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ABSTRACT Electric phenomena in brain tissue can be measured using extracellular potentials, such as the local field poten-
tial, or the electro-encephalogram. The interpretation of these signals depends on the electric structure and properties of extra-
cellular media, but the measurements of these electric properties are still debated. Some measurements point to a model in
which the extracellular medium is purely resistive, and thus parameters such as electric conductivity and permittivity should
be independent of frequency. Other measurements point to a pronounced frequency dependence of these parameters, with
scaling laws that are consistent with capacitive or diffusive effects. However, these experiments correspond to different prepa-
rations, and it is unclear how to correctly compare them. Here, we provide for the first time, impedance measurements (in the
1-10 kHz frequency range) using the same setup in various preparations, from primary cell cultures to acute brain slices, and a
comparison with similar measurements performed in artificial cerebrospinal fluid with no biological material. The measurements
show that when the current flows across a cell membrane, the frequency dependence of the macroscopic impedance between
intracellular and extracellular electrodes is significant, and cannot be captured by a model with resistive media. Fitting a mean-
field model to the data shows that this frequency dependence could be explained by the ionic diffusion mainly associated with
Debye layers surrounding the membranes. We conclude that neuronal membranes and their ionic environment induce strong
deviations to resistivity that should be taken into account to correctly interpret extracellular potentials generated by neurons.

SIGNIFICANCE The electro-encephalogram recorded at the scalp surface and local field potentials recorded within
neural tissue are generated by electric currents in neurons, and thus depend on the impedance of neural tissue. Different
measured values were proposed, and it is currently unclear what is the real impedance of neural tissue. Here, we show that
the impedance depends on the measurement technique. If the measurement is exclusively extracellular, the system
appears as equivalent to a simple resistor. However, if the measurement includes an intracellular electrode, a more
complex impedance is observed, because the current must flow through the membrane, as happens in the brain. Thus, we
provide an explanation for apparent disagreements, and indicate in which cases each impedance should be used.

INTRODUCTION measurements (4—6), while other measurements (7-9) re-
vealed a more complex situation, where the measured elec-
tric parameters displayed a dependence on frequency in
contrast to the frequency-independence of resistive systems.
Computational models showed that such a dependence on
frequency can be obtained if there are strong spatial varia-
tions of conductivity and/or permittivity (10). Further
models showed that frequency-dependent electric parame-
ters can also result from electric polarization of the medium
(11), or from ionic diffusion (12).

The extracellular medium properties were also estimated
indirectly by correlating intracellular and local field poten-

The genesis of extracellular electric potentials in the brain
depends on the electric properties of the extracellular me-
dium. The exact nature of these electric properties is impor-
tant, because nonresistive media will necessarily impose
frequency-filtering properties to electric signals (1,2) and
therefore will influence any source localization. Early
studies modeled the genesis of extracellular potentials
assuming that the medium is analogous to a resistance (3).
Evidence for such resistive media was provided by different
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explain the contradictory measurements (15), the electric
nature of the extracellular medium is still debated (15-17).

The main problem to resolve this debate is that different
experiments correspond to very different preparations, and it
is not clear how to correctly compare them. For example,
impedance was either measured intracellularly (9) or extra-
cellularly (5,6). Could this account for discrepancies
observed across studies? In the present study, we provide
for the first time, impedance measurements, either with an
intracellular electrode or extracellularly, in different prepa-
rations, in acute brain slices, in primary cell cultures, and
we compare to measurements using the same setup in artifi-
cial cerebrospinal fluid (ACSF).

MATERIALS AND METHODS
In vitro electrophysiology
Animals

C57BL/6 and Swiss mice were housed by groups of 3 to 5 mice, in a 12-h
light/dark cycle, with food and water available ad libitum. All experiments
were performed in accordance with local animal welfare committee (Center
for Interdisciplinary Research in Biology, and Institut de Biologie Paris-
Seine, IBPS, Ethical Committees) and EU guidelines (Directive 2010/63/
EU). Every precaution was taken to minimize stress and the number of an-
imals used in each series of experiments.

Neuronal primary cultures

The brains (from Swiss mice) were removed from day 14 embryos, and
striata were isolated and dissociated by gently pipetting in phosphate-buft-
ered saline-0.6% glucose. Cells were collected by centrifugation at 1000 x
g for 5 min. Cell pellets were resuspended in Neurobasal medium supple-
mented with B27 (Invitrogen, Thermo Fisher Scientific, Illkirch, France),
500 nM L-glutamine, 60 ug/mL penicillin-streptomycin, and 25 uM §-mer-
captoethanol (Sigma, Saint-Quentin Fallavier, France), and then plated into
24-well (1.8 x 10° cells per well) plates coated with 50 ug/mL poly-d-
lysine (Sigma). After removal of the coating solution, cells were seeded
in the Neurobasal medium on glass coverslips and cultured at 37°C in
95% air and 5% CO,. When placed in the recording chamber, the cell cul-
ture was initially superfused with a 95% O,/5% CO,-bubbled Neurobasal
medium, and then progressively diluted in ACSF solution. Patch-clamp re-
cordings were made from day 3 to day 10 after seeding.

Brain slices preparation

Horizontal brain slices (from C57BL/6) with a thickness of 300 um were
prepared from postnatal P30-40 mice using a vibrating blade microtome
(VT1200S; Leica Biosystems, Nussloch, Germany). Brains were sliced in
a 95% 0,/5% CO,-bubbled, ice-cold cutting ACSF solution containing
NaCl 125 mM, KCI 2.5 mM, glucose 25 mM, NaHCOj; 25 mM, NaH,PO,
1.25 mM, CaCl, 1 mM, MgCl, 1 mM, and pyruvic acid 1 mM, and then
transferred into the same solution at 34°C for 1 h before cell recording.

Whole-cell patch-clamp recordings and experimental setup

Electrophysiological recordings were performed in the dorsal striatum,
which has the advantage of having no laminar organization (with neurons
presenting a relatively constricted dendritic arbor with a spherical distribu-
tion), which hence limits the influence on the current trajectories and avoids
strong anisotropic equipotential surfaces. Patch-clamp recordings were
combined with extracellular recording using a 2- to 3.5-MQ patch-clamp
glass pipette. The latter was located within a close vicinity (=5-10 um)
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of the patched neuron (Fig. 1 A). In the primary cell culture experiments,
the average distance separating neighboring cells was on average
17.4 um (£7.1, n = 14) and 12.8 um (£6.4, n = 25) for immature and
mature cells, respectively, thus about three times larger than the distance
separating the two pipettes. Borosilicate glass pipettes of 5- to 7-MQ
impedance contained for whole-cell recordings: K-gluconate 122 mM,
KCI 13 mM, HEPES 10 mM, phosphocreatine 10 mM, ATP-Mg 4 mM,
GTP-Na 0.3 mM, and EGTA 0.3 mM (adjusted to pH 7.35 with KOH).
The composition of the extracellular solution and inside the extracellular
pipette was the same ACSF solution that was used for brain slice incuba-
tion. Signals were amplified using EPC9-2 amplifiers (HEKA Elektronik,
Lambrecht, Germany) with a very high input impedance (1 TQ) to ensure
there was no appreciable signal distortion imposed by the high-impedance
electrode (18,19). All recordings were performed at 34°C using a tempera-
ture control system (Bath-Controller V; Luigs & Neumann, Ratingen, Ger-
many) and brain slices or primary cell cultures were continuously
superfused at 2 mL/min with the extracellular solution. The extracellular
solution used in the recording chamber had the same ionic composition
for all the experimental conditions. Neurons were visualized on a
BX51WI microscope (Olympus, Rungis, France) using a 40x/0.80 water-
immersion objective for localizing cells for whole-cell recordings and
extracellular electrode positioning. Series resistance was not compensated.
Current-clamp recordings were sampled at 50 kHz using the Patchmaster
v2x73 program (HEKA Elektronik).

White noise stimulation protocols and signal analyses

Frozen white noise stimuli were applied via the recording patch-clamp elec-
trode in current-clamp mode. A quantity of 20 s of Gaussian white noise
with zero mean and 5, 10, or 20 pA variance was injected. For each cell,
we injected up to 71 times the same sequence of white noise (Fig. 1 A).
For each neuron, we computed the IV-curve by applying hyperpolarizing
current steps of different intensities in current-clamp. Neurons for which
the recording voltage of the responses was not inside the linear region of
the IV-curve were excluded (only two neurons from brain slices had to
be excluded for this reason in this study). For each trial, we calculated as
a function of the frequency the modulus and Fourier phase of the voltage
difference between the intracellular recording and extracellular reference
electrode, as well as between the extracellular reference and ground elec-
trode. We then averaged these measures to obtain a Fourier spectrum,
ranging from 1 to 10 kHz, for each cell. Going at higher frequencies was
challenging because of the limitations in sampling frequency of our electro-
physiological setup and because the power of the signal becomes weak and
dominated by instrumental noise. In addition, the 10 kHz upper limit was
sufficient to observe the capacitive effect between the extracellular and
intracellular electrodes, because of their close proximity.

Importantly, the numerical measurement of the phase induces a small
delay At between the real and digitally measured voltage, and this delay de-
pends on the sampling frequency. This delay is likely due to the electronics
and does not affect the modulus of the impedance, but is proportional to fre-
quency. We have measured and corrected for this effect by using the mea-
surement of the resistance between the two electrodes in ACSF. Without
this correction, we would have ®(v) = 0 because saline is resistive for » be-
tween 0 and 10 kHz. With the delay, we have ®(v) = — % v, where v, is the
sampling frequency.

We have fitted the models on the experimentally measured phase values
to minimize the mean square distance between experimental and theoretical
values. To do this, we computed the average values on small intervals of fre-
quency (= 1 Hz) in the impedance modulus of the experimental data in each
example. In other words, we calculated min |5 N (Y — Z)?|, where Z
and Yare, respectively, the average value over a segment of length equal to
1 Hz in the model and experimental data. We adjusted the parameters of the
different models to minimize the largest absolute distance between the
modulus of the average experimental and model values over the ensemble
of intervals. This choice simplifies the comparison between the different
models and experimental results. Importantly, log-log graphs give the false
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FIGURE 1

Method used for macroscopic impedance measurements and numerical simulations in different preparations. (A) Scheme of the experimental

setup. Left: Two borosilicate micropipettes with silver-chloride electrodes and a ground electrode are placed in the ACSF solution. One electrode is used in
whole-cell configuration to send white-noise current and simultaneously measure the voltage response of the recorded neuron (acquisition sampling rate: 50
kHz); the other electrode used as a reference is located 5 to 10 um away from the recorded neuron. Middle: Frozen Gaussian white noise (amplitude: = 5 to
20 pA; duration: 20 s) is injected repeatedly into patched neurons. Right: Fourier modulus of the injected current as a function of frequency confirms that each
frequency from 0 to 10,000 Hz is uniformly sampled. (B) Equivalent electrical circuit between intracellular and extracellular electrodes. (C) Equivalent elec-
trical circuit between the extracellular electrode and the ground. Z, is the impedance of the region defined by the isopotential surface S; passing through
the extracellular electrode and the first isopotential surface S, that totally includes the neuron, Z; is the impedance of the part of the soma included
between Sy and S,, Z,; is the input impedance of the dendrite between surfaces Sy, S, and Z, is the impedance of the region between S, and the ground.
Z, = (Z4||Zs||Z4) ® R, where || means “in parallel” and @ “in series.” To see this figure in color, go online.

impression that there is more noise at high frequencies, but this is due to the
high density of points.

