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Supporting Information Text

Higher order corrections to energy and Berry curvature

Second-order corrections to the semiclassical equations of motion in the presence of the magnetic field were derived within
the wave-packet approach in (1, 2). These corrections modify the Berry curvature and the wave-packet energy, but do not
otherwise change the form of the equations of motion (Eqs. 3-4). We present here formulas derived in Ref. (2) and evaluate
them for the Hamiltonian of a Weyl quasiparticle with chirality s,

H(p) = svσ · p. [S1]

Let us denote the eigenstates |un〉 and eigenvalues εn, with n indicating the band. We label the upper band as 0 and
the lower band as −1. We define the interband Berry connection as Anm = −i〈un|∂p|um〉, and the velocity matrix as
Vnm = 〈un|∂pH(p)|um〉. We further define

Gnl = −1
2B · (Σm 6=lVnm ×Aml + Vll ×Anl) , [S2]

which is then used in the computation of the correction to the intraband Berry connection

a′0 = e~
∑
n 6=0

[
G0nAn0

ε0 − εn

]
+ e~1

4∂pi
[
(B×A0n)i An0

]
+ c.c. [S3]

Because in our model V−1−1 = −V00, G0−1 = G−10 = 0 and, consequently, the only contribution comes from the second term
on the RHS of Eq. S3. The resulting correction to the Berry curvature reads

Ω′ = ∂p × a′0 = − e~B
4|p|4 + e~(B · p)p

2|p|6 . [S4]

This is taken into account in Eq. 10.
Second-order corrections to energy are composed of several terms [see Eq. 4 in (2)]. Nonetheless, not all of them contribute

to the final result. Firstly, there are two geometrical terms: one of them depends on the Berry curvature and the magnetic
moment

ε(1) = e~
4 (B ·Ω)(B ·m) = e2~2v(B · p)2

16|p|5 , [S5]

while the other one depends on the quantum metric gij = Re〈∂piu0|∂pju0〉 −A00,iA00,j and the inverse effective mass tensor
αkl = ∂pk∂plε0

ε(2) = −e
2~2

8 εsikεtjlBsBtgijαkl = −e
2~2v(B · p)2

16|p|5 , [S6]

and thus ε(1) + ε(2) = 0. All other second-order corrections to the energy derived in Ref. (2) vanish identically for the
Hamiltonian in Eq. S1, except for

ε(3) = −e~B · (a′0 ×V00) = e2~2v
|B|2|p|2 − (B · p)2

8|p|5 . [S7]

The total energy including the second order corrections is presented in Eq. 9. We note that these corrections were also studied
in (3).

Eigenfunctions of the collision operator

The inner product of Eq. 19 can be rewritten in the spherical coordinates (p, θ, φ) in the momentum space as

〈η|ζ〉 =
∫

d3p

(2π~)3D(p)δ [εM(p)− εF] η(p)∗ζ(p) =
∫

d(cos θ)dφ
(2π~)3 D(p̂)pF(p̂)2

vM(p̂) η(p̂)∗ζ(p̂), [S8]

where vM(p̂) = vM(p̂) · p̂. Hereafter, we suppress the (s) labels on all quantities. We furthermore define

V(p̂) = D(p̂)pF(p̂)2

vM(p̂) . [S9]

In the absence of spherical symmetry, we can find physically sensible expressions for the eigenfunctions of the single-species
collision operator Ĉ defined below Eq. 18 by exploiting its algebraic properties and a few facts:

(1) The eigenfunctions, which we denote Km
l , should be perturbations of spherical harmonics

Km
l = Y ml +O(α). [S10]

2 of 8 Paweł Matus, Renato M. A. Dantas, Roderich Moessner and Piotr Surówka



(2) The eigenfunctions are orthogonal with respect to the new inner product, which follows from the hermiticity of Ĉ[η]∫
d2p̂

(2π~)3V(p̂)Km′

l′ (p̂)∗Km
l (p̂) = δl,l′δm,m′ . [S11]

