to-ground impedance in the extracel-
lular-to-ground impedance in Fig. 9 is very similar to that of
Fig. 7. We considered a stick radius of 2 mm (as in nonarbor-
876 Biophysical Journal 121, 869–885, March 15, 2022
ized neurons) and a stick length of 600 mm (instead of 100
mm) to take into account the presence of a more extended
dendritic arborescence (Online Appendix E). Note that the
values of radius and length of the stick are not unique
because the simulations can fit the experimental results
equally well with a large number of dendritic parameters.
However, the area of the dendritic stick is fixed when we
fix the ratio z

ðmÞ
e =rm, ri and tm (see Eqs. 3 and 2; for more

details, see (23)). Thus, keeping the same stick diameter
as in the previous section, the fact that the length of the stick
is much larger than in immature neurons, indicates that, in
these experiments, the presence of dendrites has a much
larger impact on the extracellular-to-ground impedance
compared with the previous section. We have used a
dendrite length that is six times larger for arborized neurons,
which corresponds to visual inspection, but the results were
weakly dependent on the exact value of this parameter (not
shown).

Thus, the fits of different theoretical models to experi-
mental measurements of (arborized) neurons with dendrites
give very similar results to those obtained in neurons
without dendrites (nonarborized) examined in the previous
section. In other words, the mean square error of the fit of
the diffusive model is about 50 times smaller than that of
the resistive model (with or without dendrites; Online
Appendix G). The same capacitive effect as in ACSF was
observed here for both arborized and nonarborized neurons
(Fig. 4 in measurements in ACSF and Figs. 5 and 8 in mea-
surements in primary cell culture). It is thus important to
stress that the 3-point measurement used here allowed us
to directly measure the physical effect of the presence of
dendrites on experimental measurements.

Analysis of the experiments

The measurements from neurons in primary cell culture can
be analyzed according to the electrical configuration de-
picted in Fig. 10. The isopotential surfaces indicated are
central to our analysis. Si is the isopotential surface that cor-
responds to the potential measured at point i, where S1 cor-
responds to the potential measured by the intracellular
electrode, S2 corresponds to the potential measured by the
extracellular electrode, and S3 corresponds to the ground
potential. For simplicity, we call Region i�j the domain de-
limited by surfaces Si and Sj.

First, because the extracellular medium surrounding the
cell is mostly homogeneous and resistive, its macroscopic
impedance cannot depend on frequency (10). (Note that in
(10), we have shown that if there is a strong spatial depen-
dence of the electric parameters, a frequency dependence
of the impedance appears. The equation used is equivalent
to the generalized current conservation law. The latter can

be written as V,~j
g ¼ 0, where~j

g ¼ � ðse þiuεVVÞ, and
we have V,~j

g ¼ ðse þiuεÞV2V þ Vðse þiuεÞ,VV ¼ 0;
which is equivalent to (10)). We thus conclude that the
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Neural tissue impedance
surface S2 does not totally include the neuron, but cuts part
of the soma, such that we have a portion of membrane over
Region 2–3. Indeed, if the neuron was completely included
into Region 1–2, then Region 2–3 would only consist of
extracellular fluid, and would not exhibit (or exhibit negli-
gible) frequency dependence, which was not what was
observed (Fig. 7). This is in agreement with the fact that
the intracellular and extracellular electrodes are very close
to each other (between 5 and 10 mm), compared with the
size of the soma (estimated around 15 mm).

Second, the graph of the modulus of the impedance as a
function of frequency in Region 1–2 (Fig. 5) is very different
from Region 2–3 (Fig. 7). We thus conclude that the phys-
ical model is similar to the one represented in Fig. 10.
Because the two points 1 and 2 are very close to each other,
we can simulate the impedance of Region 1–2 by an RC cir-
cuit in series with a diffusive impedance. However, the
equivalent circuit of Region 2–3 cannot be the same because
the current of the intracellular electrode divides into three
parts: I

g
intra ¼ Iga þ Igs þ I

g
d , where Igs þ I

g
d flows through the

soma membrane and the dendrite, to the extracellular
medium, while Iga directly goes to the extracellular
medium. Thus, the impedance of Region 2–3 is equivalent
to expression 3b (Online Appendix A). Because this
equivalent impedance is much smaller than the input
impedance of the stick and of the soma membrane, the
extracellular-to-ground impedance is also much smaller
than the intracellular-to-extracellular impedance. Despite
this small value, the frequency dependence of the modulus
of this impedance can be clearly seen (Fig. 7). The experi-
mental measurement of the impedance of Region 1–2 shows
an additional capacitive effect similar to that seen in the pre-
vious section between intracellular and extracellular elec-
trodes. However, this capacitive effect is negligible for the
impedance measured in Region 2–3, which is coherent
with the fact that the distance between the extracellular elec-
trode and the ground is much larger than the distance be-
tween intracellular and extracellular electrodes.

Third, the growth of the modulus of the impedance of Re-
gion 2–3 for frequencies above 20 Hz is in full agreement
with the diffusive model, as in Eq. 3b. This is not the case
with the other models considered here. The minimum of
the modulus is directly linked to the membrane time con-
stant. The longer the time constant, the higher the frequency
of the minimum. We estimate from the position of the min-
imum, a membrane time constant of about 30 ms, which is
consistent with the membrane time constant estimated in
this configuration. The growth of the modulus shows that
z
ðmÞ
e

rm
cannot be neglected (Fig. 5). The value of this ratio is

estimated between 0.5 and 1 for null frequency (Online
Appendix D).

Fourth, the values of the ratio a ¼ Rm/Aw (model NMD
for n ¼ 0) are approximately a z 1–2 for both Region 1–
2 and Region 2–3. Here, NMD stands for a model in
which each differential element of membrane is equiva-
lent to a parallel RC circuit and where the intracellular
and extracellular media are diffusive. These ratios do
not correspond to a singular case, but were similar in all
examined cells (Online Appendix G) in the same experi-
mental conditions. Because neglecting Aw would amount
to having the NMR model of Fig. 5, these experimental
Biophysical Journal 121, 869–885, March 15, 2022 877
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FIGURE 7 Extracellular-to-ground impedance for a nonarborized neuron in culture. (A) Modulus of the impedance as a function of frequency. (B) Phase of

the impedance as a function of frequency. Dotted lines correspond to the mathematical model given by Eq. 3b (Fig. 5 and Online Appendix A). The different

fits shown are: Blue: NMD - Membraneþ diffusive intracellular and extracellular media; Red: NMR - Neuron in a non-negligible resistive medium zðmÞe s 0;

Gray: experimental measurement; Black: For (A), cubic spline of the logarithm of the modulus and frequency of experimental data; for (B): cubic spline of the

phase and logarithm of frequency. Parameters: in all models, Rm ¼ 10MUtm ¼ 25 ms, rd ¼ 2 mm, ld ¼ 100 mm and Zg ¼ 0.1MU; NMR: sie ¼ 5 S= m, z
ðeÞ
m

rm
¼

0:5, NMD: nwT ¼ 0.01 Hz, z
ðmÞ
e

rm
¼ 0:5þ 0:5
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uwT

p , pr2d,zi ¼ 1
sie
þ 1
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p . To see this figure in color, go online.
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results show that the intracellular and external Debye
layers cannot be assimilated to a simple resistance. In
contrast to NMD, the NMR configuration has resistive
extracellular and intracellular media, but with the same
membrane impedance. Moreover, the threshold frequency
cannot be considered as infinitely large (nwT ¼ 0.1 Hz in
Fig. 4 and nwT ¼ 0.001 Hz in Fig. 5) because in this
case, we would also have the NMR model. The threshold
frequency nwT of the diffusive impedance between sur-
faces S1 and S2 is greater than that between surfaces S2
and S3. This shows that surfaces S1 and S2 have very
different curvatures. The small value of the Warburg
threshold frequency (nwT ¼ uwT/2p) indicates that the cur-
vature radius of the isopotential surface S2 is much larger
than the surface S1, which is consistent with the fact that
surface S1 is at a zero distance from the tip of the intracel-
lular electrode, which is not the case for surface S2
(Fig. 5; Online Appendix D).
878 Biophysical Journal 121, 869–885, March 15, 2022
Fifth, even for zero frequency, one does not observe the
typical resistance of ACSF. If we calculate the resistance
sensed by a fictive spherical source of diameter equivalent
to the intracellular electrode (�1 mm), embedded in ACSF
with an electric conductivity of se ¼ 0.5 S/m (6), we have

z 1
4pse

h
1
r1
� 1

r2

i
z40 kU. Here, r1 is the diameter of the fictive

source, and r2 is the average distance between the membrane
and the spherical source. This value of 40 kU is smaller than
the value in Region 1–2 predicted by the diffusivemodel for a
near-zero frequency, because this value is much smaller than
the estimated Aw, which is about 30% to 45% of that of the
membrane. This result is surprising, and different from the
approximation usually made, assuming that the intracellular
impedance is much smaller in amplitude compared with the
membrane impedance for near-zero frequencies.

