Additional file 1: Supplementary Tables S1-S5 and Figures S1-S6.

Supplementary Tables

Table S1: Number of HM450 TCGA samples used Table S2: WGBS sequencing data Table S3: DMRs from WGBS data Table S4: ChIP-seq sequencing data Table S5: List of oligonucleotides used in this study

Supplementary Figures

Figure S1: TF motif enrichment in CpG-poor DMRs. Figure S2: TF motif enrichment in CpG-rich DMRs. Figure S3: Distribution of DNA methylation in the WGBS samples. Figure S4: FOXA1 and GATA3 binding in HCC1954 breast cancer cells. Figure S5: Characterization of knock-out cells.

Table S1: Number of HM450 TCGA samples used

Cancer type	Healthy samples	Cancer samples
BLCA	19	400
BRCA	80	729
CHOL	9	36
COAD	27	246
HNSC	47	483
KIRC	115	252
KIRP	44	269
LIHC	46	357
LUAD	22	437
LUSC	39	361
PRAD	44	448
THCA	52	477
UCEC	32	416

Table S2: WGBS sequencing data

Sample	Number raw reads	Percent mapped reads	Percent duplicates	Number reads kept	Percent CpG methylation	Mean CpG
WGBS HME1 1	384.099.764	83.6%	8.5%	293.133.461	63.8%	16
WGBS HCC1954 1	382,607,416	82.0%	25.0%	235,014,068	63.5%	12
WGBS_HCC1954-FOXA1WT_1	445,782,573	81.5%	31.0%	250,622,961	61.5%	12
WGBS_HCC1954-FOXA1KO_1	419,521,228	79.0%	31.0%	228,549,121	64.0%	11
WGBS_HCC1954-FOXA1KO_2	414,620,779	77.5%	31.6%	219,883,848	64.2%	10
WGBS_HCC1954-GATA3WT_1	431,439,156	77.6%	35.5%	215,281,513	61.1%	10
WGBS_HCC1954-GATA3KO_1	447,986,618	77.2%	32.5%	233,841,837	64.0%	11
WGBS_HCC1954-GATA3KO_2	483,415,210	77.2%	32.2%	252,737,791	65.4%	12

Table S3: DMRs from WGBS data

Sample 1	Sample 2	Number hypo- methylated DMRs	Number hyper- methylated DMRs
WGBS_HCC1954_1	WGBS_HME1_1	145,826	121,090
WGBS_HCC1954-FOXA1KO_1 WGBS_HCC1954-FOXA1KO_2	WGBS_HCC1954_1 WGBS_HCC1954-FOXA1WT_1	2578	5969
WGBS_HCC1954-GATA3KO_1 WGBS_HCC1954-GATA3KO_2	WGBS_HCC1954_1 WGBS_HCC1954-GATA3WT_1	1449	14529

Table S4: ChIP-seq sequencing data

Sample	Number raw reads	Number mapped reads	Percent reads kept	Number peaks	Number merged peaks
FOXA1_HCC1954_1	53,636,539	46,336,051	86.4%	13,753	16 222
FOXA1_HCC1954_2	57,623,146	49,609,912	86.1%	14,257	10,323
GATA3_HCC1954_1	55,988,365	48,262,991	86.2%	2,095	2.040
GATA3_HCC1954_2	57,303,298	49,282,203	86.0%	3,751	5,949
input_HCC1954_1	55,828,314	32,817,068	58.8%	-	-

Gene/chromosome	Sense	Sequence	Use
FOXA1	Forward	AGGGCTGGATGGTTGTATTG	qPCR
FOXA1	Reverse	GTGTCTGCGTAGTAGCTGTTC	qPCR
GATA3	Forward	CCAGACCAGAAACCGAAAAA	qPCR
GATA3	Reverse	CCAGACCAGAAACCGAAAAA	qPCR
RPL13A	Forward	CCGAGAAGAACGTGGAGAAG	qPCR (housekeeping gene)
RPL13A	Reverse	GGCAACGCATGAGGAATTA	qPCR (housekeeping gene)
FOXA1	Forward	CACCGGTAGTAGCTGTTCCAGTCGC	CRISPR/Cas9 (sgRNA)
FOXA1	Reverse	AAACGCGACTGGAACAGCTACTACC	CRISPR/Cas9 (sgRNA)
GATA3	Forward	CACCGGGACTTGCATCCGAAGCCGG	CRISPR/Cas9 (sgRNA)
GATA3	Reverse	AAACCCGGCTTCGGATGCAAGTCCC	CRISPR/Cas9 (sgRNA)
GATA3	Forward	TAAGCAGAATTCATGGAGGTGACGGCGGACCAGCCG	Cloning
GATA3	Reverse	TGCTTAGAATTCCTAACCCATGGCGGTGACCATGCTGG	Cloning
chr4	Forward	AGGAATCTCGCGAGTGTTGA	ChIP-qPCR (RC1)
chr4	Reverse	GAGAGACTGAGGCTGGGAAA	ChIP-qPCR (RC1)
chr1	Forward	ATCTGGTCCACAATGTCGGT	ChIP-qPCR (RC2)
chr1	Reverse	TCCCCAAAGAAGCAGAACCT	ChIP-qPCR (RC2)
chr1	Forward	TTGACAAGCCTGCCACTTAC	ChIP-qPCR (ROI1)
chr1	Reverse	CATTGAATGGGCTCTCGGTG	ChIP-qPCR (ROI1)
chr8	Forward	CAGCCTTTCCTGGATTCTGC	ChIP-qPCR (ROI2)
chr8	Reverse	CTAGGAGCAGCTCGAGAAGG	ChIP-qPCR (ROI2)
chr10	Forward	GGAAAGAGGCTGCCAATGAG	ChIP-qPCR (NC1)
chr10	Reverse	TTTGGGATCATTGGTCTGCC	ChIP-qPCR (NC1)
chr9	Forward	GACCATGTCCAGGCAAAAGT	ChIP-qPCR (NC2)
chr9	Reverse	AGGCTCCTACAGACGTGGAA	CHIP-qPCR (NC2)