(3) Let us expand the distribution function as η =
∑

l,m
Xm
l K

m
l (p̂), where Xm

l = Xm
l (x, t). The rate of particle number

change is

d〈n〉
dt

=
∫

d3p

(2π~)3D(p̂)df
dt

= −
∫

d3p

(2π~)3D(p̂)δ [εM(p)− εF] Ĉ[η]

=
∑
l,m

∫
d2p̂

(2π~)3V(p̂)Γl,mXm
l (x)Km

l (p̂).
[S12]

For processes that conserve the particle number, there must be an eigenvector of Ĉ associated with the eigenvalue 0 and
corresponding to the particle number. Because we are considering a perturbation to the no-field problem, in which the
corresponding eigenfunction was Y 0

0 , now the corresponding eigenfunction has to be K0
0 and the eigenvalue associated to it is

Γ0,0 = 0. Therefore, the RHS of the above equation is zero when∫
d2p̂

(2π~)3V(p̂)Km
l (p̂) = 0, ∀l ≥ 1 [S13]

which, when taking Eq. S11 into account, implies that K0
0 (p̂) ∝ 1 ∝ Y 0

0 (p̂).
(4) The rate of momentum change is

d〈p〉
dt

=
∫

d3p

(2π~)3D(p̂)pdf
dt
∝ −

∫
d3p

(2π~)3D(p̂)δ [εM(p)− εF] pYM1 (p̂)Ĉ[η]

= εF

v

∑
l,m

∫
d2p̂

(2π~)3V(p̂)
{
vpF(p̂)
εF

YM1 (p̂)
}
× Γl,mXm

l K
m
l (p̂),

[S14]

where M = −1, 0,+1 for the different momentum components. A reasoning similar as in paragraph (3) dictates that for
processes that conserve momentum and the particle number Γ1,M = 0 and∫

d3p

(2π~)3

{
vpF(p̂)
εF

YM1 (p̂)
}
V(p̂)Km

l (p̂) = 0, ∀l ≥ 2 [S15]

which, when taking Eq. S11 into account, implies that

vpF(p̂)
εF

YM1 (p̂) =
∑

λMM′K
M′
1 (p̂) + µMK0

0 (p̂) ∝
∑

λMM′K
M′
1 (p̂) + νMY 0

0 (p̂), [S16]

where λMM′ , µM , νM are some coefficients. It follows that KM
1 is a linear combination of pF(p̂)YM

′
1 (p̂) and Y 0

0 , with coefficients
chosen such that the orthogonality relation is satisfied. (The matrix λMM′ is of the form 1−O(α), 1 being the identity matrix,
and therefore it is invertible.)

We take all modes with L ≥ 2 to be eigenfunctions to the same eigenvalue. Hence, all modes with L ≥ 2 constitute one
eigenspace orthogonal to the eigenvectors with L = 0, 1. We can choose the basis of this eigenspace arbitrarily, as long as it
satisfies the orthogonality condition (Eq. S11).

Let us orthonormalise the ordered set of basis vectors
(
Y 0

0 (p̂), vpF(p̂)
εF

Y 0
1 (p̂), vpF(p̂)

εF
Y 1

1 (p̂), vpF(p̂)
εF

Y −1
1 (p̂)

)
with regard to

the inner product in Eq. S8 using the Gram-Schmidt process. This gives the vectors K0
0 (p̂), K0

1 (p̂), K1
1 (p̂), K−1

1 (p̂). The
Gram-Schmidt process guarantees that K0

0 ∝ Y 0
0 , which satisfies condition (3), and that KM

1 are combinations of pF(p̂)YM
′

1
and Y 0

0 , which satisfies condition (4). The formulas for KM
1 depend on the order in which the basis vectors are orthonormalized,

but the space spanned by them does not (as it is defined as the 3D subspace orthogonal to Y 0
0 in the space spanned by

{Y 0
0 ,

vpF(p̂)
εF

Y 0
1 ,

vpF(p̂)
εF

Y 1
1 ,

vpF(p̂)
εF

Y −1
1 }). Consequently, we can unambiguously define the projection operators

P0 = |K0
0 〉〈K0

0 |, [S17]

