SUPPLEMENTAL FIGURE LEGENDS

Supplementary Figure 1. Generation and validation of A420P and CBM mutant iPSCs through
CRISPR/CAS9 gene editing.

The single-stranded oligodeoxynucleotides (ssODN), 150bp DNA sequence was used for
homologous recombination and aligned with the DNA sequence of human ATP1A1 gene (Panel
A). Tsel restriction site was introduced for clone selection. Genotyping PCR amplified the DNA
sequence flanking the target region from the genomic DNA of wild type human iPSCs and three
A420P mutant iPSCs clones (Panel B), further validated by DNA sequencing. Panel C shows the
DNA sequences in the reverse direction where both wild type A420 and the mutant P420
reverse sequences are highlighted in blue-lined boxes). An absence of off-target effect was
verified through genotyping PCR and DNA sequencing. DNA sequences flanking the CBM region
of ATP1A2, ATP1A3 and ATP1A4 genes (panel D, E and F), top-matched regions for gRNAs used
in generation of mCBM (panel G and H), and A420P (panel |, J and K) mutations through CRISPR
gene editing were PCR-amplified from the genomic DNA of iPSCs. The amplicons were gel-
purified and sequenced. All sequences were 100% matched with NCBI human genomic DNA
database (wild type); no abnormal mutations were found. FAM short for the matched sequence
in the gene FAM120A0S Ensembl accession code ENSG00000188938; LY86 for LY86-AS1,
Ensembl accession code ENSG00000216863; CAD12, Ensembl accession code
ENSG00000154162; CBF for the gene CBFA2T2, Ensembl accession code ENSG00000079699;
NOD1, Ensembl accession code ENSG00000106109.

Supplementary Figure 2. Sequential induction of marker genes’ expression during iSkm
differentiation from wild type human iPSCs.

Panel A illustrates the consecutive steps of skeletal muscle cells (Skm) differentiation from wild
type human iPSCs. Marker genes’ expression indicates specific differentiation stage. The first
step induced in SKMO1 for one week gives rise to myogenic precursor cells, including the early
induction of mesoderm (characterized by T, MIXL1 and MSGN1), presomitic mesoderm (marked
by PAX3, panel B), as well as decreased expression of pluripotency markers NANOG and OCTA4.
The second induction with SKMO02 for one week led to myoblast cells, marked by myogenic
transcription factors MYOD (panel C) and MYOG (panel D). The final step with SKMO03 for one
week induces the formation of myotube cells, actively expressing genes encoding proteins
forming cell structure, MYH8 (E), CAV3 (F) and TNNT1 (G). mRNA Induction for each gene was
calculated and compared to the parental/un-induced iPSC control by one-way ANOVA. RT-qPCR
results were shown as mean*SE. N=3 for each gene group, **p<0.01, ***p<0.001.



Supplemental Figure 3. Verification of defective Skm differentiation in an alternate clone of
iPSC-mCBM (clone mCBM#2).

mMRNA induction for the myogenic marker genes was compared to that in wild type iPSCs. As
observed for the representative clone shown in Figure 2, CBM mutation dramatically inhibited
induction of myogenic marker genes MYOD, MYOG, TNNT1, MYH8, MYH3 and CAV3 (panel A-F).
Moreover, immunostaining for -catenin (panel G) in this clone also mimics the results in Figure
6. Data are expressed as meantSE and analyzed with Student’s t-test. N=3 for WT and mCBM,
**%p<0.001.

Supplemental Figure 4. Adipocyte differentiation from human iPSCs.

Schematic for in vitro differentiation of adipocytes from human iPSCs (panel A). As their wild
type counterparts, mutant iPSCs (iPSCs-mCBM) readily differentiated into adipocytes, activating
MRNA expression for the marker genes to levels equivalent to (PPARG and FASN), or even
higher than (ADIPOQ and FABP4) wild type iPSCs-derived adipocytes (Adi-WT). Of note, mRNA
expression for these markers was not detected (short for n/d) in MSC (panel B-E, real-time RT-
gPCR, n=3-6, unpaired t-test). Adi-mCBM developed a weaker oil red O staining than Adi-WT
(panel F, representative images from three independent repeats and quantitation of lipid
droplets per cell, n=8, scale bar = 500 um. Data are shown as mean + SE. **, P <0.01; ***,

P <0.001. MSC stands for mesenchymal stem cell; Adi stands for Adipocytes differentiated from
iPSCs-WT (Adi-WT) or iPSC-mCBM (Adi-mCBM).

Supplementary Figure 5. Characterization of iSkm-A420P with immunostaining and gene
expression.