How to explain this result? According to the theory and
experimental measurements of the electric conductivity of
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Neural tissue impedance
heterogeneous media (26,27), the phenomenon of polariza-
tion occurs when an electric field is applied, and this con-
tributes to lower the electric conductivity of the medium.
Similar considerations apply to the phenomenon of ionic
diffusion, which also lowers the conductivity (9,23). In the
polarization effect, the electric field polarizes the intracel-
lular medium, which determines an electric resistivity that
is larger than the most conductive part of the medium.
Thus, electric polarization diminishes the apparent electric
conductivity in a heterogeneous medium, which directly
affects the value of Aw (Online Appendix C). Nevertheless,
the present measurements show that the characteristic relax-
ation time of polarization (also called Maxwell-Wagner
time), is negligible in these experimental conditions because
the diffusive model alone can fit very well the experimental
results. (Note that the diffusive model stems from the appli-
cation of quasistatic statistical thermodynamics to the model
of Gouy-Chapmann-Stern-Debye (21,28)). If the polariza-
tion relaxation time was not negligible, there would be an
additional frequency dependence to take into account in
addition to the diffusive model. Note that the diffusive
model is equivalent to a model in which the polarization
relaxation time becomes very large when the frequency
tends to zero (Online Appendix F). We conclude that the
intracellular medium is such that the cutoff frequency fc ¼
1/2ptmw of the low-pass filter due to electric polarization
(11) is larger than 10 kHz in this experiment.
The large extracellular medium impedance also can be
explained by the tortuous structure of the intracellular me-
dium. Because the electric field lines cannot follow this
tortuous structure, the charges that are moving in the extra-
cellular space due to the electric field are subject to various
obstacles (29). To move away from these obstacles, ionic
diffusion is necessary in addition to the electric field.
Thus, it is expected that the impedance modulus of such a
tortuous medium is larger than ACSF.

The high value of the impedance (high value of Aw) is also
due to the fact that the size of the soma is much larger than
the plasmic membrane thickness. The ratio between the two
is of the order of 1000, because the membrane has a thick-
ness around 7.5 nm while the soma has a typical size around
10 mm. If we consider a slice inside the soma, we get
approximately Rsoma internl < Aw/1000 ¼ 4 MU/1000 z
4 kU, which is much smaller than Rm. We can repeat this
for further slices in series of similar thickness. Because Aw
contains the contribution of external and internal Debye
layers, the value of Rsoma internal evaluated is smaller than
4 kU. (By definition, the external (or internal) Debye layer
is the region at the interface between the membrane and
the extracellular (or intracellular) medium. It was estimated
that the electric potential over this region attenuates by e z
2.718 times its value on the membrane surface. Its thickness
is called the Debye length. For more details on the notion of
Debye layers, see (28)). Thus, the medium inside the soma
is much more conductive than the membrane, as postulated
by the standard model, but the difference is not as large as
assumed by that model (red curve in Fig. 5).

Finally,we observed that the impedancemeasured between
the extracellular electrode and theground ismuchnoisier than
the intracellular-to-extracellular impedance. This is, in part,
due to the smaller amplitude of the latter impedance, and to
the fact that the power falls off at higher frequencies, where
instrumental noise becomes dominant. However, it should
be noted that, besides the presence of this higher level of
noise, the measurements also show that the modulus of the
two theoretical diffusive impedances in Regions 1–2 and 2–
3 are in full agreement with the experimental results. This in-
dicates that the extracellular electrode is sufficiently far away
from themembrane anddoes not disturb its ionic environment
(Debye layers). It is nevertheless close enough so that the iso-
potential surface S2 only cuts a portion of the soma.

To conclude this analysis, the present measurements
from neurons in primary cell culture cannot be made
compatible with a resistive system, both for the modulus
and phase of the impedance. However, both seem compat-
ible with the impedance profile predicted by a diffusive sys-
tem, which we interpret as being essentially due to the
presence of Debye layers surrounding the membrane. How-
ever, to be rigorous, we must also mention the influence of
the multiple obstacles inside and outside the neuron, which
also have Debye layers and will influence the current flow.
Importantly, the lack of major differences between the
Biophysical Journal 121, 869–885, March 15, 2022 879
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measurements from immature nonarborized neurons and
those obtained from neurons with an extended dendritic
tree argues against the hypothesis that the presence of den-
drites could have a significant impact on impedance
measurements.
Measurements in acute brain slices

In this section, we present and analyze impedance measure-
ments of mature and fully arborized neurons (n ¼ 9 cells)
recorded in acute brain slices (Fig. 2 D). In this case, the tis-
sue surrounding the neuron is quasi-intact, and the extracel-
lular medium is the neuropil, which is very heterogeneous
(30). We analyzed the effect of such an environment on
the frequency dependence of the macroscopic impedance.

We used the same experimental method (three-point
recording) as in previous sections. We observe a different fre-
quency dependence for the impedance of Region 1–2
(compare Figs. 5, 8, and 11). This shows that the presence
of a complex extracellular medium (neuropil) causes more
complex effects in the vicinity of the neuronal membrane.
However, if we consider two different threshold frequencies
880 Biophysical Journal 121, 869–885, March 15, 2022
for intracellular and extracellular media, we obtain the
following:

Z ¼ Rm

1þ iutm|fflfflfflfflffl{zfflfflfflfflffl}
membrane

4
Aa
w

1þ
ffiffiffiffiffiffiffiffi
i u
ua
wT

q 4Ra
asymp

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive model

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{intracellular medium

4
Ab
w

1þ
ffiffiffiffiffiffiffiffi
i u

u
b

wT

q 4Rb
asymp

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive model

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{extracellular medium

;

(4)
which gives excellent fits (Fig. 11). Note that we have kept
the characteristics (parameters) of the previous experiments
for modeling the intracellular medium.

In Region 2–3, we observed a similar frequency depen-
dence as in previous configurations (compare Figs. 7, 9 and
12). In the case of the diffusive model, we used a model of
the macroscopic impedance Zb (impedance of the extracel-
lular medium as sensed by Surface S2; Fig. 10), which was
taken from a previous study (9), with the difference that
we added a series resistance (8MU). This addition is justified
in Online Appendix C (Eq. C.5). This impedance is



FIGURE 10 Electrical configuration of the cell and electrodes. Left: Physical model. The cell is schematized in gray, and the isopotential surfaces are

labeled as S1, S2, S3. Right: equivalent electric circuits for the impedances calculated between the intracellular and extracellular electrodes, as well as between

extracellular and ground electrodes. This corresponds to the isopotential surfaces S1�S2 (Region 1–2) and S2�S3 (Region 2–3), respectively. S2b is the part of

surface S2 where the current directly goes to the extracellular medium, whereas S2a is the part of S2 where the current that passes through the intracellular

medium before going extracellular (soma þ dendrite). In other words, in Region 2–3, we have taken Eq. 3b where Zg is a resistance. Rg is the resistance

between the ground and the first isopotential surface which includes the neuron. Note that the drawing with equipotential surfaces (left) is a schematic draw-

ing where the only goal is to illustrate the link between equivalent electric circuits (right), the physical models and the experimental measurements (Online

Appendix A). To see this figure in color, go online.