P1 =
∑

M=−1,0,1

|KM
1 〉〈KM

1 |, [S18]

Phigher = 1− P0 − P1. [S19]
The eigenfunctions can be expanded to the appropriate order, e.g. up to α2. Using the definition of the inner product in Eq.
S8, it is possible to evaluate the action of the projection operators on any distribution function. In the main text we consider
two coupled particle species that exchange particles, so that the (s) labels appear and the projections operators are defined as
in Eq. 23.
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Table S1. Coefficients BML with low L and C±1
1 obtained from the perturbative solution of the Boltzmann equation

Regime Nonzero BML coefficients up to L = 2 C±1
1 coefficients

Low-frequency normal

B0
0 = −evE

√
π
[

1
Γinter

− 4
3Γmr

]
B0

2 = evE
√

π
5

2
3Γmr

B±2
2 = −evE

√
2π
15

1
Γmr

C±1
1 = ∓evE

√
2π
3

1
Γmr

Anomaly-induced nonlocal

B0
0 = −evE

√
π 6Γmr
q2v2

B0
1 = −ievE

√
3π 2

qv

B0
2 =
√

π
5 evE

[
4

Γtot
+ 2

3Γmr

]
B±2

2 = −evE
√

2π
15

1
Γmr

C±1
1 = ∓evE

√
2π
3

2(3Γmr+Γtot)2

15Γ2
mrΓtot

Hydrodynamic

B0
0 = evE 11.3Γtot

q2v2

B0
2 = evE 2.4Γtot

q2v2

B±2
2 = −evE

√
π 2.9Γtot
q2v2

C±1
1 = ∓evE 10.2Γtot

q2v2

Ballistic B0
0 = −evE 0.2

qv
C±1

1 = ±evE 3.0
qv

High-frequency normal

B0
0 = ievE

√
π 2

3ω
B0

2 = −ievE
√

π
5

2
3ω

B±2
2 = ievE

√
2π
15

1
ω

C±1
1 = ±ievE

√
2π
3

1
ω

Only the leading-order contributions in the respective regimes are shown. The numerical coefficients in the hydrodynamic and ballistic regimes are
rounded up to the first decimal place.
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Perturbative solution of the Boltzmann equation

Before presenting the full perturbative solution, let us first explain a subtlety in the evaluation of the collision integral. The
operator P (s)

0 in Eq. 23 acts on both distribution functions |η(±s)〉, therefore coupling the systems of equations for (s) and
(−s), which would suggest that the number of equations that need to be solved has doubled. However, we can use the following
observation: the factor of s in the equations of motion always appears in the combination s α (see the formulas 3-4 and 16-17).
Therefore, in the expansions of 〈K0,(s)

0 |η(s)〉 and 〈K0,(−s)
0 |η(−s)〉 in α, the even-order terms have to be equal, and the odd-order

terms have to be opposite. This in turn means that, as we are interested in the expansion up to the second order in α,

P
(s)
0 [η(s), η(−s)] = 2|K0,(s)

0 〉
{
〈K0,(s)

0 |η(s)〉
}
α

[S20]

where {. . .}α denotes evaluating only the linear order in α. This way the doubling of the number of equations that need to be
solved is avoided.

The solution at the 0-th order in α was presented in the main text, except for one subtlety. The actual form of Eq. 37 reads

iωAML − iqv
√

(2L− 1)
(2L+ 1)C

L0
10,(L−1)0C

LM
10,(L−1)MA

M
L−1 − iqv

√
(2L+ 3)
(2L+ 1)C

L0
10,(L+1)0C

LM
10,(L+1)MA

M
L+1 = −ΓtotA

M
L . [S21]

The Clebsch-Gordan coefficients can be expressed explicitly to obtain√
(2L− 1)
(2L+ 1)C

L0
10,(L−1)0C

LM
10,(L−1)M =

√
L2 −M2

4L2 − 1 , [S22]