Finally, we fitted numerically the polar representation of the experi-
mental data in Fourier frequency space, using a filtering with the cubic
spline method (20). This method has a smooth derivative, which is appro-
priate for very noisy modulus and phase values. Also, the data were fit to
models that are plausible biophysically (resistive, diffusive, etc.), so that
the parameters have a clear biological or physical interpretation. In all
cases, each biophysical model has a few parameters (which number remains
very small compared with the data set), and provides us with estimates of
these parameters, as we describe in the results section.

Mathematical and physical models used to
simulate the experimental data

To model the experimental data, we use Maxwell equations under the
electric quasistatic approximation, which was formulated in mean-field
in previous studies (12,21). (The electric quasistatic approximation con-
sists of neglecting electromagnetic induction such that we have V x E =
0. It is important to note that in this approximation, the displacement cur-
rent is taken into account and accumulation of charges can occur. There
exists another approximation, the magnetic quasistatic approximation, in
which electromagnetic induction is not neglected (22)). At the first order
of this mean-field theory, the macroscopic impedance (corresponding
here to the definition of the impedance as in electronics, and different
from the macroscopic impedance used at large scales, in the centimeter

range) of a point neuron in a heterogeneous medium is given by the
following:

Vw) Ry
E(w)  1+iwT,
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M

where A, = A, + H% This expression was written by explicitly
following physical phenomena. The first right-hand term corresponds to
the usual R-C circuit of the membrane, and the second term is due to ionic
diffusion (in a linear approximation), as well as to electric polarization (if
the polarization relaxation time is negligible). The last term F(w) takes into
account other physical phenomena that may introduce a frequency depen-
dence in the extracellular medium, such as electromagnetic induction, elec-
tric viscosity, etc., but these phenomena seem to have a negligible impact on
the impedance values for the frequency range <1000 Hz investigated here
(7). The physical meaning of the parameters is as follows: R, is the macro-
scopic membrane resistance, 7,, = R,,C,, is the membrane time constant, A,,
is the amplitude of the diffusive impedance, which is a real number when
the polarization relaxation time (Maxwell-Wagner time 7)) is negligible,
Rsymp 1s the asymptotic resistance for very high frequencies, and v, =
w72 is its Warburg threshold frequency (for details, see Online Appen-
dix C).

The model used to take into account the effect of dendrites is the same as
used previously (9), and consists of a model with a soma and a dendrite.
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Because we have a monopolar current source (electrode injection), the elec-
trotonic length of a dendritic branch is given by the following:

T, ng)
A= 24+ 2 (1 4 iwr,) @)

Zl rln

where the following quantities are defined in the generalized cable: z; is the
cytoplasm impedance per unit length, r,, is the specific membrane resis-
tance, and zgm is the specific input impedance of the extracellular medium
as seen by the membrane.

‘We have sz") = Zintra + Zexira (from Fig. 1). The physical link between the
generalized cable is the following. The current density in the dendritic stick
has a component in parallel to the axis of the stick, and a component
perpendicular to it. However, the electric conductivity is different for these
two components. z; is associated with the parallel component, where the
current density is physically related to the cytoplasm, and z,,,,,, is associated
with the perpendicular component, which is physically related to the Debye
layers in the inner side of the membrane. We have

Vo Az; Kl
I—g = 7 coth (7) (Cl)
Vi _ ZaZde

I# B ZaZ.Y + Z.YZd + ZdZa
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where the neuronal cable model in an “open configuration” (i.e., without
return current) was used, as defined in (23).

Because the current that goes from the neuron to the extracellular space
separates into several parts, one part that flows through the soma membrane,
and another part that flows in the dendrite, we have used several impedances
(Fig. 1): Z,: the impedance of the extracellular medium in contact with the
isopotential surface S (which touches the extracellular electrode and sur-
rounds the intracellular electrode), Z;: the impedance of the current flowing
through the soma membrane (in contact with this surface §), and Z;: the
input impedance of the dendritic tree. When measuring the equivalent
impedance, we have (Z,||Z;||Zs) ®R,, where R, is the impedance between
the ground and the first isopotential surface, which comprises the neuron
(Online Appendix A). Note that the isopotential surfaces are necessarily
continuous, but may be more irregular in shape than that schematized.

The electric potentials V; and V, are taken at the inside and outside bor-
ders of the membrane, respectively, at the level of the soma and relative to a
reference point outside the neuron. According to the law of generalized cur-

. . Vin(1+iwTy,
rent conservation, we have Ve — M

) n

rw/AS and Z" = z0") /AS (where AS is an element of surface area of the
membrane) are macroscopic parameters, whereas r,, and z((,”’> characterize
the membrane at a microscopic level. This explains the difference between
expressions 3a and 3b, because by definition we have V; = Vim + V,. Note
that if |zf,’”)| < rp, then expression 3b becomes equivalent to the input
impedance of the dendrite (stick) in parallel with a portion of soma mem-
brane (Fig. 1).

zf,m) is the specific input impedance of the extracellular medium, as
sensed by the membrane, as also defined by the generalized cable theory
(23). This parameter also can be applied to the intracellular medium, in
case of a current source from an intracellular electrode, to take into account
the impedance of the intracellular medium between the tip of the electrode
and the membrane. In the open configuration, zg’") can be a resistance for a
resistive extracellular medium, but can be more complex when taking into
account effects such as polarization, ionic diffusion, capacitive effects, etc.
Thus, the form of this frequency dependence contains the contribution from
the extracellular medium. Note that the expression in Eq. 2 shows that, in
the open configuration, the electrotonic length depends on frequency,
even for a resistive extracellular medium.

. Note that the parameters R,,, =
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Also, in a “closed configuration” (where the neuron is electrically a
closed system, where all currents loop back to the neuron), for a resistive

: (m) — __ Tmle _ I'm e _
medium, we have z;") = Al and A = T G =18 the cyto

plasm resistance per unit length and r, is the extracellular medium resis-
tance per unit length, as defined in the Rall-Tuckwell model. In this
simplified and resistive model of the neurons, one assumes that the extracel-
lular current flows parallel to the axis of the dendrite. In this case, we see
that A does not depend on frequency. This is in accordance with the classic
Rall-Tuckwell cable theory (24,25). In contrast, in an open configuration

with resistive media (zi,'") and z; are real positive), the modulus of A in-
creases with frequency (Eq. 2). Thus, in general, the electrotonic length
(|A]) of a ball-and-stick neuron depends on frequency, which is not the
case in the Rall-Tuckwell model, as shown above.

An interesting consequence of this is that, if one measures the impedance
zg’") in a resistive configuration (for example in an isolated neuron
embedded in ACSF), one should see the frequency dependence, which
would validate the open configuration, as we describe in the results section.

RESULTS

We first describe the experimental results and the different
experimental configurations, then we propose different
models to fit the experimental measurements.

Experimental measurements

The experimental protocol consisted of in vitro whole-cell
patch-clamp recordings of striatal neurons, either from pri-
mary cell cultures or in acute brain slices, while simulta-
neously recording the potential in the vicinity (5—-10 um)
of the neuron using a second reference electrode (Figs. 1
A and 2). The setup thus consists of three electrodes: the
intracellular electrode, the reference electrode, and the
ground. Frozen white Gaussian noise is injected in the cell
via the patch-clamp electrode, and is measured according
to two configurations: either one measures the intracel-
lular-to-extracellular (intracellular electrode with respect
to reference electrode) potential, or the extracellular-to-
ground (reference electrode with respect to ground).
Several templates (from 1 to 71) of the same Gaussian
white noise with a flat spectrum between 0 and 10,000 Hz,
were injected into each recorded neuron. Importantly, for
the subthreshold range of voltage responses considered here
(—67mV = 2.3mV), the membrane I-V curve of striatal neu-
rons was linear and only subthreshold responses to current in-
jections (£ 5 to 20 pA, adjusted according to the membrane
resistance) were considered for analysis. More precisely, re-
cordings, using the very same electrophysiological setup,
were obtained in four different experimental preparations
(Figs. 2 and 3). We describe below the experimental results
from the simplest experimental preparation in which two
electrodes were added to a homogeneous ACSF solution
without biological sample (Fig. 2 Al), to a more complex
preparation, in which recordings were obtained from neurons
within an acute brain slice (Fig. 2 DI). We also tested the in-
fluence of the dendritic arborization by recording either in
nonarborized neurons with almost no neurites (Fig. 2 BI) or
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FIGURE 2 Impedance measurements in different preparations using a three-electrode setup. (A) Measurement in ACSF. Description of the (/) experi-
mental preparation (no biological sample is present in the ACSF solution) with (2) an example voltage response and for neuronal recordings, the correspond-
ing I-V curve with the linear fit in red and the window of the voltage amplitudes during the current injection in blue. (3) and (4) show respectively the Fourier
modulus and phase spectra of the voltage difference between whole-cell patch electrode and reference electrode as a function of frequency. (B—D) same setup
for different experimental preparations: recordings were made in primary cell cultures of striatal tissue (day 3 to day 10 after seeding) from neurons with
almost no neurites (B), with extended dendrites (C), and from striatal neurons in acute horizontal brain slices (D). To see this figure in color, go online.

in arborized neurons with extended dendrites (Fig. 2 CI) in
primary cell cultures. For each experiment, the Fourier
modulus and phase of the voltage difference between the
whole-cell recording electrode and the reference electrode
were calculated and then averaged (as illustrated in Figs. 1
and 2). The same analysis was also applied to the voltage dif-
ference between the reference and ground electrodes (Fig. 3).

Measurements in ACSF

In this section, we examine the simplest configuration
consisting of two electrodes in a homogeneous medium
solely constituted by ACSF (Figs. 2 A and 3 A). The glass
pipettes containing the electrodes were situated at a dis-
tance of 5 to 10 um. Fig. 4 shows the measured impedance
between the two electrodes. The observed frequency
dependence appears above 2 kHz for the modulus
(Fig. 4 A) and above 500 Hz for the phase (Fig. 4 B).

We describe below the experimental results from the
simplest configuration of the two electrodes in ACSF, then

primary cell cultures in a quasi-homogeneous medium (to
to contrast with the high heterogeneity seen in acute brain
slices), and finally a more complex configuration of neurons
in acute brain slices.

This frequency dependence of the impedance modulus is
negligible for frequencies lower than 2 kHz, but not for
higher frequencies because Alog;\V = 50% between 2
kHz and 10 kHz, similar to previous measurements using
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patch electrodes in the extracellular medium (6). The
phase of the impedance also shows a frequency depen-
dence. It is negligible for frequencies smaller than 0.5
kHz, but for frequencies between 0.5 and 10 kHz, it varies
by about 50°. Our interpretation is that these frequency
dependences come from the capacitive effect between
the two electrodes (which was estimated of C
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3.25 pF). We found that this capacitive effect is present
in all experiments shown in the next sections, for intracel-
lular and extracellular recordings.