Neural tissue impedance
necessarily macroscopic because it is given by the ratio of the
measured current between two points separated by macro-
scopic distances (as defined by the region in between the
two isopotential surfaces going through each point). Accord-

ingly, we used Zb ¼ 8þ 8

1þ
ffiffiffiffiffi
iu

wwT

p MU, where nwT¼ 40Hz, as

determined in (9). Note that the particular choice of the pa-
rameters (Aw ¼ Rasymp ¼ 8 M and wwT) can be varied (by
approximately5 50%) with no qualitative change in the re-
sults (Online Appendix G). While many combinations of pa-
rameters fit the data for diffusive models, we did not find a
single parameter set of resistive models that could fit the data.

The modulus of the extracellular impedance between the
extracellular electrode and the ground (Region 2–3) in acute
brain slices can be different from that in primary cell cul-
ture. The impedance sensed by the current source that
does not flow through the dendrite and the cell membrane
(Fig. 10) on Region 2–3 (between the extracellular electrode
and the ground) are experimental conditions similar to
extracellular measurements performed in other studies
(5,6). Thus, for Region 2–3, we have chosen a similar model
as for the experiments in primary cell culture.
Analysis of the brain slice experiments

In the acute brain slice preparation, the observations are
similar to the observations in primary cell culture, except
that the best fit is obtained here when we use different
threshold frequencies for intracellular and extracellular me-
dia. We now focus on the analysis and interpretation of such
different threshold frequencies.
According to Gomes et al. (9), the extracellular imped-
ance in brain slices has a threshold frequency between 40
and 60 Hz. Compared with the present experiments, the
thickness of the extracellular medium was much larger in
(9), because the extracellular electrode was located at a dis-
tance about 10 times larger. Indeed, in (9), the macroscopic
impedance of the extracellular medium was larger than that
of the intracellular medium. Thus, the present results,
together with Gomes et al. (9), suggest that the threshold fre-
quency of the extracellular medium is larger than that of the
intracellular medium. This larger threshold may indicate
that the medium is more tortuous inside the cell compared
with the extracellular medium.

This result is also in qualitative agreement with the exper-
imental measurements of Gabriel et al. (7) and Wagner et al.
(8) because the apparent conductivity and permittivity of the
diffusive model are respectively very low and very high,
which gives a very large dielectric relaxation time (Online
Appendix F). According to the experimental results of (7),
the electric permittivity of the extracellular medium is much
larger in the neuropil, compared with that of the extracellular
fluid in cultures. The value of the permittivity is in agreement
with the experimental measurements (7,8) and is estimated to
be 105 to 107 times larger than that of ACSF. Notice that the
results of Wagner et al. (8) were obtained in vivo and are
not identical to that of Gabriel et al. (7) obtained in vitro.
This difference may be because the linear approximation of
the medium impedance may be valid in vitro but not in vivo.
Can the linear approximation be considered as a first esti-
mate? Is the deviation due to the presence of ongoing (spike)
activity? These questions await experimental testing.
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FIGURE 11 Intracellular-to-extracellular impedance Z as a function of

frequency n for a neuron recorded in acute brain slice. (A) Modulus of Z

as a function of n. (B) Phase of Z as a function of n. Parameters: tm ¼
10ms, Rm ¼ 128 MU; Aa

w ¼ 60MU, nawT ¼ 0:5 Hz, Ra
asymp ¼ 6MU;

Ab
w ¼ 16 MU, nbwT ¼ 40 Hz and Rb

asymp ¼ 6MU. The color code is red: fit

with resistive intracellular and extracellular media (16 MU); green: fit

with a diffusive intracellular medium (a) and a resistive extracellular me-

dium (16 MU); blue: fit diffusive intracellular and extracellular media

(Eq. 4); Magenta: cubic spline fit of the experimental data. The latter

case best fits the experimental measurements. The mean square error of

the diffusive model is about threefold less that than of the resistive model

(Online Appendix G). To see this figure in color, go online.
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The correspondence between the theoretical models pre-
sented in mathematical and physical models used to simu-
late the experimental data and the different experimental
configurations is summarized in Table 1.
DISCUSSION

In this study, we provide impedance measurements around
neurons, in different experimental preparations and a com-
parison between extracellular and intracellular impedance
measurements. The aim was to determine which is the
most plausible physical model that accounts for the electric
properties of the extracellular medium. We used an experi-
mental measurement consisting of three points, an intracel-
lular electrode, an extracellular electrode in the close
vicinity of the membrane (a few microns), and a ground
electrode located far away. Using the same recording setup,
we considered different preparations ranging from acute
brain slices, primary cell cultures with neurons of different
morphological complexity, and measurements in ACSF so-
lution as control. In addition to these measurements, we
have provided a detailed fitting of the measured impedance
882 Biophysical Journal 121, 869–885, March 15, 2022
using several biophysical models of the extracellular me-
dium. The main conclusions are that (1) in no circumstance,
is the resistive model able to fit the whole data set; (2) the
measurements point to a dominant role of ionic diffusion,
as soon as a membrane is present; (3) the measurements sug-
gest that the underlying mechanism is the ionic diffusion
associated to the Debye layers around the membrane; and
(4) additional capacitive effects may be needed to explain
the differences between experimental preparations.

Regarding the first conclusion, a resistive medium cannot
account for any of the measurements, except when elec-
trodes are placed in ACSF. The resistive nature of the
impedance measured in ACSF is expected because this sa-
line solution is the simplest case of a resistive medium. In
this case, we had to consider an additional capacitive effect
in parallel with the two electrodes (measurements in ACSF).
This shows that the measurements with the micropipettes do
not create an apparent frequency dependence of the
measured medium, and once the capacitive effect is
removed, one recovers the correct resistive measurement
in this case.

The second conclusion, that ionic diffusion plays a prom-
inent role, is supported by our fitting analysis considering
different model alternatives. This suspected presence of
ionic diffusion (and the associated Warburg impedance)
agrees with previous studies showing a role for ionic diffu-
sion. Macroscopic measurements of the impedance of brain
tissue (7,8) showed a frequency dependence of the electric
parameters that is consistent with ionic diffusion, as pointed
out by a theoretical study (21). This study developed a
mean-field formalism of Maxwell equations, which was
necessary to properly account for macroscopic measure-
ments that imply averages over large spatial volumes. In
this mean-field framework, the predicted frequency scaling
of ionic diffusion was found to be consistent with the exper-
imental observations. It was further shown, using a two-
electrode measurement setup with intracellular and extra-
cellular electrodes, that ionic diffusion also accounted for
the observed frequency dependence (9). However, as
pointed out in (16), the dendrites were neglected in our pre-
vious study. We provide here new data on this issue by
showing that there was little difference between the imped-
ance measured in intact (arborized) neurons or in (nonarbor-
ized) neurons with greatly simplified dendritic morphology.
Therefore, the presence of dendrites is not a plausible cause
to explain the deviations from resistivity.

The third conclusion, that the underlying mechanism is
the ionic diffusion in Debye layers around the membrane,
is mostly supported by the experiments in primary cell cul-
tures where no intact neuropil is present. In these conditions,
the medium is almost devoid of glial cells or neighboring
neurons, and can be considered close to homogeneous sa-
line. We also observed a frequency dependence in such con-
ditions, when an intracellular recording was present, but not
in saline with two electrodes in ACSF (measurements in
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FIGURE 12 Extracellular-to-ground impedance

for a neuron recorded in acute brain slice. The

same color code as in Fig. 7 was used. Dotted lines

correspond to the mathematical model given by

Eq. 3b (for details, see Fig. 11 and Online Appendix

A). The modulus of the impedance is represented as

a function of frequency. Parameters: Rm ¼ 5 MU,

tm ¼ 10ms, rd ¼ 2 mm, ld ¼ 600 mm, sie ¼ 5 S=m,

and Zg ¼ .2 MU. NMR: z
ðeÞ
m

rm
¼ :5; NMD: nwT ¼

0.01 Hz, z
ðmÞ
e

rm
¼ 0:5þ 0:25

1þ ffiffiffiffiffiffiffi
i u
uwT

p , pr2d,zi ¼
1
sie
þ 1

1þ ffiffiffiffiffiffiffi
i u
uwT

p . To see this figure in color, go online.