Comparison of fold induction for the myogenic marker genes between iSkm-WT and iSkm-
A420P (panel A). Data were analyzed with t-test and shown as mean + SE. N=4 for each group,
** P<0.01; *** P <0.001. iSkm-A420P were positively stained with skeletal muscle antibodies,
anti-sarcomeric alpha actinin antibody and anti-alpha skeletal muscle actin. Red signals indicate
the positive staining of differentiated muscle fibers while blue signals show the nuclei (panel B).
C2C12 myoblast cells were used to evaluate these antibodies. The positive staining for Actinin
(panel C) and Actin (panel D) was observed in the differentiated C2C12 cells (five days in the
differentiation medium, C2C12 5d-Diff), but absent in the undifferentiated iPSCs-WT or iPSC-
mCBM.



Supplementary Figure 6. Rescue iPSCs-mCBM with transgene Myod1.

Comparison of MYOD and MYF5 induction in the myoblast (SKM02) and myotube (SKMO03)
differentiated from wild type iPSCs indicates MYOD as a major player in the Skm differentiation
system used. Induction fold of each gene was calculated in the induced cells (SKM02 or SKM03)
normalized against their parental iPSCs (panel A). Mouse Myod1 cDNA was transfected into
iPSCs-mCBM cells through lentivirus. Compared to the parental mCBM cells, the mouse Myod1
(mMyod1) mRNA is highly increased in transfected Myod-mCBM cells (panel B). Muscle fusion
in iSkm was quantified (panel C). Fusion index was calculated as the ratio of number of nuclei
per myocyte with the positive staining of myosin heavy chain antibody (shown in Figure 3), to
the number of total nuclei. Data reported as mean * SE. N=3 for each gene group. ***p<0.001,
N.S.: not significant by student’s t-test).

Supplementary Figure 7. Heatmap of mCBM regulated genes associated to pluripotency and
Whnt signaling.

RNA-seq data analyses for iPSCs-mCBM v.s. iPSCs-WT (panel A for pluripotency markers, B and
D for Wnt and TGF-3 signaling, respectively), SKM01 induced myogenic precursor cells from
iPSCs-mCBM and iPSCs-WT (panel C and E for Wnt and TGF-f signaling, respectively) were
analyzed and plotted through Cytoscape. Colors on the heatmap present the average gene
Log2Fold of Change in reads of mCBM vs. WT triplicate samples.

Supplementary Figure 8. Protein expression and distribution in myogenic precursor cells.

Western blots show protein alteration in myogenic precursor cells, SKM0O1-induced human
iPSCs. Blot intensities in panel A are quantified in panel B. Data are analyzed with t-test and
shown as mean % SE. N=4 for each group. *, P <0.05; **, P<0.01; ***, P <0.001.
Immunofluorescence staining in myogenic precursor cells shows the localization of B-catenin is
shifted away from cell membrane by CBM mutation (panel C), reminiscent of the parental iPSCs
in Figure 6.

Supplementary Figure 9. Premature activation of Wnt signaling by CBM mutation.



Compared to wild type iPSCs (iPSCs-WT), CBM mutant iPSCs (iPSCs-mCBM) increased PAX3
(panel A) and MSGN1 (panel B) mRNA expression. However, this untimely activation
desensitized iPSCs-mCBM of further induction in PAX3 mRNA by Wnt ligands, CHIR (Figure 5), or
SKMO01 medium (panel A). Skm01-WT and Skm01-mCBM stand for the SKM01-induced wild
type or CBM mutant iPSCs, i.e. myogenic precursor cells. Data was analyzed with one-way
ANOVA. N=3 for each gene group, * p<0.05, ** p<0.01, *** p<0.001.

Supplementary Table 1. RNA-seq profiling gene expression between wild type iPSCs (iPSCs-WT)
and CBM mutant iPSCs (iPSCs-mCBM).

Supplementary Table 2. RNA-seq profiling gene expression between SKM01-WT and SKMO01-
mCBM, SKMO1-induced myogenic precursor cells from wild type or CBM mutant iPSCs.

Supplementary Video 1. Movement recording for the induced skeletal muscle cells from wild
type iPSCs (iSkm-WT). File A is AVI format for PC while file B is MOV format for Mac.

Supplementary Video 2. Movement recording for the induced skeletal muscle cells from A420P
mutant iPSCs (iSkm-A420P). File A is AVI format for PC while file B is MOV format for Mac.



Suppl. Fig. 1
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Suppl. Fig. 1 continued D-G
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Suppl. Fig. 1 continued H-K
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Suppl. Fig. 2
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Suppl. Fig. 3
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Suppl. Fig. 4
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Suppl. Fig. 4 continued
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Suppl. Fig. 5
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Suppl. Fig. 5 continued C
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Suppl. Fig. 5 continued D

O

DAPI ACTIN overlap

iPSCs-WT C2C12-5d Diff.

iPSCs-mCBM




Suppl. Fig. 6
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Suppl. Fig.7

A: Pluripotency in iPSCs  B:Wnt signalingin iPSC  C: Wnt signaling in SKMO01
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Suppl. Fig. 7 continued

D: TGF-B Signaling in iPSC E: TGF-B Signaling in SKMO01
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Suppl. Fig. 8
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Suppl Fig. 8 continued
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Suppl. Fig. 9
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