Importantly, in this part of the experiments, we observe a
linear phase lag ® = —kv on the phase ® of the impedance,
as if electrode polarization had a non-negligible impact on
the measurement. However, we observe that the constant k
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is inversely proportional to the sampling frequency, which
rules out a polarization effect (because with polarization,
we would have ® = —(k + k,)v, with k, independent of sam-
pling frequency). Thus, the phenomenon of electrode polar-
ization seems negligible here, contrary to Miceli et al. (6).
This difference probably occurs because we applied smaller
amplitude currents (about 20 pA here, compared with 175—
500 pA in (6)). Note that the linear phase lag was removed
in Fig. 3 A3.

According to Miceli et al. (6) and Wagner et al. (8), the
electric conductivity of ACSF (“ACSF.” in Miceli et al.
(6)) is similar to the conductivity measured between two
points in the extracellular medium (around 0.5 S/m). We
did not evaluate the value of this conductivity here, because
the very short distance between electrodes (5—-10 um) in-
duces capacitive effects. In this case, one would have to
solve the Laplace equation to estimate the conductivity
from the macroscopic impedance measurement. In previ-
ous experiments, such as (6), the interelectrode distance
(100-125 um) was sufficiently large to avoid capacitive
effects.

Measurements in primary cell culture
Nonarborized neurons

In this section, we first examine a relatively simplified sys-
tem of immature neurons with little dendritic arborization,

Neural tissue impedance

and laying in a simplified extracellular medium (primary
cell culture); n = 6 neurons (with few or no dendrites)
were recorded in this quasi-homogeneous medium
(Fig. 2 B).

Figs. 5, 6, and 7 show the fitting of different models to
experimental measurements obtained with isolated cells
immersed in saline, which is a medium that can be consid-
ered as homogeneous and resistive as a first approximation.
The fitting to these measurements shows that the intracel-
lular-to-extracellular and extracellular-to-ground macro-
scopic impedance clearly depends on frequency.

Fig. 6 also depicts the real and imaginary part of the
impedance. Note that the instrumental noise on the phase
is large compared with that on the modulus, the real
|Z|cos® and imaginary |Z|sin® components are both more
noisy than the modulus. However, the representations of
Im(Z2)/v(Z) and Re(Z)/v(Z) complement well the analyses
given in the paper.

The gray curve in Fig. 5 shows the measured impedance
between the intracellular and extracellular electrodes. An
RC circuit (membrane) in series with a resistance R,,.cqium
(medium) cannot account for these impedance measure-
ments (green curves in Fig. 5). Simulating the impedance
with different values of R,,,.4i,;» (Online Appendix B), could
not mimic the experimental results. The red curve corre-
sponds to R,.qiun = 0, which is equivalent to consider
that the membrane impedance is much larger than that of
the extracellular medium. In this case also, it was not
possible to properly fit the measurements.

The magenta curves in Fig. 5 are cubic spline fits of the
experimental data. We observed a capacitive effect between
the two intracellular and extracellular electrodes, as
observed in ACSF, but larger. This indicates that the mean
electric permittivity of the intracellular medium is larger
than that of ACSF. This capacitive effect is responsible for
a steep decrease of the phase values at high frequencies.
This is consistent with a diffusive effect, because a resistive
model with membrane would have a phase around 7/2 rad.
for » > 100 Hz, which is difficult to reconcile with this phase
measurement.

The gray curve in Fig. 7 shows the measured impedance
between the extracellular electrode and the ground. A model
with a simple dendrite (stick) with resistive intracellular and
extracellular media could not account for these experi-
mental measurements. The red curve corresponds to an
extracellular medium with negligible resistivity compared
to that of the membrane (zé’”) =(0). This case is equivalent
to applying expression 3a. The green curve is such that
ze" = 0.5r,#0.

In contrast, for the intracellular-extracellular measure-
ment, we observed that the NMD model (F(w) = 0 and
A,€R; see Eq. 1) simulates (with some error) these experi-
mental measurements with a macroscopic RC circuit in se-
ries with a resistance and a diffusive impedance (blue curve
in Fig. 5). However, the residual error between experimental
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FIGURE 5 Cell-to-extracellular impedance Z as a function of frequency
v for a non-arborized neuron (no dendrites) in a primary culture (quasi-ho-
mogeneous medium). (A) Modulus of Z as a function of ». (B) phase of Z as
a function of ». The different models tested were Red: (R,,||C,;) model,
Blue: (Ry||Cp)®Z, ® Rygymp, Gray: experimental measurement, Green:
(Rn||Cm) ® Rextra (Online Appendix B). The symbol @ means “in series
with” and the symbol || means “in parallel with.” Magenta: cubic spline
fit of the experimental data. Parameters: R,, = 810 MQ, 7,, = 30 ms;
A, =495 MQ, v,,; = 0.1 Hz, Roypy = 4 MQ and R, = 0.5 MQ. To
see this figure in color, go online.

measurements and the diffusive model is very similar to
what we observed for two electrodes in ACSF (Fig. 4).
This model also fits the extracellular-to-ground measure-
ment, despite the noise on the phase, for a stick where
both intracellular and extracellular Debye layers are
modeled with a diffusive model (blue curve in Fig. 7). We
propose an interpretation of these results in the analysis of
the experiments section.

Arborized neurons

We now follow the same approach as in the previous section,
but in the case of recordings made from more mature neu-
rons with extended dendritic arborizations, in primary cell
cultures (n = 6 cells), which corresponds to Fig. 2 C. Using
the same scheme as in Fig. 5, we also investigate how the
presence of dendrites influences the measured macroscopic
impedance in this quasi-homogeneous medium.

By comparing the intracellular-to-extracellular imped-
ances in Figs. 5 and 8, one can observe that the presence
of dendrites has a negligible influence on the measured
intracellular-to-extracellular impedance. The quality of the
fit of the extracellular-to-ground impedance in the extracel-
lular-to-ground impedance in Fig. 9 is very similar to that of
Fig. 7. We considered a stick radius of 2 um (as in nonarbor-
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ized neurons) and a stick length of 600 um (instead of 100
um) to take into account the presence of a more extended
dendritic arborescence (Online Appendix E). Note that the
values of radius and length of the stick are not unique
because the simulations can fit the experimental results
equally well with a large number of dendritic parameters.
However, the area of the dendritic stick is fixed when we
fix the ratio zé’”) /Fm, 1; and 7, (see Egs. 3 and 2; for more
details, see (23)). Thus, keeping the same stick diameter
as in the previous section, the fact that the length of the stick
is much larger than in immature neurons, indicates that, in
these experiments, the presence of dendrites has a much
larger impact on the extracellular-to-ground impedance
compared with the previous section. We have used a
dendrite length that is six times larger for arborized neurons,
which corresponds to visual inspection, but the results were
weakly dependent on the exact value of this parameter (not
shown).

Thus, the fits of different theoretical models to experi-
mental measurements of (arborized) neurons with dendrites
give very similar results to those obtained in neurons
without dendrites (nonarborized) examined in the previous
section. In other words, the mean square error of the fit of
the diffusive model is about 50 times smaller than that of
the resistive model (with or without dendrites; Online
Appendix G). The same capacitive effect as in ACSF was
observed here for both arborized and nonarborized neurons
(Fig. 4 in measurements in ACSF and Figs. 5 and 8 in mea-
surements in primary cell culture). It is thus important to
stress that the 3-point measurement used here allowed us
to directly measure the physical effect of the presence of
dendrites on experimental measurements.

Analysis of the experiments

The measurements from neurons in primary cell culture can
be analyzed according to the electrical configuration de-
picted in Fig. 10. The isopotential surfaces indicated are
central to our analysis. S; is the isopotential surface that cor-
responds to the potential measured at point i, where S; cor-
responds to the potential measured by the intracellular
electrode, S, corresponds to the potential measured by the
extracellular electrode, and S; corresponds to the ground
potential. For simplicity, we call Region i—;j the domain de-
limited by surfaces S; and ;.

First, because the extracellular medium surrounding the
cell is mostly homogeneous and resistive, its macroscopic
impedance cannot depend on frequency (10). (Note that in
(10), we have shown that if there is a strong spatial depen-
dence of the electric parameters, a frequency dependence
of the impedance appears. The equation used is equivalent
to the generalized current conservation law. The latter can

be written as V-]g =0, wherej_g = — (g, +iweVV), and
we have V< = (o, +iwe)V2V + V(0. +iwe)VV =0,
which is equivalent to (10)). We thus conclude that the
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FIGURE 6 Impedance in polar coordinates for
cell-to-extracellular measurements using experi-
mental data from Fig. 5 of the manuscript. (A)
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surface S, does not totally include the neuron, but cuts part
of the soma, such that we have a portion of membrane over
Region 2-3. Indeed, if the neuron was completely included
into Region 1-2, then Region 2-3 would only consist of
extracellular fluid, and would not exhibit (or exhibit negli-
gible) frequency dependence, which was not what was
observed (Fig. 7). This is in agreement with the fact that
the intracellular and extracellular electrodes are very close
to each other (between 5 and 10 um), compared with the
size of the soma (estimated around 15 um).

Second, the graph of the modulus of the impedance as a
function of frequency in Region 1-2 (Fig. 5) is very different
from Region 2-3 (Fig. 7). We thus conclude that the phys-
ical model is similar to the one represented in Fig. 10.
Because the two points 1 and 2 are very close to each other,
we can simulate the impedance of Region 1-2 by an RC cir-
cuit in series with a diffusive impedance. However, the
equivalent circuit of Region 2-3 cannot be the same because
the current of the intracellular electrode divides into three
parts: I3, = IS + I + I3, where I¢ + 15 flows through the
soma membrane and the dendrite, to the extracellular
medium, while [¢ directly goes to the extracellular
medium. Thus, the impedance of Region 2-3 is equivalent
to expression 3b (Online Appendix A). Because this
equivalent impedance is much smaller than the input
impedance of the stick and of the soma membrane, the
extracellular-to-ground impedance is also much smaller
than the intracellular-to-extracellular impedance. Despite
this small value, the frequency dependence of the modulus
of this impedance can be clearly seen (Fig. 7). The experi-
mental measurement of the impedance of Region 1-2 shows

10
v [Hz]

an additional capacitive effect similar to that seen in the pre-
vious section between intracellular and extracellular elec-
trodes. However, this capacitive effect is negligible for the
impedance measured in Region 2-3, which is coherent
with the fact that the distance between the extracellular elec-
trode and the ground is much larger than the distance be-
tween intracellular and extracellular electrodes.

Third, the growth of the modulus of the impedance of Re-
gion 2-3 for frequencies above 20 Hz is in full agreement
with the diffusive model, as in Eq. 3b. This is not the case
with the other models considered here. The minimum of
the modulus is directly linked to the membrane time con-
stant. The longer the time constant, the higher the frequency
of the minimum. We estimate from the position of the min-
imum, a membrane time constant of about 30 ms, which is
consistent with the membrane time constant estimated in
this configuration. The growth of the modulus shows that

_m)
z

< cannot be neglected (Fig. 5). The value of this ratio is

estimated between 0.5 and 1 for null frequency (Online
Appendix D).