Neural tissue impedance
ACSF). Therefore, we find that the presence of a membrane
induces a frequency dependence, which we attribute as
mainly due to the presence of Debye layers around the
membrane. Debye layers not only constitute the basis of
the membrane capacitance, but they also are characterized
by ionic diffusion that participates to maintain the mem-
brane potential. Our interpretation is that, when current
flows from the intracellular electrode, the corresponding
ions induce local concentration changes in Debye layers,
which will re-equilibrate by ionic diffusion. This increases
the modulus of the impedance and introduces a frequency
dependence which signature can be seen as a diffusive (War-
burg) impedance. Importantly, this impedance is a linear
approximation, and thus, cannot capture the ratio V/Ig for
large variations of the membrane potential (such as during
spikes; see discussion in (21)).

The fourth conclusion is that it was necessary to include
capacitive effects to account for differences between the
different preparations. These effects were not necessary
for a cell in a homogeneous medium (in culture), but were
required to fit acute brain slice conditions when the elec-
trodes were very close (about 10 mm). On the other hand,
no additional capacitive effect was seen between the extra-
cellular electrode and the ground. This suggests the possibil-
ity that both intracellular and extracellular media have a
significant diffusive component. We could fit the measure-
ments assuming a different cutoff frequency between the
media (about 5 Hz intracellular, and 40 Hz extracellular).
This difference suggests that the medium is more tortuous
intracellularly compared with the extracellular medium.

Importantly, the present results seem in agreement with
the principle of least constraint of Gauss, according to which
the introduction of constraints modifies the least as possible
the movement of a system. In electromagnetism, the appli-
cation of this principle means that most charges will follow
the path with the lowest impedance. (For example, if we
have two resistances in parallel, most of the charges will
go through the smallest resistance. In electromagnetism,
the principle of least constraint can be seen as a generaliza-
tion of this example (31)). In the measurements of Logothe-
tis et al. and Miceli et al. (5,6), the magnitude of the minimal
extracellular impedance would be of the same order as
ACSF, which is a similar situation as our measurement be-
tween the extracellular electrode and the ground. In Gomes
et al. (9), as in the present paper, the modulus of the minimal
impedance between the intracellular and extracellular elec-
trodes would be much larger because the charges are con-
strained to flow across the cell membrane, and not just
flowing exclusively in the extracellular medium.

Taking together our results in different preparations, we
conclude that, for the frequency range of electrophysiological
phenomena (frequencies n < 10 kHz), there is a very signifi-
cant frequency dependence of the electric parameters in intra-
cellular and extracellular media. Our experiments show that
this significant frequency dependence should be taken into ac-
count when current flows across a cell membrane. On the
other hand, there is very little frequency dependence if the
current does not flow across a membrane. (Note that one
study (8)) reports a frequency-dependent extracellular imped-
ance, but a very different frequency range, between 4.7 kHz
and 2 MHz, was used). This major difference suggests that
impedance measurements should necessarily give different
results if they are performed extracellularly, or using an intra-
cellular recording. This could potentially reconcile contradic-
tory measurements and also answer some of the questioning
about the origin of the LFP signal (32).
Biophysical Journal 121, 869–885, March 15, 2022 883



TABLE 1 The different biophysical models used for fitting the

experimental data in the different figures of the manuscript

Fig. Zeq. Resistive model Diffusive model

ACSF 4 RkC
Culture (immature)

intra-extra 5 Zm Zm4Zw
extra-ground 6 ðZajjZsjjZdÞ4Rg ðZajjZsjjZdÞ4Rg

Culture (mature)

intra-extra 8 Zm Zm4Zw
extra-ground 9 ðZajjZsjjZdÞ4Rg ðZajjZsjjZdÞ4Rg

In vitro

intra-extra 11 Zm Zm4Zw
extra-ground 12 ðZajjZsjjZdÞ4Rg ðZajjZsjjZdÞ4Rg

1: Zm ¼ R k C corresponds to the impedance of a portion of membrane

where R and C are respectively the resistance and capacitance. 2: Zw is

given by expression
Aa
w

1þ
ffiffiffiffiffiffiffiffi
u

ua
wT

r þ Ab
w

1þ
ffiffiffiffiffiffiffiffi
u

u
b
wT

r þ Rasym, where Aa
ws 0 and

Ab
ws0 and uwT

sN. In primary cell cultures, we have used Aw ¼ 2Aa
w ¼

2Ab
w and ua

wT
¼ ub

wT
. In the in vitro conditions, we have used Aa

ws 0,

Ab
ws0, and Aa

wsAb
w, with ua

wT
sub

wT
and different from infinity. Za is the

impedance of the region defined by the isopotential surface S1 passing

through the extracellular electrode and the first isopotential surface Sg

that totally includes the neuron, Zs is the impedance of the part of the

soma included between S1 and Sg, Zd is the input impedance of the dendrite

between surfaces S1, Sg, and Zg is the impedance of the region between Sg

and the ground. Zg ¼ ðZajjZsjjZdÞ4Rg where kmeans ‘‘in parallel’’ and4

‘‘in series’’ (Fig. 1).

Bedard et al.
This raises the question of which impedance is the most
physiologically pertinent, the impedance of the medium
alone, measured with extracellular electrodes, or the imped-
ance between intracellular and extracellular media? If the
point of interest is to relate neuronal activity (ionic currents)
with the extracellular potentials, then the relevant
impedance is the intracellular-extracellular impedance as
measured here. Indeed, the ionic currents in the membrane
must flow through a complex environment (Debye layers,
various obstacles), which are important to generate the
extracellular potential (which ‘‘sense’’ the current after its
interaction with the complex environment). The impedance
measured here correctly captures this effect and is the
closest to the natural conditions. On the other hand, imped-
ances measured with extracellular electrodes inform about
how the extracellular medium reacts to currents injected
extracellularly and does not reflect the situation with natural
(membrane) currents. Thus, our study complements previ-
ous extracellular measurements, and goes further in bio-
physical realism by measuring the impedance pertinent for
the genesis of extracellular potentials.

Our results may call for a redefinition of the classic
‘‘neuronal dipole’’ mechanism underlying LFP or EEG sig-
nals. However, such an extrapolation is not immediate,
because our measurements were made in the linear regimen,
whereas the LFP and EEG signals are generated by active
networks that involve nonlinear phenomena such as action
potentials. Nevertheless, our experiments indicate that
884 Biophysical Journal 121, 869–885, March 15, 2022
LFP and EEG signals should be affected by the frequency
filtering measured here, because the formation of the
neuronal dipoles will depend on currents flowing through
the membrane/Debye layers complex. In other words, the
currents forming the neuronal dipole should include the fre-
quency filtering due to the flow through the membrane/
Debye layers complex, and that can only be revealed by
intracellular measurements.
SUPPORTING MATERIAL
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Supplemental Information

Appendices

Physical meaning of the method used to measure the

impedance

In our experimental situation, we inject a current which is time-dependent, in a
linear medium. In such conditions, the potential (relative to ground) is given by the
general relation:

V (t, ~xintra)− V (t, ~xextra) = [Vrest(~xintra)− Vrest(~xextra)] +

∫ +∞

−∞
Z(t− t′)Igs (t′) dt′ ,

where Vrest(~x) is the resting potential at position ~x (at rest, Igs (t) = 0). It follows
that, in Fourier frequency space, the potential between intracellular and extracellular
electrodes is given by:

[V (ω, ~xintra)− Vrest(~xintra)δ(ω)]− [V (ω, ~xextra)− Vrest(~xextra)δ(ω)] = Z(ω)Igs (ω) ,

where δ(ω) is the Dirac distribution. Thus, we can write:

V (ω, ~xintra)− V (ω, ~xextra) = Z(ω)Igs (ω)

when ω 6= 0. For ω 6= 0 we have δ(ω) = 0 and thus V (ω, ~x) = V (ω, ~x)− Vrest(ω, ~x)
because Vrest(ω, ~x) = Vrest(~x)δ(ω). It follows that, if ω 6= 0, then the potential
measured as a function of frequency V (ω, ~x) is equal to its variation relative to that
of the cell at rest. Thus, for current amplitudes that are not too strong (to remain in
the linear regime), V (ω, ~x) has a very smooth variation in space, despite the fact that
the potential at rest may show very abrupt spatial variations near the membrane.
In the manuscript, we have designed by equipotential surface any surface for which
V (ω, ~x) = constant when ω = constant 6= 0.

A Equivalent impedance between the extracellular

electrode and the ground

In this appendix, we give the explicit expressions to calculate the impedance between
the extracellular electrode and the ground in the di�erent experimental conditions
considered.