Table S5: List of oligonucleotides used in this study

Down

ASCL2

Figure S1: TF motif enrichment in CpG-poor DMRs. Pan cancer motif enrichment for all cancer types for all categories of CpG-poor DMRs. Each heatmap shows for one cancer type the best enriched motifs compared to control regions using a p-value threshold of 10-3 and selecting one motif per TF using the p-value sum across all categories. TF expression heatmap is shown for corresponding TF expression using either positive (up) or negative (down) mean FPKM difference between cancer and healthy samples. Motif cluster and CpG content are shown. Motifs in highlighted in bold with black squares have matching motif expression and TF up- or down-regulation.

Figure S2: TF motif enrichment in CpG-rich DMRs. Pan cancer motif enrichment for all cancer types for all categories of CpG-rich DMRs. Each heatmap shows for one cancer type the best enriched motifs in hypo- compared to hyper- methylated regions using a p-value threshold of 10-3 and selecting one motif per TF using the p-value sum across all categories. TF expression heatmap is shown for corresponding TF expression using either positive (up) or negative (down) mean FPKM difference between cancer and healthy samples. Only motifs that have matching motif expression and TF up- or down-regulation are shown. Motif cluster and CpG content are shown.

Figure S3: Distribution of DNA methylation in the WGBS samples. a,b,c. Histograms of the methylation level of all CpGs for each sample.

Figure S4

Figure S4: FOXA1 and GATA3 binding in HCC1954 breast cancer cells. a. Correlation of ChIP-seq signal and Pearson Correlation Coefficient (PCC) of FOXA1 or GATA3 replicates at FOXA1 and GATA3 peaks respectively (FOXA1 n=16,323; GATA3 n=3,949). **b.** Correlation of ChIP-seq signal and Pearson Correlation Coefficient (PCC) of FOXA1 and GATA3 samples at merged FOXA1 and GATA3 peak regions (n=18,270). **c.** CpG and G+C content of FOXA1 and GATA3 peaks. Two categories, CpG-poor and CpG-rich, were defined according to a threshold following y=-1.4(x-0.38)+0.51 (FOXA1 n=16,323; GATA3 n=3,949). **d.** Distance of FOXA1 and GATA3 peaks to their closest gene TSS. Two categories, proximal and distal, were defined according to a 2 kilobase (Kb) threshold (FOXA1 n=16,323; GATA3 n=3,949). **e.** Scatterplots of mean DNA methylation in HCC1954 and hTERT-HME1 cells in 200 bp windows around FOXA1 or GATA3 HCC1954 peak summits that contain at least 2 CpGs and overlapping a matching FOXA1 or GATA3 motif (FOXA1 n=4,709; GATA3 n=1,671) or in all 200 bp consecutive windows along the hg38 genome containing at least 2 CpGs (n=5,867,466). Density of points increases from blue to dark red.

Figure S5: Characterization of knockout cells. a,b. Sequencing chromatographs of mutant and wildtype alleles for FOXA1 in **a.** and GATA3 in **b.** around the sequence targeted by the guide RNA (in grey). Pink highlighting delineates the area of CRISPR-induced insertion/deletion. **c.** DNA methylation levels in WT HCC1954 and HCC1954 FOXA1 KO control cells (mean across samples) in 200 bp windows around FOXA1 peak summits that contain at least 2 CpGs and overlapping a matching FOXA1 motif (n=4473). **d.** DNA methylation levels in two replicates of HCC1954 FOXA1 KO cells as in **c. e.** DNA methylation levels in WT HCC1954 GATA3 KO control cells as in c. and overlapping a matching GATA3 motif (n=1,598). **f.** DNA methylation levels in two replicates of HCC1954 GATA3 KO cells as in **d.**