Fourth, the values of the ratio « = R,,/A,, (model NMD
for v = 0) are approximately a = 1-2 for both Region 1—
2 and Region 2-3. Here, NMD stands for a model in
which each differential element of membrane is equiva-
lent to a parallel RC circuit and where the intracellular
and extracellular media are diffusive. These ratios do
not correspond to a singular case, but were similar in all
examined cells (Online Appendix G) in the same experi-
mental conditions. Because neglecting A,, would amount
to having the NMR model of Fig. 5, these experimental

Biophysical Journal 121, 869-885, March 15, 2022 877



Bedard et al.

A
2
10
'6}‘ i TR A0 R, ISP Y| A Y S
= 10° T RTLGL I Y DY U SR NOOFY Y PRPRoou | O
N
10‘2 i ; [ S| ; | ; i
1 2 3 4
10 10 10 10
B
2-
1,,
L |
©
gl 0»—1Hrurn|>4l\u1uv‘lxHH1.',‘.'(4‘]'.""""‘:'\‘l‘ll\l:u.xx AR .H‘.I‘I‘I.‘:Iu‘.l‘..
S
-1
_ol S S S A | S S A R S S A R o P X
£ 0 1 2 3 4
10 10 10 10 10
v[Hz]

FIGURE 7 Extracellular-to-ground impedance for a nonarborized neuron in culture. (A) Modulus of the impedance as a function of frequency. (B) Phase of
the impedance as a function of frequency. Dotted lines correspond to the mathematical model given by Eq. 3b (Fig. 5 and Online Appendix A). The different
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results show that the intracellular and external Debye
layers cannot be assimilated to a simple resistance. In
contrast to NMD, the NMR configuration has resistive
extracellular and intracellular media, but with the same
membrane impedance. Moreover, the threshold frequency
cannot be considered as infinitely large (v, = 0.1 Hz in
Fig. 4 and v,y = 0.001 Hz in Fig. 5) because in this
case, we would also have the NMR model. The threshold
frequency v, of the diffusive impedance between sur-
faces S, and S, is greater than that between surfaces S,
and S3. This shows that surfaces S; and S, have very
different curvatures. The small value of the Warburg
threshold frequency (v,,r = w,,7/27) indicates that the cur-
vature radius of the isopotential surface S, is much larger
than the surface S;, which is consistent with the fact that
surface S is at a zero distance from the tip of the intracel-
lular electrode, which is not the case for surface S,
(Fig. 5; Online Appendix D).
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Fifth, even for zero frequency, one does not observe the
typical resistance of ACSFE. If we calculate the resistance
sensed by a fictive spherical source of diameter equivalent
to the intracellular electrode (~1 um), embedded in ACSF
with an electric conductivity of g, = 0.5 S/m (6), we have

~ [l — l} =40 kQ. Here, r, is the diameter of the fictive

47e, | 123

source, and r, is the average distance between the membrane
and the spherical source. This value of 40 kQ is smaller than
the value in Region 1-2 predicted by the diffusive model for a
near-zero frequency, because this value is much smaller than
the estimated A,,, which is about 30% to 45% of that of the
membrane. This result is surprising, and different from the
approximation usually made, assuming that the intracellular
impedance is much smaller in amplitude compared with the
membrane impedance for near-zero frequencies.

How to explain this result? According to the theory and
experimental measurements of the electric conductivity of
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FIGURE 8 Intracellular-to-extracellular impedance Z as a function of
frequency v for an arborized neuron in a primary cell culture (homogeneous
medium). Magenta: cubic spline fit of the experimental data. Similar
description as in Fig. 5 with parameters R,, = 1350 MQ, 7, = 28 ms;
A, = 450 MQ,7,,, = 05, vy = 0.3 Hz, Revypa = IMQ, Rygyp = 1MQ.
To see this figure in color, go online.

heterogeneous media (26,27), the phenomenon of polariza-
tion occurs when an electric field is applied, and this con-
tributes to lower the electric conductivity of the medium.
Similar considerations apply to the phenomenon of ionic
diffusion, which also lowers the conductivity (9,23). In the
polarization effect, the electric field polarizes the intracel-
lular medium, which determines an electric resistivity that
is larger than the most conductive part of the medium.
Thus, electric polarization diminishes the apparent electric
conductivity in a heterogeneous medium, which directly
affects the value of A,, (Online Appendix C). Nevertheless,
the present measurements show that the characteristic relax-
ation time of polarization (also called Maxwell-Wagner
time), is negligible in these experimental conditions because
the diffusive model alone can fit very well the experimental
results. (Note that the diffusive model stems from the appli-
cation of quasistatic statistical thermodynamics to the model
of Gouy-Chapmann-Stern-Debye (21,28)). If the polariza-
tion relaxation time was not negligible, there would be an
additional frequency dependence to take into account in
addition to the diffusive model. Note that the diffusive
model is equivalent to a model in which the polarization
relaxation time becomes very large when the frequency
tends to zero (Online Appendix F). We conclude that the
intracellular medium is such that the cutoff frequency f,. =
12xr,,, of the low-pass filter due to electric polarization
(11) is larger than 10 kHz in this experiment.

Neural tissue impedance

The large extracellular medium impedance also can be
explained by the tortuous structure of the intracellular me-
dium. Because the electric field lines cannot follow this
tortuous structure, the charges that are moving in the extra-
cellular space due to the electric field are subject to various
obstacles (29). To move away from these obstacles, ionic
diffusion is necessary in addition to the electric field.
Thus, it is expected that the impedance modulus of such a
tortuous medium is larger than ACSF.

The high value of the impedance (high value of A,,) is also
due to the fact that the size of the soma is much larger than
the plasmic membrane thickness. The ratio between the two
is of the order of 1000, because the membrane has a thick-
ness around 7.5 nm while the soma has a typical size around
10 pm. If we consider a slice inside the soma, we get
approximately Ry,na intermt < An/1000 = 4 MQ/1000 =
4 kQ, which is much smaller than R,,. We can repeat this
for further slices in series of similar thickness. Because A,,
contains the contribution of external and internal Debye
layers, the value of R, internar €valuated is smaller than
4 kQ. (By definition, the external (or internal) Debye layer
is the region at the interface between the membrane and
the extracellular (or intracellular) medium. It was estimated
that the electric potential over this region attenuates by e =
2.718 times its value on the membrane surface. Its thickness
is called the Debye length. For more details on the notion of
Debye layers, see (28)). Thus, the medium inside the soma
is much more conductive than the membrane, as postulated
by the standard model, but the difference is not as large as
assumed by that model (red curve in Fig. 5).

Finally, we observed that the impedance measured between
the extracellular electrode and the ground is much noisier than
the intracellular-to-extracellular impedance. This is, in part,
due to the smaller amplitude of the latter impedance, and to
the fact that the power falls off at higher frequencies, where
instrumental noise becomes dominant. However, it should
be noted that, besides the presence of this higher level of
noise, the measurements also show that the modulus of the
two theoretical diffusive impedances in Regions 1-2 and 2—
3 are in full agreement with the experimental results. This in-
dicates that the extracellular electrode is sufficiently far away
from the membrane and does not disturb its ionic environment
(Debye layers). It is nevertheless close enough so that the iso-
potential surface S, only cuts a portion of the soma.

To conclude this analysis, the present measurements
from neurons in primary cell culture cannot be made
compatible with a resistive system, both for the modulus
and phase of the impedance. However, both seem compat-
ible with the impedance profile predicted by a diffusive sys-
tem, which we interpret as being essentially due to the
presence of Debye layers surrounding the membrane. How-
ever, to be rigorous, we must also mention the influence of
the multiple obstacles inside and outside the neuron, which
also have Debye layers and will influence the current flow.
Importantly, the lack of major differences between the
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FIGURE 9 Extracellular-to-ground impedance for an arborized neuron in culture. (A) Modulus of the impedance as a function of frequency. (B) Phase of
the impedance as a function of frequency. Same color code as in Fig. 7. Dotted lines correspond to the mathematlcal model given by Eq. 3b (for details,
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measurements from immature nonarborized neurons and
those obtained from neurons with an extended dendritic
tree argues against the hypothesis that the presence of den-
drites could have a significant impact on impedance

. To see this figure in color, go online.

for intracellular and extracellular media, we obtain the
following:

intracellular medium extracellular medium
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Measurements in acute brain slices membrane
diffusive model diffusive model

In this section, we present and analyze impedance measure- 4)

ments of mature and fully arborized neurons (n = 9 cells)
recorded in acute brain slices (Fig. 2 D). In this case, the tis-
sue surrounding the neuron is quasi-intact, and the extracel-
lular medium is the neuropil, which is very heterogeneous
(30). We analyzed the effect of such an environment on
the frequency dependence of the macroscopic impedance.
We used the same experimental method (three-point
recording) as in previous sections. We observe a different fre-
quency dependence for the impedance of Region 1-2
(compare Figs. 5, 8, and 11). This shows that the presence
of a complex extracellular medium (neuropil) causes more
complex effects in the vicinity of the neuronal membrane.
However, if we consider two different threshold frequencies
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which gives excellent fits (Fig. 11). Note that we have kept
the characteristics (parameters) of the previous experiments
for modeling the intracellular medium.

In Region 2-3, we observed a similar frequency depen-
dence as in previous configurations (compare Figs. 7, 9 and
12). In the case of the diffusive model, we used a model of
the macroscopic impedance Z, (impedance of the extracel-
lular medium as sensed by Surface S,; Fig. 10), which was
taken from a previous study (9), with the difference that
we added a series resistance (8 MQ). This addition is justified
in Online Appendix C (Eq. C.5). This impedance is
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necessarily macroscopic because it is given by the ratio of the
measured current between two points separated by macro-
scopic distances (as defined by the region in between the
two isopotential surfaces going through each point). Accord-
ingly, we used Z, =8 + % MQ, where v, ;=40 Hz, as

iw
wwT

determined in (9). Note that the particular choice of the pa-
rameters (A,, = Rugmp = 8 M and w,,7) can be varied (by
approximately = 50%) with no qualitative change in the re-
sults (Online Appendix G). While many combinations of pa-
rameters fit the data for diffusive models, we did not find a
single parameter set of resistive models that could fit the data.

The modulus of the extracellular impedance between the
extracellular electrode and the ground (Region 2-3) in acute
brain slices can be different from that in primary cell cul-
ture. The impedance sensed by the current source that
does not flow through the dendrite and the cell membrane
(Fig. 10) on Region 2-3 (between the extracellular electrode
and the ground) are experimental conditions similar to
extracellular measurements performed in other studies
(5,6). Thus, for Region 2-3, we have chosen a similar model
as for the experiments in primary cell culture.

Analysis of the brain slice experiments

In the acute brain slice preparation, the observations are
similar to the observations in primary cell culture, except
that the best fit is obtained here when we use different
threshold frequencies for intracellular and extracellular me-
dia. We now focus on the analysis and interpretation of such
different threshold frequencies.