When measuring the equivalent impedance, we have (Za ‖ Zs ‖ Zd)⊕ Zg, where
Zg is the impedance between the ground and the �rst isopotential surface that
surrounds the neuron. Za is the impedance of the extracellular medium in contact
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with the isopotential surface S2, Zs is the impedance of the current �owing through
the soma membrane in contact with surface S2, and Zd is the input impedance of
the dendritic tree relative to a reference outside the neuron (Fig. 6).

Thus, we obtain

Vi
Igs

= Zeq =
ZaZsZd

ZaZs + ZsZd + ZdZa
+ Zg (A.1)

where Igs = Iga + Igs + Igd . Igs is the generalized current produced by the current
source, because in our experiments, the generalized current conservation applies.
Note that this does not account for charges created by chemical reactions [36]. We
have 

Za = Ra

Zs = Zm + Z
(m)
e = rm

As(1+iωτm)
+ z

(m)
e

As

Zd = Zm+Z
(m)
e

Zm

zi
κλ
coth(κλld)

(A.2)

Here, we calculated Zd as follows. The part of the current source that �ows through
the dendrite before eventually going to the ground (Igd ) is such that we obtain
Zd
in = Vm

Igd
= zi

κλ
coth(κλld) where Vm is the somatic membrane potential at the basis

of the dendrite [22]. In addition, applying the generalized current conservation gives
the following equality:

V S2
i

Zm + Z
(m)
e

=
Vm
Zm

(A.3)

where the potential V S2
i is taken at the isopotential surface S2. Thus, we have

approximately:

Zd =
Vi
Igd

=
Zm + Z

(m)
e

Zm
Zd
in =

Zs
Zm

Zd
in (A.4)

B RC circuit in series with a resistance

In this appendix, we compare the RC model ((R ‖ C)) with the RC model in series
with a resistance ((R ‖ C) ⊕ R∗). One can see from Fig. B.1 that the impedances
of these two models are similar for small frequencies. However, they di�er at high
frequencies relative to the cut-o� frequency of the RC circuit. It is important to
also consider that the phase of the RC model tends to -90o when frequency tends to
∞, but it tends to 0o for the RC model in series with a resistance.
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C Di�usive impedance in heterogeneous media for

a spherical source

In this appendix, we present the theoretical expression of the macroscopic
impedance in the case of a di�usive model [20].

In a previous publication [20], we have shown that the macroscopic di�usive
impedance (also called Warburg impedance) is derived by a linear approximation
of the ratio V

Ig
, where V is the potential di�erence between the two measurement

points. This derivation took into account Boltzmann distribution and Ohm's law.
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The energy given to the charges divides into two parts: one dissipative part (calori�c
energy) and the part corresponding to the spatial arrangement and distribution of
charges as a function of time. The �rst part is related to Ohm's law, and the second
part to Nernst law.
The presence of a current source in a homogeneous medium breaks its homogeneity.
Indeed, the charge distribution around the source cannot be considered constant.
The application of Boltzmann's law in the quasistatic regime (in the sense of classical
statistical thermodynamics), in the linear approximation, gives an impedance for a
spherical current source of the form:

Zω =
CkT

( 1
R

+
√
−i ω

<β>|m )
(C.1)

where C is a constant which depends on the electric conductivity of the medium
in the absence of the source, R is the radius of the spherical source (which gives a
curvature of 1/R2), T is the absolute temperature in Kelvins, < β > |m is equivalent
to an �e�ective� di�usion coe�cient which is negative, and k = 1.38×10−23 J/oK is
the Boltzmann constant (for more details, see [20]). This model is called �di�usive
model�, and is used here for the particular case of a spherical source.
By setting

Aw = CRT (C.2)

and

ωwT = −< β > |m
R2

(C.3)

we can write expression C.1 as above:

Zw =
Aw

1 +
√
i ω
ωwT

(C.4)

At constant temperature, the measurement of the impedance allows one to determine
the values of Aw and ωwT = 2πνwT . The parameters Aw and ωwT are real.
However, we assumed

Zw =
Aw

1 +
√
i ω
ωwT

+Rasymp (C.5)

because the original derivation of the expression of the Warburg impedance in
mean-�eld [20] considered the particular solution of the di�erential equations in
mean-�eld, also called the �forced solution�. The general solution is the sum of
this particular solution and the solution of the homogeneous equation (∇2Vω = 0).
To take this into account, one needs to add a resistance in series with the forced
solution (Rasymp.). This asymptotic resistance appears at very large frequencies in
the experimental measurements (see Results).
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Figure D.1: Examples of how the curvature of isopotential surfaces determines the
cuto� frequency of the impedance. A. Volume delimited by a plane (in�nite curva-
ture radius), resulting in a cuto� frequency near zero. B. Similar volume delimited
by a border of constant curvature. In this case, the cuto� frequency is larger because
it is inversely proportional to the curvature radius (Appendix D ).

D Threshold frequency and surface curvature of the

di�usive model in the general case

In this appendix, we give some details about the relation between the threshold
frequency in the di�usive impedance (expression C.5) and the curvature at a given
point of a surface S. In other words, we show how to apply the di�usive model to
surfaces that are non-spherical.
The di�usive model of Appendix C can be applied to an arbitrary surface because we
can build an approximately continuous surface S by the sum of portions of spherical
surfaces centered on di�erent points of S, where the curvature corresponds to that
of S. Note that the smaller the intrinsic curvature of a surface, the smaller is the
threshold frequency of that surface1.
For example, if we have a surface S composed of two spherical portions (S1 and S2)
of very di�erent radius, the di�usive impedance di�usive as sensed by the surface is
equal to the two impedances of each portion in parallel, because the current divides
between both of them. It follows that ZS = ZS1 ‖ ZS2 , with:

ZS =
Aw

1 +
√
i ω
ωwT

(D.1)

where 
Aw =

Aw1Aw2

Aw1+Aw2

1√
ωwT

=

Aw1√
ωs2

+
Aw2√
ωs1

Aw1+Aw2

(D.2)

If the surfaces S1 and S2 have the same impedance, then the impedance of S is twice
smaller, but the threshold frequency remains the same. If each surface displays a
similar Warburg amplitude but with di�erent threshold frequencies, then we obtain

1A similar approach is classically used to model the electrical point e�ect [32].
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1
√
ωwT

=
1
√
ωs1

+
1
√
ωs2

It follows that if we approximate a given surface with a set of N spherical portions
of same Warburg amplitude, the threshold frequency is given by:

1
√
ωwT

=
N∑
i=1

1
√
ωsi

(D.3)

Thus, the portions of surface with the smallest curvature will determine the thresh-
old frequency of the ensemble, Consequently, it is possible to obtain a very small
threshold frequency, even in a domain of a very small volume (Fig. D.1).

E Macroscopic impedance relative to ground

In this appendix, we consider the macroscopic impedance as sensed by the electrode
injecting the current in the soma, via the dendrite, before reaching the ground,
Zground
in den , and the impedance as seen by the current going to the ground indepen-

dently of the dendrite, Zground
out den, for a ball-and-stick model in a resistive extracellular

medium. Note that the impedance between the soma and the ground is given by
Zground
in den ‖ Z

ground
out den.