According to Gomes et al. (9), the extracellular imped-
ance in brain slices has a threshold frequency between 40
and 60 Hz. Compared with the present experiments, the
thickness of the extracellular medium was much larger in
(9), because the extracellular electrode was located at a dis-
tance about 10 times larger. Indeed, in (9), the macroscopic
impedance of the extracellular medium was larger than that
of the intracellular medium. Thus, the present results,
together with Gomes et al. (9), suggest that the threshold fre-
quency of the extracellular medium is larger than that of the
intracellular medium. This larger threshold may indicate
that the medium is more tortuous inside the cell compared
with the extracellular medium.

This result is also in qualitative agreement with the exper-
imental measurements of Gabriel et al. (7) and Wagner et al.
(8) because the apparent conductivity and permittivity of the
diffusive model are respectively very low and very high,
which gives a very large dielectric relaxation time (Online
Appendix F). According to the experimental results of (7),
the electric permittivity of the extracellular medium is much
larger in the neuropil, compared with that of the extracellular
fluid in cultures. The value of the permittivity is in agreement
with the experimental measurements (7,8) and is estimated to
be 10° to 107 times larger than that of ACSF. Notice that the
results of Wagner et al. (8) were obtained in vivo and are
not identical to that of Gabriel et al. (7) obtained in vitro.
This difference may be because the linear approximation of
the medium impedance may be valid in vitro but not in vivo.
Can the linear approximation be considered as a first esti-
mate? Is the deviation due to the presence of ongoing (spike)
activity? These questions await experimental testing.
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FIGURE 11 Intracellular-to-extracellular impedance Z as a function of

frequency v for a neuron recorded in acute brain slice. (A) Modulus of Z
as a function of v. (B) Phase of Z as a function of v. Parameters: 7,, =
10ms, R,, = 128 MQ; A} = 60 MQ, vy = 0.5 Hz, Ry, = 6MQ;
AB =16 MQ, v}, = 40 Hz and R, = 6MQ. The color code is red: fit
with resistive intracellular and extracellular media (16 MQ); green: fit
with a diffusive intracellular medium (a) and a resistive extracellular me-
dium (16 MQ); blue: fit diffusive intracellular and extracellular media
(Eq. 4); Magenta: cubic spline fit of the experimental data. The latter
case best fits the experimental measurements. The mean square error of
the diffusive model is about threefold less that than of the resistive model
(Online Appendix G). To see this figure in color, go online.

The correspondence between the theoretical models pre-
sented in mathematical and physical models used to simu-
late the experimental data and the different experimental
configurations is summarized in Table 1.

DISCUSSION

In this study, we provide impedance measurements around
neurons, in different experimental preparations and a com-
parison between extracellular and intracellular impedance
measurements. The aim was to determine which is the
most plausible physical model that accounts for the electric
properties of the extracellular medium. We used an experi-
mental measurement consisting of three points, an intracel-
lular electrode, an extracellular electrode in the close
vicinity of the membrane (a few microns), and a ground
electrode located far away. Using the same recording setup,
we considered different preparations ranging from acute
brain slices, primary cell cultures with neurons of different
morphological complexity, and measurements in ACSF so-
lution as control. In addition to these measurements, we
have provided a detailed fitting of the measured impedance
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using several biophysical models of the extracellular me-
dium. The main conclusions are that (1) in no circumstance,
is the resistive model able to fit the whole data set; (2) the
measurements point to a dominant role of ionic diffusion,
as soon as a membrane is present; (3) the measurements sug-
gest that the underlying mechanism is the ionic diffusion
associated to the Debye layers around the membrane; and
(4) additional capacitive effects may be needed to explain
the differences between experimental preparations.

Regarding the first conclusion, a resistive medium cannot
account for any of the measurements, except when elec-
trodes are placed in ACSF. The resistive nature of the
impedance measured in ACSF is expected because this sa-
line solution is the simplest case of a resistive medium. In
this case, we had to consider an additional capacitive effect
in parallel with the two electrodes (measurements in ACSF).
This shows that the measurements with the micropipettes do
not create an apparent frequency dependence of the
measured medium, and once the capacitive effect is
removed, one recovers the correct resistive measurement
in this case.

The second conclusion, that ionic diffusion plays a prom-
inent role, is supported by our fitting analysis considering
different model alternatives. This suspected presence of
ionic diffusion (and the associated Warburg impedance)
agrees with previous studies showing a role for ionic diffu-
sion. Macroscopic measurements of the impedance of brain
tissue (7,8) showed a frequency dependence of the electric
parameters that is consistent with ionic diffusion, as pointed
out by a theoretical study (21). This study developed a
mean-field formalism of Maxwell equations, which was
necessary to properly account for macroscopic measure-
ments that imply averages over large spatial volumes. In
this mean-field framework, the predicted frequency scaling
of ionic diffusion was found to be consistent with the exper-
imental observations. It was further shown, using a two-
electrode measurement setup with intracellular and extra-
cellular electrodes, that ionic diffusion also accounted for
the observed frequency dependence (9). However, as
pointed out in (16), the dendrites were neglected in our pre-
vious study. We provide here new data on this issue by
showing that there was little difference between the imped-
ance measured in intact (arborized) neurons or in (nonarbor-
ized) neurons with greatly simplified dendritic morphology.
Therefore, the presence of dendrites is not a plausible cause
to explain the deviations from resistivity.

The third conclusion, that the underlying mechanism is
the ionic diffusion in Debye layers around the membrane,
is mostly supported by the experiments in primary cell cul-
tures where no intact neuropil is present. In these conditions,
the medium is almost devoid of glial cells or neighboring
neurons, and can be considered close to homogeneous sa-
line. We also observed a frequency dependence in such con-
ditions, when an intracellular recording was present, but not
in saline with two electrodes in ACSF (measurements in



10" ¢

10" =

1Z] [MQ]

10° A Wi

-1

Neural tissue impedance

FIGURE 12 Extracellular-to-ground impedance
for a neuron recorded in acute brain slice. The
same color code as in Fig. 7 was used. Dotted lines
correspond to the mathematical model given by
Eq. 3b (for details, see Fig. 11 and Online Appendix
A). The modulus of the impedance is represented as
a function of frequency. Parameters: R,, = 5 MQ,
T = 10ms, vy =2 um, l; = 600 pum, 0'2', =58/m,
and Z, = 2 MQ. NMR: % — .5; NMD: 1,7 =
ool B = os+ N

1 | . . .
-+ [roy s To see this figure in color, go online.

“(’

2y —
ez =

«««««

10 10 10
v [Hz]

ACSF). Therefore, we find that the presence of a membrane
induces a frequency dependence, which we attribute as
mainly due to the presence of Debye layers around the
membrane. Debye layers not only constitute the basis of
the membrane capacitance, but they also are characterized
by ionic diffusion that participates to maintain the mem-
brane potential. Our interpretation is that, when current
flows from the intracellular electrode, the corresponding
ions induce local concentration changes in Debye layers,
which will re-equilibrate by ionic diffusion. This increases
the modulus of the impedance and introduces a frequency
dependence which signature can be seen as a diffusive (War-
burg) impedance. Importantly, this impedance is a linear
approximation, and thus, cannot capture the ratio V/I¥ for
large variations of the membrane potential (such as during
spikes; see discussion in (21)).

The fourth conclusion is that it was necessary to include
capacitive effects to account for differences between the
different preparations. These effects were not necessary
for a cell in a homogeneous medium (in culture), but were
required to fit acute brain slice conditions when the elec-
trodes were very close (about 10 um). On the other hand,
no additional capacitive effect was seen between the extra-
cellular electrode and the ground. This suggests the possibil-
ity that both intracellular and extracellular media have a
significant diffusive component. We could fit the measure-
ments assuming a different cutoff frequency between the
media (about 5 Hz intracellular, and 40 Hz extracellular).
This difference suggests that the medium is more tortuous
intracellularly compared with the extracellular medium.

Importantly, the present results seem in agreement with
the principle of least constraint of Gauss, according to which
the introduction of constraints modifies the least as possible

10

the movement of a system. In electromagnetism, the appli-
cation of this principle means that most charges will follow
the path with the lowest impedance. (For example, if we
have two resistances in parallel, most of the charges will
go through the smallest resistance. In electromagnetism,
the principle of least constraint can be seen as a generaliza-
tion of this example (31)). In the measurements of Logothe-
tis et al. and Miceli et al. (5,6), the magnitude of the minimal
extracellular impedance would be of the same order as
ACSF, which is a similar situation as our measurement be-
tween the extracellular electrode and the ground. In Gomes
etal. (9), as in the present paper, the modulus of the minimal
impedance between the intracellular and extracellular elec-
trodes would be much larger because the charges are con-
strained to flow across the cell membrane, and not just
flowing exclusively in the extracellular medium.

Taking together our results in different preparations, we
conclude that, for the frequency range of electrophysiological
phenomena (frequencies v < 10 kHz), there is a very signifi-
cant frequency dependence of the electric parameters in intra-
cellular and extracellular media. Our experiments show that
this significant frequency dependence should be taken into ac-
count when current flows across a cell membrane. On the
other hand, there is very little frequency dependence if the
current does not flow across a membrane. (Note that one
study (8)) reports a frequency-dependent extracellular imped-
ance, but a very different frequency range, between 4.7 kHz
and 2 MHz, was used). This major difference suggests that
impedance measurements should necessarily give different
results if they are performed extracellularly, or using an intra-
cellular recording. This could potentially reconcile contradic-
tory measurements and also answer some of the questioning
about the origin of the LFP signal (32).
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TABLE 1 The different biophysical models used for fitting the
experimental data in the different figures of the manuscript

Fig. Zeg. Resistive model Diffusive model

ACSF 4 R|C
Culture (immature)

intra-extra 5 Zn Zn®Zy,

extra-ground 6 (Za||Zs||Za) © R, (Z4||Z||Z4) © R,
Culture (mature)

intra-extra 8 Zn 2y ®Z,,

extra-ground 9 ZdIZ)|Za) Ry (Zal|Zs]|Za) R,
In vitro

intra-extra 11 Zn Zn®Z,,

extra-ground 12 (Za|1Zs||1Zq) ® R, (Za||Z;||Za) DR,

1: Z,, =R || C corresponds to the impedance of a portion of membrane
where R and C are respectively the resistance and capacitance. 2: Z, is

A8
w = + Rasym» where Af # 0 and

Aa
TR
I+, [== 1+ VE
(J‘)WT Wy

Af, #0 and w,,, # . In primary cell cultures, we have used A,, = 24}, =

given by expression

2A€, and cuj,T = (‘)6'1' In the in vitro conditions, we have used A+ 0,
Af, #0, and A ;&Aﬁ,, with wﬁ,{_ #wf,[_ and different from infinity. Z, is the
impedance of the region defined by the isopotential surface S; passing
through the extracellular electrode and the first isopotential surface S,
that totally includes the neuron, Z; is the impedance of the part of the
soma included between S; and S, Z, is the input impedance of the dendrite
between surfaces Sy, S,, and Z, is the impedance of the region between S,
and the ground. Z, = (Z,||Z||Zs) ® R, where || means “in parallel” and &
“in series” (Fig. 1).