We also consider that the cytoplasm is resistive, as well as the Debye layers surround-
ing the membrane. We will consider the experimental measurements of Section 3.2.
Importantly, in the present experiments, the impedance between the cell and the
ground should be calculated in an �open� con�guration, because the current injected
in the neuron �ows to the ground without looping back to the neuron.
We numerically compared the impact of the two con�gurations, open and closed, at
the basis of the dendrite (stick). In particular, the parameter κλ = κ/λ is a good
indicator to evaluate the di�erences between the two con�gurations.
For this purpose, we �rst assumed that the extracellular impedance z

(m)
e has the

same value at every point in the membrane in soma and dendrites. This hypothesis
is reasonable if the neuron is physically smaller than the geometrical dimensions of
the experimental preparation. Indeed, this parameter measures the impedance of
the extracellular medium as sensed by the membrane, as de�ned by z

(m)
e /dS which

is the impedance between dS, a di�erential element of membrane, and the ground.
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Figure E.1: Graph of κ
λ
as a function of frequency for the ball-and-stick model. Here,

κ =
√

1 + iωτm, the soma has a radius of 10 µm, while the length and diameter of
the stick are respectively of 600 µm and 3 µm. In this example, the membrane time
constant τm is of 30 ms, cm = 0.01 F/m2 is the speci�c membrane capacitance, and

z
(m)
e = krm with k = 0.001, 0.0001, 0.00001. The dashed lines correspond to the
open con�guration, and continuous lines to the closed con�guration. The electric
conductivity of the cytoplasm σnme corresponds to the di�erent colors, Blue: σnme =
0.1S/m, Red: σnme = 0.01S/m, Black: σnme = 0.001S/m. Note that in the case

z
(m)
e = 0.00001rm is approximately equivalent to a supraconductive medium, for
frequencies smaller than 10 kHz.
According to the generalized cable theory [22], for a resistive medium, we have:

rm = em

σ
(mn)
e

z
(m)
e = ec

σ
(c)
e

(E.1)

where em and ec are the thickness of the membrane and of Debye layers, respec-
tively. σ

(mn)
e and σ

(c)
e are the mean electric conductivity of the membrane and of the

extracellular medium (comprising Debye layers), respectively. Debye layers have a
high density of ions, and thus have a di�erent conductivity than the �bulk� of the
medium. The ions around the membrane are distributed according to Boltzmann
distribution, forming Debye layers, and the di�usive model must be taken into ac-
count in this case (Appendices C and D). The electric conductivity is much lower
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in Debye layers compared to the other parts of the extracellular medium, which is
considered homogeneous away of Debye layers. We assumed a thickness equivalent
to that of Debye layers in the expression of z

(m)
e (Eq. E.1).

However, in this appendix, we neglect the possible frequency dependence and model
the impedance of Debye layers with a resistance, as if the threshold frequency was
very large. The goal here is to determine, as simple as possible, the physical con-
sequences of the magnitude of |z(m)

e | relative to rm on the current division between
the soma and the dendritic stick.
According to expressions E.1, we obtain:

z(m)
e =

ec
em

σ
(mn)
e

σ
(c)
e

rm (E.2)

where rm = τm/cm = 100τm (with cm = 0.01 F/m2).

For a value of τm = 30 ms, ec = 0.1em and σ
(mn)
e = 10−2σ

(c)
e , we obtain z

(m)
e =

0.003 Ωm2. This value gives the order of magnitude of the physical e�ects on the
impedances Zground

in den and Zground
out den. The value of the membrane time constant is that

of the experiments presented here.
Next, from the evolution of the electric conductivity of the cytoplasm, we consider
three di�erent values: 0.1, 0.01 and 0.001 S/m (Fig. E.2 ) The �rst value approx-
imately corresponds to that of ACSF for a temperature of 37 oC. The two other
values are smaller, to simulate the fact that the cytoplasm is a heterogeneous medium
(presence of organites), which creates a tortuosity, as well as electric polarization.
These e�ects have been reported to diminish electric conductivity [27, 28].
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Figure E.2: Example of input impedance Zground
in den and of soma impedance Zground

soma .

Here, z
(m)
e = krm and k = 0.001, 0.0001. The electric conductivity of the cytoplasm

is σnme = 0.1, 0.01, 0.001 S/m. The other parameters are the same as in Fig. D.1.

The dotted lines correspond to the case z
(m)
e = 0, which is equivalent to neglect

Debye layers; solid lines correspond to a resistive model, with Debye layers taken
into account.
Figure E.2 shows examples of the input impedance in the following conditions.
1) The open and closed con�gurations give very di�erent results when z

(m)
e >

0.01τm Ωm2, otherwise the di�erences are small for parameters κλ. Note that the
case z

(m)
e < 0.00001rm is as if Debye layers were inexistent for frequencies smaller

than 10 kHz. 2). For σ
(nm)
e = 0.1 S/m, |Zground

in den | > |Zground
soma | if ν > 100 Hz, for

σ
(nm)
e = 0.01 S/m. This inequality holds up to about 1 Hz. For σ

(nm)
e = 0.001 S/m,

the modulus of the dendrite (stick) impedance is much larger than that of the soma.

F Apparent electric conductivity and permittivity

In this appendix, we de�ne the apparent electric conductivity and permittivity. In
general, we have the following linking relations between the di�usion ~jf , ~E and the
�elds ~D, ~E:
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~jf (t) =

∫ t
−∞ fσ(t− t′) ~E(t′) dt′

~D(t) =
∫ t
−∞ gε(t− t

′) ~E(t′) dt′
(F.1)

This is obtained in the framework of a mean-�eld theory of Maxwell equations
when the extracellular and intracellular media are linear and homogeneous [20, 35].
Note that the functions fσ and gε are real functions which can model di�erent
physical phenomena, such as ionic di�usion, electric polarization, calori�c (resistive)
dissipation, etc. The integral expresses the fact that the free-charge current density
and displacement current density at a given time t are not only determined by the
electric �eld at time t but also by the whole history of its time variations. These
functions are the inverse Fourier transform of electric conductivity and permittivity
expressed in Fourier frequency space2. For example, for an ideal electric resistance,
we have fσ(t) = σeδ(t), for an ideal capacitance we have gε(t) = εsδ(t) (where σe
are εs are constant in time). These two parameters are respectively the electric
conductivity and permittivity. In these two ideal cases, the relations F.1 give the
following equalities: ~jf = σe ~E and D = εs ~E, where σe and εs are time independent.
Note that these two ideal elements have no memory of the past (which is expressed by
the Dirac deltas), and this is not generally the case of frequency-dependent electric
conductivity and permittivity.
Consequently, we have in general, in Fourier frequency space:

~jf (ω) = σ(ω) ~E(ω)

~D(ω) = ε(ω) ~E(ω)

(F.2)

where σ(ω) and ε(ω) are respectively the Fourier transforms of fσ(t) and gε(t).
Because fσ(t) and gε(t) are real functions, this implies in general σ(−ω) = σ∗(ω)
and ε(−ω) = ε∗(ω). Here, the real parts are necessarily even functions and the
imaginary parts are odd functions. The relations F.2 imply that the generalized
current density is related to the electric �eld by:

~jg(ω) = ~jf (ω) +~jd(ω) = [σ(ω) + iωε(ω)] ~E(ω) = γ(ω) ~E(ω) (F.3)

where σ = σ′ + iσ′′ and ε = ε′ + iε′′ are complex functions in general, while σ′, σ′′,
ε′, ε′′ are real functions. We have the following particular cases: an ideal resistance
is such that we have σ(ω) = σe (Ohm's law), an ideal capacitance corresponds to
ε(ω) = ε, so that σ and ε are real numbers and do not depend on frequency.
From these relations, we obtain:

γ = (σ′ − ωε”) + iω(ε′ +
σ′′

ω
) = σA + iωεA (F.4)

2Representing the electric parameters in Fourier frequency space is particularly e�cient when
the medium is linear because in this case the density of free-charge current and displacement
current are proportional to eiωt if the electric �eld is also proportional to this term.
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which de�nes the apparent electric conductivity σA and the apparent electric per-
mittivity εA. In general, the apparent electric permittivity can be viewed as a type
of resistance which depends on frequency and allows to calculate the dissipated
power at a given frequency. The ratio εA/σA can be used to evaluate the relax-
ation time of the medium. Note that this de�nition corresponds to the electric
parameters measured in previous studies [7, 34]. In these experimental studies, the
measurements are characterized by parameters σA and εA because we interpret the
experimental measurements in a very heterogeneous medium as if it was a non-ideal
resistance (which depends on frequency) in parallel with a non-ideal capacitance
(which also depends on frequency). A heterogeneous medium can be modeled as a
homogeneous medium where the parameters depend on frequency with respect to
macroscopic measurements. This is analogous to classical thermodynamics where
pressure and temperature can be used to characterize a physical system.
Note that the apparent electric permittivity tends to in�nity if the imaginary part of
the electric conductivity does not tend to zero at null frequency. This is not the case
for an ideal resistance because the imaginary part of its electric conductivity is zero.
However, for a di�usive (planar) impedance (with zero curvature, see Appendix D)
the imaginary part of electric conductivity is non-zero, since in this case γ = k

√
ω(1+

i) where k is a constant.
By de�nition, the complex admittance Y between the two arms of a plane capacitor
with a given medium in between, is given by A

d
[σA+ iωεA]. A is the arms area and

d is the distance separating them. If we assume that these geometrical dimensions
do not generate boundary e�ects, the electric �eld between the arms is of V/d where
V is the voltage di�erence between the arms of the capacitor.
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For example, the measurement of the apparent parameters of a medium with a
di�usive impedance gives the following equality:

Y =
A

d
[σA + iωεA] =

1 +
√
i ω
ωwT

Aw
(F.5)

It follows that the frequency dependence of the parameters is given by the following
expressions: 

kσA = 1 +
√

ω
2ωwT

kεA = 1√
2ωωwT

τA = εA
σA

= 1
ω+
√

2ωωwT

(F.6)

where the constant k is equal to AAw
d

.
Thus, the apparent electric conductivity tends to k, the electric permittivity tends to
in�nite, and the dielectric relaxation time tends to in�nity for ω → 0. We conclude
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that if ionic di�usion is not negligible, then the linear approximation of its e�ect on
the measured impedance is as if the dielectric relaxation time tends to in�nity at
null frequency (Fig. F.1).