This raises the question of which impedance is the most
physiologically pertinent, the impedance of the medium
alone, measured with extracellular electrodes, or the imped-
ance between intracellular and extracellular media? If the
point of interest is to relate neuronal activity (ionic currents)
with the extracellular potentials, then the relevant
impedance is the intracellular-extracellular impedance as
measured here. Indeed, the ionic currents in the membrane
must flow through a complex environment (Debye layers,
various obstacles), which are important to generate the
extracellular potential (which “sense” the current after its
interaction with the complex environment). The impedance
measured here correctly captures this effect and is the
closest to the natural conditions. On the other hand, imped-
ances measured with extracellular electrodes inform about
how the extracellular medium reacts to currents injected
extracellularly and does not reflect the situation with natural
(membrane) currents. Thus, our study complements previ-
ous extracellular measurements, and goes further in bio-
physical realism by measuring the impedance pertinent for
the genesis of extracellular potentials.

Our results may call for a redefinition of the classic
“neuronal dipole” mechanism underlying LFP or EEG sig-
nals. However, such an extrapolation is not immediate,
because our measurements were made in the linear regimen,
whereas the LFP and EEG signals are generated by active
networks that involve nonlinear phenomena such as action
potentials. Nevertheless, our experiments indicate that
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LFP and EEG signals should be affected by the frequency
filtering measured here, because the formation of the
neuronal dipoles will depend on currents flowing through
the membrane/Debye layers complex. In other words, the
currents forming the neuronal dipole should include the fre-
quency filtering due to the flow through the membrane/
Debye layers complex, and that can only be revealed by
intracellular measurements.
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Supplemental Information
Appendices

Physical meaning of the method used to measure the
impedance

In our experimental situation, we inject a current which is time-dependent, in a
linear medium. In such conditions, the potential (relative to ground) is given by the
general relation:

+oo

V(t, fintra) - V<t7 fe:rtra) - [V;"est(fintra) - West(feztra)] + / Z<t - t/)Ig<t/) dt/ )
where V,..(7) is the resting potential at position Z (at rest, [9(t) = 0). It follows
that, in Fourier frequency space, the potential between intracellular and extracellular
electrodes is given by:

[V(w./ fi”t"u) - VT"CSt(fi”t"'“)(s(w)] - [V(w, f@wtra) - %‘(ist(fcwtra)é(w)] - Z<W)]g (w) )
where 0(w) is the Dirac distribution. Thus, we can write:
V(w’ fintra) - V(w7 femtra) = Z(W)Ig(u})

when w # 0. For w # 0 we have d(w) = 0 and thus V(w,Z) = V(w, ) — Viest(w, T)
because Vies(w, T) = Viest(¥)d(w). It follows that, if w # 0, then the potential
measured as a function of frequency V(w, 7) is equal to its variation relative to that
of the cell at rest. Thus, for current amplitudes that are not too strong (to remain in
the linear regime), V(w, Z) has a very smooth variation in space, despite the fact that
the potential at rest may show very abrupt spatial variations near the membrane.
In the manuscript, we have designed by equipotential surface any surface for which
V(w, &) = constant when w = constant # 0.

A Equivalent impedance between the extracellular
electrode and the ground

In this appendix, we give the explicit expressions to calculate the impedance between
the extracellular electrode and the ground in the different experimental conditions
considered.

When measuring the equivalent impedance, we have (Z, || Z; || Z4) ® Z,, where
Z4 is the impedance between the ground and the first isopotential surface that
surrounds the neuron. 7, is the impedance of the extracellular medium in contact
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with the isopotential surface Sy, Z, is the impedance of the current flowing through
the soma membrane in contact with surface S, and Z; is the input impedance of
the dendritic tree relative to a reference outside the neuron (Fig. 6).

Thus, we obtain

V; ZaZde
=7z, = A Al
I " 22+ D2y 242, + 2 (A1)

where I9 = I9 + 19 + I. 19 is the generalized current produced by the current
source, because in our experiments, the generalized current conservation applies.
Note that this does not account for charges created by chemical reactions [36]. We
have

( Za - Ra
(m) Tm Zﬁm)
Ly = Zm + Ze — A, (1+iwmm) + A, (AQ)
(m)
Zy = %ﬁ coth(klq)

Here, we calculated Z; as follows. The part of the current source that flows through

the dendrite before eventually going to the ground (I9) is such that we obtain
74 = ‘;3 = j—icoth(/a,\ld) where V,,, is the somatic membrane potential at the basis
of the dendrite [22]. In addition, applying the generalized current conservation gives
the following equality:

V52 Vin
T+ 20 T A9

where the potential V;SQ is taken at the isopotential surface S,. Thus, we have
approximately:

Zs
ZW’L

Vi Zy+ 2"

7, = L =
T Z,

Zi = L (A.4)

B RC circuit in series with a resistance

In this appendix, we compare the RC model ((R || C)) with the RC model in series
with a resistance ((R || C') @ Rx). One can see from Fig. B.1 that the impedances
of these two models are similar for small frequencies. However, they differ at high
frequencies relative to the cut-off frequency of the RC circuit. It is important to
also consider that the phase of the RC model tends to -90° when frequency tends to
00, but it tends to 0° for the RC model in series with a resistance.
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Figure B.1: Comparison betwen the impedances of the model RC || (red) and of the
model RC || in series with a resistance (blue). The modulus (A) and phase (B) are
shown as a function of frequency.

C Diffusive impedance in heterogeneous media for
a spherical source

In this appendix, we present the theoretical expression of the macroscopic
impedance in the case of a diffusive model [20].

In a previous publication [20], we have shown that the macroscopic diffusive
impedance (also called Warburg impedance) is derived by a linear approximation
of the ratio 1%7 where V' is the potential difference between the two measurement
points. This derivation took into account Boltzmann distribution and Ohm’s law.



The energy given to the charges divides into two parts: one dissipative part (calorific
energy) and the part corresponding to the spatial arrangement and distribution of
charges as a function of time. The first part is related to Ohm’s law, and the second
part to Nernst law.

The presence of a current source in a homogeneous medium breaks its homogeneity.
Indeed, the charge distribution around the source cannot be considered constant.
The application of Boltzmann’s law in the quasistatic regime (in the sense of classical
statistical thermodynamics), in the linear approximation, gives an impedance for a
spherical current source of the form:

Z, - — G (C.1)
(% +/—io)

<B>|m

where C' is a constant which depends on the electric conductivity of the medium
in the absence of the source, R is the radius of the spherical source (which gives a
curvature of 1/R?), T is the absolute temperature in Kelvins, < 8 > |,, is equivalent
to an “effective” diffusion coefficient which is negative, and k£ = 1.38 x 10723 J/°K is
the Boltzmann constant (for more details, see [20]). This model is called “diffusive
model”, and is used here for the particular case of a spherical source.

By setting

A, = CRT (C.2)
and b
< > \m
W = =~ (C.3)

we can write expression C.1 as above:

1+ fize

At constant temperature, the measurement of the impedance allows one to determine
the values of A, and w,r = 27v,r. The parameters A,, and w, are real.
However, we assumed

Zw

Ay
Dy = —
1+, fie

WyT

+ Rasymp (05)

because the original derivation of the expression of the Warburg impedance in
mean-field |20| considered the particular solution of the differential equations in
mean-field, also called the “forced solution”. The general solution is the sum of
this particular solution and the solution of the homogeneous equation (V2V, = 0).
To take this into account, one needs to add a resistance in series with the forced
solution (Rusymp. ). This asymptotic resistance appears at very large frequencies in
the experimental measurements (see Results).



Figure D.1: Examples of how the curvature of isopotential surfaces determines the
cutoff frequency of the impedance. A. Volume delimited by a plane (infinite curva-
ture radius), resulting in a cutoff frequency near zero. B. Similar volume delimited
by a border of constant curvature. In this case, the cutoff frequency is larger because
it is inversely proportional to the curvature radius (Appendix D ).

D Threshold frequency and surface curvature of the
diffusive model in the general case

In this appendix, we give some details about the relation between the threshold
frequency in the diffusive impedance (expression C.5) and the curvature at a given
point of a surface S. In other words, we show how to apply the diffusive model to
surfaces that are non-spherical.

The diffusive model of Appendix C can be applied to an arbitrary surface because we
can build an approximately continuous surface S by the sum of portions of spherical
surfaces centered on different points of S, where the curvature corresponds to that
of §. Note that the smaller the intrinsic curvature of a surface, the smaller is the
threshold frequency of that surface®.

For example, if we have a surface S composed of two spherical portions (S; and S»)
of very different radius, the diffusive impedance diffusive as sensed by the surface is
equal to the two impedances of each portion in parallel, because the current divides
between both of them. It follows that Zg = Zg, || Zs,, with:

Ay
Zg— — v (D.1)
Y
1 + ZWIUT
where o
A —_ wy Hwg
w Awl +A1u2
Au,vl +ﬂ (DQ)
L et er
VWwT Awl +A’w2

If the surfaces S; and Sy have the same impedance, then the impedance of S is twice
smaller, but the threshold frequency remains the same. If each surface displays a
similar Warburg amplitude but with different threshold frequencies, then we obtain

LA similar approach is classically used to model the electrical point effect [32].
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It follows that if we approximate a given surface with a set of N spherical portions
of same Warburg amplitude, the threshold frequency is given by:

ﬁ _f; (0.3

Thus, the portions of surface with the smallest curvature will determine the thresh-
old frequency of the ensemble, Consequently, it is possible to obtain a very small
threshold frequency, even in a domain of a very small volume (Fig. D.1).

E Macroscopic impedance relative to ground

In this appendix, we consider the macroscopic impedance as sensed by the electrode
injecting the current in the soma, via the dendrite, before reaching the ground,
Zf’;(’;‘;d, and the impedance as seen by the current going to the ground indepen-

dently of the dendrite, Z7'7 “dﬁ, for a ball-and-stick model in a resistive extracellular

medium. Note that the impedance between the soma and the ground is given by

ground ground
Zin den H Zout den*

We also consider that the cytoplasm is resistive, as well as the Debye layers surround-
ing the membrane. We will consider the experimental measurements of Section 3.2.
Importantly, in the present experiments, the impedance between the cell and the
ground should be calculated in an “open” configuration, because the current injected
in the neuron flows to the ground without looping back to the neuron.

We numerically compared the impact of the two configurations, open and closed, at
the basis of the dendrite (stick). In particular, the parameter k) = /X is a good
indicator to evaluate the differences between the two configurations.

For this purpose, we first assumed that the extracellular impedance Zém) has the
same value at every point in the membrane in soma and dendrites. This hypothesis
is reasonable if the neuron is physically smaller than the geometrical dimensions of
the experimental preparation. Indeed, this parameter measures the impedance of
the extracellular medium as sensed by the membrane, as defined by 2im) /dS which
is the impedance between dS, a differential element of membrane, and the ground.
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Figure E.1: Graph of { as a function of frequency for the ball-and-stick model. Here,
Kk = /1 + iwT,,, the soma has a radius of 10 um, while the length and diameter of
the stick are respectively of 600 pum and 3 um. In this example, the membrane time
constant 7,, is of 30 ms, ¢,, = 0.01 F'/m? is the specific membrane capacitance, and

2™ = kr,, with k& = 0.001,0.0001,0.00001. The dashed lines correspond to the
open configuration, and continuous lines to the closed configuration. The electric
conductivity of the cytoplasm o] corresponds to the different colors, Blue: o)™ =

e

0.1S/m, Red: o™ = 0.015/m, Black: o2 = 0.001S/m. Note that in the case
2 = 0.000017r,, is approximately equivalent to a supraconductive medium, for
frequencies smaller than 10 kH z.

According to the generalized cable theory [22], for a resistive medium, we have:

€m
mn
olmm

m =

(E.1)

Zéml) - ei)

ot
where ¢, and e. are the thickness of the membrane and of Debye layers, respec-
tively. o™ and o are the mean electric conductivity of the membrane and of the
extracellular medium (comprising Debye layers), respectively. Debye layers have a
high density of ions, and thus have a different conductivity than the “bulk” of the
medium. The ions around the membrane are distributed according to Boltzmann
distribution, forming Debye layers, and the diffusive model must be taken into ac-

count in this case (Appendices C and D). The electric conductivity is much lower
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in Debye layers compared to the other parts of the extracellular medium, which is
considered homogeneous away of Debye layers. We assumed a thickness equivalent
to that of Debye layers in the expression of 2™ (Eq. E.1).

However, in this appendix, we neglect the possible frequency dependence and model
the impedance of Debye layers with a resistance, as if the threshold frequency was
very large. The goal here is to determine, as simple as possible, the physical con-
sequences of the magnitude of |zem)\ relative to 7, on the current division between
the soma and the dendritic stick.

According to expressions E.1, we obtain:

(mn)
Am = L2 (E.2)
Em 0'€'

where 7, = 7,,/¢,, = 1007, (with ¢,, = 0.01 F/m?).
For a value of 7,, = 30 ms, e, = 0.1e,, and o0 = 1026, we obtain 2™ =
0.003 Qm?2. This value gives the order of magnitude of the physical effects on the
impedances Zf:’;gld and Zggf“d’ﬁ. The value of the membrane time constant is that
of the experiments presented here.

Next, from the evolution of the electric conductivity of the cytoplasm, we consider
three different values: 0.1, 0.01 and 0.001 S/m (Fig. E.2 ) The first value approx-
imately corresponds to that of ACSF for a temperature of 37 °C'. The two other
values are smaller, to simulate the fact that the cytoplasm is a heterogeneous medium
(presence of organites), which creates a tortuosity, as well as electric polarization.
These effects have been reported to diminish electric conductivity [27, 28|.
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. . . d .
Figure E.2: Example of input impedance Z7 %" and of soma impedance Z979m,

Here, 2 = kr,, and k = 0.001,0.0001. The electric conductivity of the cytoplasm
is o7 = 0.1,0.01,0.001 S/m. The other parameters are the same as in Fig. D.1.
The dotted lines correspond to the case 2 = 0, which is equivalent to neglect
Debye layers; solid lines correspond to a resistive model, with Debye layers taken
into account.

Figure E.2 shows examples of the input impedance in the following conditions.
1) The open and closed configurations give very different results when 2 s
0.017,, Qm?, otherwise the differences are small for parameters x,. Note that the
case zém) < 0.00001r,, is as if Debye layers were inexistent for frequencies smaller
than 10 kHz. 2). For o™ = 0.1 S/m, |Z97°"4| > |Zoround| if 1 > 100 Hz, for

in den soma
(nm)

o™ = 0.01 S/m. This inequality holds up to about 1 Hz. For o, = 0.001 S/m,
the modulus of the dendrite (stick) impedance is much larger than that of the soma.

F Apparent electric conductivity and permittivity

In this appendix, we define the apparent electric conductivity and permittivity. In
general, we have the following linking relations between the diffusion j/,E and the
fields D, FE:

10



)y = [ _ft—t) EW)dt
(F.1)
Dty = ['_g.(t—t) EW) dt’

This is obtained in the framework of a mean-field theory of Maxwell equations
when the extracellular and intracellular media are linear and homogeneous [20, 35|.
Note that the functions f, and g. are real functions which can model different
physical phenomena, such as ionic diffusion, electric polarization, calorific (resistive)
dissipation, etc. The integral expresses the fact that the free-charge current density
and displacement current density at a given time ¢ are not only determined by the
electric field at time ¢ but also by the whole history of its time variations. These
functions are the inverse Fourier transform of electric conductivity and permittivity
expressed in Fourier frequency space?. For example, for an ideal electric resistance,
we have f,(t) = 0.(t), for an ideal capacitance we have g.(t) = £,0(t) (where o,
are ¢, are constant in time). These two parameters are respectively the electric
conductivity and permittivity. In these two ideal cases, the relations F.1 give the
following equalities: j’f = UeE and D = E,SE , where o, and ¢, are time independent.
Note that these two ideal elements have no memory of the past (which is expressed by
the Dirac deltas), and this is not generally the case of frequency-dependent electric
conductivity and permittivity.

Consequently, we have in general, in Fourier frequency space:

—

Hw = o) Ew)
) (F.2)
D(w) = ¢(w) E(w)

where o(w) and e(w) are respectively the Fourier transforms of f,(¢) and g.(¢).

Because f,(t) and g.(t) are real functions, this implies in general o(—w) = o*(w)
and £(—w) = £*(w). Here, the real parts are necessarily even functions and the
imaginary parts are odd functions. The relations F.2 imply that the generalized
current density is related to the electric field by:

—

Pw) =7 W) +4w) = o) +iwe(W)] Ew) = 7(w) Ew) (F.3)

where 0 = 0’ +i0” and € = ¢’ + ig” are complex functions in general, while o', o”,
g’, " are real functions. We have the following particular cases: an ideal resistance
is such that we have o(w) = 0. (Ohm’s law), an ideal capacitance corresponds to
e(w) = ¢, so that o and ¢ are real numbers and do not depend on frequency.

From these relations, we obtain:

7

7:(0’—w6”)+iw(6’+0—):JA—i—iweA (F.4)
W

2Representing the electric parameters in Fourier frequency space is particularly efficient when
the medium is linear because in this case the density of free-charge current and displacement
current are proportional to e if the electric field is also proportional to this term.
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which defines the apparent electric conductivity o4 and the apparent electric per-
mittivity €4. In general, the apparent electric permittivity can be viewed as a type
of resistance which depends on frequency and allows to calculate the dissipated
power at a given frequency. The ratio e4/04 can be used to evaluate the relax-
ation time of the medium. Note that this definition corresponds to the electric
parameters measured in previous studies |7, 34]. In these experimental studies, the
measurements are characterized by parameters o4 and € 4 because we interpret the
experimental measurements in a very heterogeneous medium as if it was a non-ideal
resistance (which depends on frequency) in parallel with a non-ideal capacitance
(which also depends on frequency). A heterogeneous medium can be modeled as a
homogeneous medium where the parameters depend on frequency with respect to
macroscopic measurements. This is analogous to classical thermodynamics where
pressure and temperature can be used to characterize a physical system.

Note that the apparent electric permittivity tends to infinity if the imaginary part of
the electric conductivity does not tend to zero at null frequency. This is not the case
for an ideal resistance because the imaginary part of its electric conductivity is zero.
However, for a diffusive (planar) impedance (with zero curvature, see Appendix D)
the imaginary part of electric conductivity is non-zero, since in this case v = ky/w(1+
i) where k is a constant.

By definition, the complex admittance Y between the two arms of a plane capacitor
with a given medium in between, is given by % [04 + iwe 4]. A is the arms area and
d is the distance separating them. If we assume that these geometrical dimensions
do not generate boundary effects, the electric field between the arms is of V/d where
V' is the voltage difference between the arms of the capacitor.

12
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Figure F.1: Apparent conductivity and permittivity of a diffusive impedance. The
red and blue curves correspond to v,y = .5 Hz and black curves correspond to
vor =40 Hz. We have A, = 16 MQ and A/d = 10 pm for all curves,

For example, the measurement of the apparent parameters of a medium with a
diffusive impedance gives the following equality:

A L+ Jig=
Y= — [o4+tiwey = ——

: o (F.5)

It follows that the frequency dependence of the parameters is given by the following

expressions:
4

kojy, = 1+ w

2"JwT

k’€A = \/lewﬁ (FG)

T — EA 1
\ A oA WV 2ww, T

where the constant k is equal to %.

Thus, the apparent electric conductivity tends to £, the electric permittivity tends to
infinite, and the dielectric relaxation time tends to infinity for w — 0. We conclude
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that if ionic diffusion is not negligible, then the linear approximation of its effect on
the measured impedance is as if the dielectric relaxation time tends to infinity at
null frequency (Fig. F.1).

G Ensemble of the measurements

In this appendix, we show the ensemble of experimental results obtained in the
different preparations. Figures G.1 (non-arborized neurons in culture), G.3 (ar-
borized neurons in culture) and G.5 (arborized neurons in brain slices) respectively
show the impedance of Region 1-2 (between the intracellular and extracellular elec-
trodes). The same preparations are respectively shown in Figs. G.2, G.4 and G.6
for the modulus of the impedance of Region 2-3 (between the extracellular electrode
and the ground). The values of the experimental parameters for the different exper-
imental preparations are shown respectively in Table G.1, G.3 and G.5, while the
values of the corresponding models are shown in Table G.2, G.4 and G.6.
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Figure G.1: Experimental measurement between intracellular and extracellular elec-
trodes for 6 non-arborized neurons in culture. On the basis of the fits, two groups
can be distinguished, one with 7,, around 30 ms and another group with 5-15 ms
(Tables G.1 and G.2). The blue curves are cubic spline fits of the experimental data.
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Figure G.2: Experimental measurements between extracellular and ground for 6
non-arborized neurons in primary cell culture, as shown in Tables G.1 and G.2. The
blue curves are cubic spline fits to the logarithm of the experimental data, while the
red curves are the direct cubic spline fits of the data.
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Vi (mean + o of white | Number Membrane
standard deviation) noise of sweeps | resistance (M)
during white current Membrane time
noise injection (mV) (pA) constant (ms)
A : 2020021702 -68.9 + 2.5 10 18 NaN
NaN
B : 2020021801 -64.6 £ 6.4 D 13 2995
117
C : 2020021901 -62.3 £ 2.5 10 20 900
62
D : 2020021803 -57.7 £ 4.0 3 71 2090
105
E : 2020021802 -64.3 £ 1.6 10 14 958
16
F : 2020031503 =571+ .9 d 25 1339
32

Table G.1: Individual experimental parameters for 6 non-arborized neurons in cul-
ture, shown in Fig. G.1. In the absence of measurements, a NaN is indicated.

exTp
Rm Tm Aw VwT Rasymp 04 o

(MY | [ms] | [MQY | [ms] | [MQ] | [M€] | [MQ)
1000 | 30 | 625 | 0.1 | 4 3.4 | 142.9
3000 | 30 | 2000 | 0.2 | 4 16 | 225.0
3000 | 35 | 2000 | 0.05| 6 3.5 | 210.0

3

2

2

erp

3000 | 25 | 2000 | 0.05 3.8 | 215.0
3000 5 2000 | 0.7 2.9 58.3
1000 | 15 670 | 0,1 2.2 |1 179.0

Bliciiwiiellss]i e

Table G.2: Parameters for the diffusive model for each non-arborized neuron in
Table G.1. o0& and 0" are respectively the mean square error of resistive and
diffusive models relative to the experimental measurements for each neuron .
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Figure G.3: Experimental measurements between intracellular and extracellular
electrodes for 6 arborized neurons in primary cell culture (quasi-homogeneous
medium). The blue curves are cubic spline fits of the experimental data.
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Figure G.4: Experimental measurements between extra and ground for 6 arborized
neurons in culture, as shown in Tables G.3 and G.4. The blue curves are cubic spline
fits to the logarithm of the experimental data, while the red curves are the direct

cubic spline fits of the data.
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Vi (mean =+ o of white | Number Membrane
standard deviation) noise of sweeps | resistance (M)
during white current Membrane time
noise injection (mV) (pA) constant (ms)
A : 2020021701 -66.0 + 2.6 10 46 549
25
B : 2020021902 -68.1+ 4.0 10 31 1820
67
C : 2020031501 -76.1 £ 4.4 d 28 4737
109
D : 2020031502 -67.5 + 4.4 10 60 1347
31
E : 2020031602 -66.7 £ 2.1 10 3 793
22
F : 2020031603 -69.4 + 2.7 ) 26 2220
89

Table G.3: Individual experimental parameters for 6 arborized neurons in culture.