G Ensemble of the measurements

In this appendix, we show the ensemble of experimental results obtained in the
di�erent preparations. Figures G.1 (non-arborized neurons in culture), G.3 (ar-
borized neurons in culture) and G.5 (arborized neurons in brain slices) respectively
show the impedance of Region 1-2 (between the intracellular and extracellular elec-
trodes). The same preparations are respectively shown in Figs. G.2, G.4 and G.6
for the modulus of the impedance of Region 2-3 (between the extracellular electrode
and the ground). The values of the experimental parameters for the di�erent exper-
imental preparations are shown respectively in Table G.1, G.3 and G.5, while the
values of the corresponding models are shown in Table G.2, G.4 and G.6.
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Figure G.1: Experimental measurement between intracellular and extracellular elec-
trodes for 6 non-arborized neurons in culture. On the basis of the �ts, two groups
can be distinguished, one with τm around 30 ms and another group with 5-15 ms
(Tables G.1 and G.2). The blue curves are cubic spline �ts of the experimental data.
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Figure G.2: Experimental measurements between extracellular and ground for 6
non-arborized neurons in primary cell culture, as shown in Tables G.1 and G.2. The
blue curves are cubic spline �ts to the logarithm of the experimental data, while the
red curves are the direct cubic spline �ts of the data.
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Vm (mean ± σ of white Number Membrane
standard deviation) noise of sweeps resistance (MΩ)

during white current Membrane time
noise injection (mV) (pA) constant (ms)

A : 2020021702 -68.9 ± 2.5 10 18 NaN
NaN

B : 2020021801 -64.6 ± 6.4 5 13 2995
117

C : 2020021901 -62.3 ± 2.5 10 20 900
62

D : 2020021803 -57.7 ± 4.0 5 71 2090
105

E : 2020021802 -64.3 ± 1.6 10 14 558
16

F : 2020031503 -57.1 ± .9 5 25 1339
32

Table G.1: Individual experimental parameters for 6 non-arborized neurons in cul-
ture, shown in Fig. G.1. In the absence of measurements, a NaN is indicated.

Rm τm Aw νwT Rasymp σexpd σexpr

[MΩ] [ms] [MΩ] [ms] [MΩ] [MΩ] [MΩ]

A 1000 30 625 0.1 4 3.4 142.9
B 3000 30 2000 0.2 4 16 225.0
C 3000 35 2000 0.05 6 3.5 210.0
D 3000 25 2000 0.05 3 3.8 215.0
E 3000 5 2000 0.7 2 2.9 58.3
F 1000 15 670 0,1 2 2.2 179.0

Table G.2: Parameters for the di�usive model for each non-arborized neuron in
Table G.1. σexpr and σexpd are respectively the mean square error of resistive and
di�usive models relative to the experimental measurements for each neuron .
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Figure G.3: Experimental measurements between intracellular and extracellular
electrodes for 6 arborized neurons in primary cell culture (quasi-homogeneous
medium). The blue curves are cubic spline �ts of the experimental data.
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Figure G.4: Experimental measurements between extra and ground for 6 arborized
neurons in culture, as shown in Tables G.3 and G.4. The blue curves are cubic spline
�ts to the logarithm of the experimental data, while the red curves are the direct
cubic spline �ts of the data.

18



Vm (mean ± σ of white Number Membrane
standard deviation) noise of sweeps resistance (MΩ)

during white current Membrane time
noise injection (mV) (pA) constant (ms)

A : 2020021701 -66.0 ± 2.6 10 46 549
25

B : 2020021902 -68.1± 4.0 10 31 1820
67

C : 2020031501 -76.1 ± 4.4 5 28 4737
109

D : 2020031502 -67.5 ± 4.4 10 60 1347
31

E : 2020031602 -66.7 ± 2.1 10 3 793
22

F : 2020031603 -69.4 ± 2.7 5 26 2220
89

Table G.3: Individual experimental parameters for 6 arborized neurons in culture.

Rm τm Aw νwT Rasymp σexpd σexpr

[MΩ] [ms] [MΩ] [ms] [MΩ] [MΩ] [MΩ]
A 3150 30 1050 0.02 2 2.0 223.0
B 2100 30 1260 0.01 0 2.5 129.0
C 1200 25 1000 0.03 0 2.0 97.0
D 1200 35 1200 0.02 3 3.8 101.0
E 1200 35 1200 0.03 3 3.1 108.0
F 1500 35 1500 0.02 0 4.1 131.0

Table G.4: Individual parameters obtained from �ts for 6 arborized neurons in
culture from Table G.3. σexpr and σexpd are respectively the mean square error of
resistive and di�usive models with respect to the experimental data.
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Figure G.5: Experimental measurements between intracellular and extracellular
electrodes for 9 arborized neurons in brain slices, as shown in Tables G.5 and G.6.
The blue curves are the cubic spline �ts of the experimental data.
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Figure G.6: Experimental measurements between extracellular and ground for ar-
borized neurons in slices, as shown in Tables G.5 and G.6. The blue curves are
cubic spline �ts to the logarithm of the experimental data, and the red curves are
the direct cubic spline �ts of the data.
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Vm (mean ± σ of white Number Membrane
standard deviation) noise of sweeps resistance (MΩ)

during white current Membrane time
noise injection (mV) (pA) constant (ms)

A : 2018121204 (MSN) -75.2 ± 1.1 20 1 67
6.0

B : 2018121205 (FS) -74.8 ± 1.2 20 10 53
5.5

C : 2018122701 (FS) -78.2± 1.3 20 15 124
5.6

D : 2019021202 (MSN) -75.8 ± 1.3 20 6 83
4.2

E : 2019021203 (MSN) -73.9 ± 1.7 20 59 85
4.0

F : 2019021302* (MSN) -69.1 ± 1.8 20 13 64
7.7

G : 2019021304* (MSN) -69.3 ± 1.7 20 10 128
9.5

H : 2019021401 (MSN) -64.6 ± 1.4 10 5 124
8.4

I : 2019021801 (MSN) -80.1 ± 2.7 10 31 92
2.8

J : 2019021802 -73.3 ± 1.6 10 35 158
(Cholinergic interneuron) 6.3
K : 2019021803* (MSN) -67.1 ± 1.6 10 8 206

7.9
L : 2019021901 (MSN) -76.8 ± 1.4 10 49 44

3.4

Table G.5: Individual experimental parameters for 9 arborized neurons in brain
slices (MSN: medium-sized spiny neuron; FS: fast-spiking interneuron).
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R̄m Rm τm Aaw νawT Abw νbwT Rasymp σexpd σexpr

[MΩ] [MΩ] [ms] [MΩ] [Hz] [MΩ] [Hz] [MΩ] [MΩ] [MΩ]
A 120 48 5 48 5 24 40 1 2.1 6.0
B 120 50 5 50 5 24 40 4 2.3 6.6
C 140 47 5 47 5 40 60 4 2.3 5.2
D 140 48 5 48 1 40 60 2 2.4 5.1
E 140 48 2.5 48 1 40 60 1 2.0 6.0
F 140 48 5 48 1 40 60 4 5.5 11.0
G 256 90 20 90 1 75 40 1 6.3. 9.5
H 256 90 20 90 0.1 75 10 1 3.0 10.1
I 426 150 1 150 1 125 20 1 28.1 72.0
J 320.5 90 10 90 20 125 60 .5 6.1 26.3
K 320.5 90 10 90 20 75 60 .5 6.1 26.3
L 320.5 48 1 48 45 40 80 3 6.3 15.3

Table G.6: Individual parameters obtained from the �ts for arborized neurons in
brain slices from Table G.5. The total resistance for ν = 0 is equal to R̄m =
Rm + Aaw + Abw + Rasymp. σ

exp
r and σexpd are the mean square errors of the resistive

and di�usive models relative to experimental data, respectively.

The extracellular-to-ground measurements are similar in all preparations and exhibit
a similar frequency dependence. All �ts show that the impedance modulus of the
extracellular medium is of the order of that of ACSF.
However, this is not the case for the intracellular-to-extracellular measurements in
the di�erent preparations. For all cells and for all preparations, the di�usive model
�ts better the experimental data.
Finally, for the di�erent preparations, the experimental measurements (membrane
resistance and membrane time constant) shown in Table G.1 are di�erent from that
displayed in Table G.2. This di�erence shows that the evaluation of the membrane
time constant using a current pulse leads to di�erent membrane time constants as
those evaluated from direct �tting of the impedance. This aspect is examined in
more detail in the following (Appendix H).
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H Voltage between two points for a square current

pulse

In this appendix, we calculate the voltage between two points when the injected
current is a square pulse.
We model a pulse of current as follows:

Ig = h [H(t)−H(t−∆)] , (H.1)

where ∆ > 0 is duration of the current pulse, and H is the Heaviside function.
The most general linear relation between current and voltage is given by the following
expression:

V (t) =

∫ +∞

−∞
Z(t− t′) Ig(t′) dt′ =

∫ +∞

−∞
Z(t′) Ig(t− t′) dt′ (H.2)

It follows that the derivative of the voltage is given by:

dV

dt
= h

[ ∫ +∞

0−
Z(t′) δ(t− t′) dt′ −

∫ +∞

∆−
Z(t′) δ(t−∆− t′) dt′

]
. (H.3)

with dI
dt

= h[δ(t)− δ(t−∆)].
Thus, we obtain the following equality:

dV

dt
= h[Z(t)− Z(t−∆)] (H.4)

According to the complex Fourier transform,
Z(t) = PP [ 1

2π

+∞∫
−∞

Z(ω) eiωtdω ] (a)

V (t) = PP [ 1
2π

+∞∫
−∞

V (ω) eiωtdω ] (b)

(H.5)

where PP means the principal part of the integral.
In a di�usive medium, we have:

Z(ω) =
Rm

1 + iωτm
+

Aw

1 +
√
iωτwT

+Rasymp (H.6)

where τwT = 1/ωwT . We calculate dV
dt

from Equations H.4 and H.5.
Applying Eq. H.5(a) on the right-hand part of Expression H.6 gives [37]).

dV

dt
= hH(t)F (t)− hH(t−∆)F (t−∆) (H.7)
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where

F (t) =
Rm

τm
e−

t
τm +

Aw
τwT

 1
√
π
√

t
τwT

− e
t

τwT erfc

(√
t

τwT

) +Rasympδ(t) (H.8)

The function ex · erfc(
√
x) for x ≥ 0 is a real and positive monotonously decreasing

function which tends to zero at in�nite. At x = 0, it is equal to 1.
Because the experimental measurements shown here indicates that τm << τwT , we
develop F(t) in series around zero to evaluate this function when t < τwT . We obtain

et/τwT = 1 + t
τwT

+ 0(2)

erfc(
√
t/τwT ) = 1− 1√

π

[
2( t

τwT
)1/2 − 2

3
( t
τwT

)3/2 + 0(5/2)
] (H.9)

We then write the following equalities:

F (t) =
Rm

τm
e−

t
τm − Aw

τwT

[
1 +

t

τwT

]
+

Aw
τwT
√
π

[
t−1/2

τ
−1/2
wT

+ 2
t+1/2

τ
+1/2
wT

]
+Rasympδ(t) +0(3/2)

(H.10)
and

G(t) =

∫ t

0−
F (t′)dt′ = Rm(1− e−

t
τm )−Aw

t

τwT
+

2Aw√
π

t1/2

τ
1/2
wT

+Rasymp+0(3/2) (H.11)

The voltage for V (0−) = 0 at t = 0 and t ≥ ∆ is given by (H.7)

V (t) =

A︷ ︸︸ ︷
h

∫ ∆

0

F (t′)dt′+

B︷ ︸︸ ︷
h

∫ t

∆

F (t′)dt′−

C︷ ︸︸ ︷
h

∫ t

∆

F (t′ −∆)dt′ (H.12)

which gives 
A(∆; 0) = h[G(∆)−G(0)]

B(t; ∆) = h [G(t)−G(∆)]

C(t; ∆) = h [G(t−∆)−G(0)]

(H.13)

25



Thus, we have

A(∆; 0) = hRm

[
1− e−

∆
τm

]
+ hAw

[
2√
π

∆1/2

τ
1/2
wT

− ∆

τwT

]
︸ ︷︷ ︸

>0

B(t; ∆) = hRme
− ∆
τm

[
1− e−

t−∆
τm

]
+ hAw

[
2√
π

t1/2 −∆1/2

τ
1/2
wT

− t−∆

τwT

]
︸ ︷︷ ︸

>0

C(t; ∆) = hRm

[
1− e−

t−∆
τm

]
+ hAw

[
2√
π

(t−∆)1/2

τ
1/2
wT

− t−∆

τwT

]
︸ ︷︷ ︸

>0

(H.14)

A(∆) corresponds to the voltage reached at time ∆ (∆ is the duration of the current
pulse). A(∆) depends on Aw. If Aw = 0, the voltage is equal to that of a resistive
model. In the case of a di�usive model Aw 6= 0 is positive because ∆

τwT
< t

τwT
< 1.

Consequently, the voltage as a function of time is given by:

V (t) =

resistive model︷ ︸︸ ︷
hRm[1− e−

∆
τm ]e−

t−∆
τm +hAw

[
− ∆

τwT
+

2√
π

(
t1/2

τ
1/2
wT

− (t−∆)1/2

τ
1/2
wT

)]
+ 0(3/2)

(H.15)
when t > ∆ and t < τwT .
Finally, the last expression is equivalent to the second-order approximation in

√
t of

the expression

V (t) =

resistive model︷ ︸︸ ︷
hRm[1− e−

∆
τm ]e−

t−∆
τm −hAw[1−e−

∆
τwT ]e

− t−∆
τwT +

2√
π
hAw

[
1− e

(√
t−∆
τwT
−
√

t
τwT

) ]
e
−
√
t−∆
τwT +0(3/2)

(H.16)
when t > ∆ and t < τwT . We can also develop the third term of expression H.16 as
a series of exponentials linear in t (using Newton binomial) with a combination of
exponentials with di�erent relaxation times.
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Figure H.1: Voltage relative to rest as a function of time during the injection of
a current pulse of 10 pA and 10 ms duration. The membrane time constant was
τm = 30 ms and the impedance of the extracellular medium + membrane is of
1000 MΩ at null frequency. The red curve shows the prediction of the resistive
model, while the blue curve shows the resistive model (with a threshold frequency
of νwT = 0.5 Hz and Aw = Rm).

Consequently, the method of current pulse injection and the linearization method
give a di�erent slope in a semi-log graph, according to the type of model. For a re-
sistive model, the slope is −1/τm, and this allows to directly estimate the membrane
time constant, as classically performed. However, for a di�usive model, the slope is
slightly variable and smaller than the resistive model. It depends on τm, νwT and
on the ratio Rm/Aw. For t > ∆, one part of the voltage, Va (V = Va + Vb), atten-
uates according to the resistive model, while the other part, Vb, attenuates slower
and depends on νwT . This explains why the membrane time constant seems larger
with the pulse or linearization method, compared to the �tting of experimental mea-
surements (Appendix G). The divergence originates from the pulse or linearization
methods according to a resistive model.
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