R,, Tim Ay | Vur | Rasymp | 057 | 05
[(MQ] | [ms] | [MQ] | [ms] | [MQ] | [MQ] | [MQ]

A | 3150 30 1050 | 0.02 2 2.0 223.0
B | 2100 30 1260 | 0.01 0 2.5 129.0
C | 1200 25 1000 | 0.03 0 2.0 97.0
D | 1200 35 1200 | 0.02 3 3.8 101.0
E | 1200 35 1200 | 0.03 3 3.1 108.0
F | 1500 35 1500 | 0.02 0 4.1 131.0

Table G.4: Individual parameters obtained from fits for 6 arborized neurons in
culture from Table G.3. o0& and 0" are respectively the mean square error of
resistive and diffusive models with respect to the experimental data.
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Figure G.5: Experimental measurements between intracellular and extracellular
electrodes for 9 arborized neurons in brain slices, as shown in Tables G.5 and G.6.
The blue curves are the cubic spline fits of the experimental data.
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Figure G.6: Experimental measurements between extracellular and ground for ar-
borized neurons in slices, as shown in Tables G.5 and G.6. The blue curves are
cubic spline fits to the logarithm of the experimental data, and the red curves are
the direct cubic spline fits of the data.
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Vi (mean =+ o of white | Number Membrane
standard deviation) noise of sweeps | resistance (M)
during white current Membrane time
noise injection (mV) (pA) constant (ms)
A : 2018121204 (MSN) -75.2 £ 1.1 20 1 67
6.0
B : 2018121205 (F'S) -74.8 £1.2 20 10 23
9.5
C : 2018122701 (FS) -78.2+ 1.3 20 15 124
5.6
D : 2019021202 (MSN) -75.8 £ 1.3 20 6 83
4.2
E : 2019021203 (MSN) -73.9 £ 1.7 20 59 85
4.0
F :2019021302* (MSN) -69.1 = 1.8 20 13 64
7.7
G : 2019021304* (MSN) -69.3 £ 1.7 20 10 128
9.5
H : 2019021401 (MSN) -64.6 £ 14 10 5) 124
8.4
I:2019021801 (MSN) -80.1 £ 2.7 10 31 92
2.8
J : 2019021802 -73.3 £ 1.6 10 35 158
(Cholinergic interneuron) 6.3
K : 2019021803* (MSN) -67.1 £ 1.6 10 8 206
7.9
L : 2019021901 (MSN) -76.8 = 1.4 10 49 44
3.4

Table G.5: Individual experimental parameters for 9 arborized neurons in brain
slices (MSN: medium-sized spiny neuron; FS: fast-spiking interneuron).
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Ry, Ry, Tm A, Vur AIZU v EUT Rosymp | 04" | 0P

0] | (M9 | [ms] | (M9 | [(H2] | [MO] | [Ha] | [M9) | [MO] | [MO)]
A | 120 48 5 48 5 24 40 1 2.1 6.0
B | 120 50 5 50 5 24 40 4 2.3 6.6
C 140 47 5 47 5) 40 60 4 2.3 5.2
D | 140 48 5) 48 1 40 60 2 2.4 5.1
E 140 48 2.5 48 1 40 60 1 2.0 6.0
F 140 48 5 48 1 40 60 4 5.9 11.0
G | 256 90 20 90 1 75 40 1 6.3. 9.5
H | 256 90 20 90 0.1 75 10 1 3.0 10.1
1 426 150 1 150 1 125 20 1 28.1 72.0
J | 320.5 90 10 90 20 125 60 5 6.1 26.3
K | 320.5 90 10 90 20 75 60 5 6.1 26.3
L | 320.5 | 48 1 48 45 40 80 3 6.3 15.3

Table G.6: Individual parameters obtained from the fits for arborized neurons in
brain slices from Table G.5. The total resistance for v = 0 is equal to R,, =
Ry + A% + A% + Rygymp. 05 and o5 are the mean square errors of the resistive

and diffusive models relative to experimental data, respectively.

The extracellular-to-ground measurements are similar in all preparations and exhibit
a similar frequency dependence. All fits show that the impedance modulus of the
extracellular medium is of the order of that of ACSF.

However, this is not the case for the intracellular-to-extracellular measurements in
the different preparations. For all cells and for all preparations, the diffusive model
fits better the experimental data.

Finally, for the different preparations, the experimental measurements (membrane
resistance and membrane time constant) shown in Table G.1 are different from that
displayed in Table G.2. This difference shows that the evaluation of the membrane
time constant using a current pulse leads to different membrane time constants as
those evaluated from direct fitting of the impedance. This aspect is examined in
more detail in the following (Appendix H).
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H Voltage between two points for a square current
pulse

In this appendix, we calculate the voltage between two points when the injected
current is a square pulse.
We model a pulse of current as follows:

19 = h[H(t) — H(t — A)] (H.1)

where A > 0 is duration of the current pulse, and H is the Heaviside function.
The most general linear relation between current and voltage is given by the following
expression:

V(t) = /_ -t 1) ar / Ty pe—ty e @)

It follows that the derivative of the voltage is given by:

Cfi‘t/ =h { /+OO Z({t) ot —t") dt’ — /+OO Z({tY ot —A—1t)dt' |. (H.3)

with 4L = h[§(t) — o(t — A)).
Thus, we obtain the following equality:

v
= = h[Z(H) — Z(t - O] (H.4)

According to the complex Fourier transform,

2(t) — PP[;ijOOZ(w) c“tdy ] (a)

(H.5)
+00
V(t) = PP] i [ V(w) e“tdw ] (b)
where PP means the principal part of the integral.
In a diffusive medium, we have:
R’HL A’ll)
Z(w) = Rysym H.6
) = T T TT Vi T e (H.6)
where 7,7 = 1/w,r. We calculate % from Equations H.4 and H.5.
Applying Eq. H.5(a) on the right-hand part of Expression H.6 gives [37]).
av
o= hH(t)F(t) — hH(t — A)F(t — A) (H.7)
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LA 1 t t
F(t) _ % efm + w — € "wT e’f’fc( — ) + Rasymp(s(t) (H8)

Tm TwT ﬁ TL TwT
wT

The function e® - er fc(y/x) for 2 > 0 is a real and positive monotonously decreasing
function which tends to zero at infinite. At z = 0, it is equal to 1.

Because the experimental measurements shown here indicates that 7, << 7,7, we
develop F(t) in series around zero to evaluate this function when ¢ < 7,,,. We obtain

et/ Tt = 1+ -5+ 0(2)
(H.9)
erfe(\/t/Twr) = 1— \/%? [2(#)1/2 - %(#)3/2 + 0(5/2)]
We then write the following equalities:
, —1/2 +1/2
F(t) = f_:e—m - f;; {1 + TEJ 4 wawﬁ ;% . ii% |+ Ryt + 003/2)
(H.10)

G(t) /t POV = Ryp(1— ey — A, 2w 27 g 0(3/2) (H.11)
t) = U)dt = Ryp(l—e ™) — Ay + + Lasymp T .
f e VR

The voltage for V(07) =0 at t =0 and ¢t > A is given by (H.7)

A B C
V(t) = h/A F(t)dt' + h/t F(t)dt' — h/t F(t'— A)adt (H.12)
0 A A
which gives
i A(A0) = R[G(A) — G(0)]
B(t;A) = h[G(t) — G(A)] (H.13)
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Thus, we have

;

2 A1/2 A
A(A;0) = hR,, [1 — 6_%] +hA, | ——— —
ﬁ Tié? TwT

A t—A 2 /2 _ Al/2 t—A
B 7A = m _a |:1 —_— - ™n i| Aw B — J—
(t: A) hR,.e e +h Ve p— (H.14)
NG ;,0 J/
. 2 (t—AY?2 t—A
C(,A) =  hRy, [1—6—77?} cha, |2 1/2) -
| ﬁ TwT TwT |
\ =0

A(A) corresponds to the voltage reached at time A (A is the duration of the current
pulse). A(A) depends on A,. If A, = 0, the voltage is equal to that of a resistive

model. In the case of a diffusive model A,, # 0 is positive because -2~ < # < 1.
Consequently, the voltage as a function of time is given by:
resistive model
N A2 (12 (t—A)2
V(t) = hRy[l —e e m +hA, | —— + — — +0(3/2)
VAR
(H.15)

when ¢ > A and t < 7,7.
Finally, the last expression is equivalent to the second-order approximation in v/t of
the expression

resistive model
7\

- P A t=A 2 [t—A [ ¢t _ [t=A
v(t) = hRm[]_ — 6_%}6_777? —hAw[]_—e T1?T]€ Tw?—i—ThA/w [ ]_ — €< TwT TwT) :| e TwT +0(3/2>
T
(H.16)
when ¢t > A and ¢t < 7,,. We can also develop the third term of expression H.16 as

a series of exponentials linear in ¢ (using Newton binomial) with a combination of
exponentials with different relaxation times.
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Figure H.1: Voltage relative to rest as a function of time during the injection of
a current pulse of 10 pA and 10 ms duration. The membrane time constant was
Tm = 30 ms and the impedance of the extracellular medium + membrane is of
1000 M€ at null frequency. The red curve shows the prediction of the resistive
model, while the blue curve shows the resistive model (with a threshold frequency

of vy =05 Hz and A, = R,,).

Consequently, the method of current pulse injection and the linearization method
give a different slope in a semi-log graph, according to the type of model. For a re-
sistive model, the slope is —1/7,,, and this allows to directly estimate the membrane
time constant, as classically performed. However, for a diffusive model, the slope is
slightly variable and smaller than the resistive model. It depends on 7,,, v,7 and
on the ratio R,,/A,. For t > A, one part of the voltage, V, (V =V, + V}), atten-
uates according to the resistive model, while the other part, Vj, attenuates slower
and depends on v,,7. This explains why the membrane time constant seems larger
with the pulse or linearization method, compared to the fitting of experimental mea-
surements (Appendix G). The divergence originates from the pulse or linearization
methods according to a resistive model.
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