√
(2L+ 3)
(2L+ 1)C

L0
10,(L+1)0C

LM
10,(L+1)M =

√
(L+ 1)2 −M2

4(L+ 1)2 − 1 , [S23]

so that for L� M the coefficients above all tend to a constant value 1/2. In fact, already when taking L = 2, M = 1, the
exact values

√
3/15 ≈ 0.45 and

√
8/35 ≈ 0.48 are very close to 1/2, so approximating these coefficients as 1/2 in Eq. 37 does

not produce a noticeable error.
Let us turn our attention to the system of equations at the 1st order in α. The exact forms of the equations at this order

are too lengthy to present. Let us however make a few remarks. At linear order in α, the electric field enters the equations for
L = 0, M = 0 and L = 2, M = −2, 0, 2. The equation for L = 0, M = 0 contains a term proportional to Γinter in agreement
with Eq. S20. The equations for L ≥ 3 asymptotically tend to the recurrence relation which at this level reads

(iω + Γtot)BML − iqv
1
2
[
BML−1 +BML+1

]
+ 1

4r
L−2(1− r2)

(
AM−1

1 −AM+1
1

)
= 0 [S24]

and its general solution is
BML = BM2 rL−2 +XM (L− 2)rL−3, [S25]

where
XM = −1

4(r + r3)
(
AM−1

1 −AM+1
1

)
. [S26]

These formulas are then plugged into the equations for L = 0, 1, 2, and the system of equations is solved. Because the exact
solution is too complicated, in Table S1 we present only the formulas obtained in the limiting cases corresponding to the
different transport regimes, showing the leading-order terms and neglecting the coefficients that evaluate to zero.

The solutions at the 0-th and 1-st orders are then used to find the solutions at the 2nd order in α. Here the electric field
enters equations for L = 1, M = ±1 and L = 3, M = ±1,±3. Again, the exact forms of these equations are too lengthy to
present. The asymptotic form of the equations for L ≥ 4 can be written as the recurrence relation

8r4 [(1 + r2)CML − rCML−1 − rCML+1
]

+ rL
[
−13 + 10r2 − 5r4 + 2L− 2Lr4] (XM−1 −XM+1)

+ 2rL+1(1− r4)
(
BM−1

2 −BM+1
2

)
+ 4rL+3(1 + r2)AM1 = 0.

[S27]

The general solution is
CML = CM3 rL−3 + YM (L− 3)rL−4 + ZM (L− 3)2rL−4, [S28]

where

YM =
(3− 6r2 + 5r4)

(
XM−1 −XM+1)

4(1− r2) −
r(1− r4)

(
BM−1

2 −BM+1
2

)
+ 2r3(1 + r2)AM1

4(1− r2) [S29]

and
ZM = −1

8(1 + r2)
(
XM−1 −XM+1) . [S30]

These formulas are then plugged into the equations for L = 0, 1, 2, 3, and the system of equations is solved. Because at this
level of approximation only the C±1

1 components contribute to the final expression for the current, in Table S1 we present only
the formulas for C±1

1 in the different transport regimes.
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B

boundary layer

Fig. S1. The effect of the Lorentz force on transport in the hydrodynamic regime. The loss of momentum takes place due to the particle performing a random walk across the
boundary layer. The full path traversed by a particle in the presence of magnetic field (solid line) is longer than in its absence (dashed line).
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The classical Lorentz force and the magnetization current

In the main text we neglected the the classical Lorentz force, which shows up as the last term on the RHS of Eq. 26 and
contributes ev [p̂×B] · ∂pη

(s) to the linearized Boltzmann equation at the classical level. Taking B = Bx̂, this term evaluates
to:

evB
(
p̂z∂py − p̂y∂pz

)
η(s). [S31]

This term does not change the conductivity in either the normal regimes or in the AIN regime when E is parallel to B. The
reason is that in all of these regimes, the distribution function at the classical level is proportional to E p̂x, and evaluating Eq.
S31 gives 0.

The situation is different, however, in the hydrodynamic and anomalous regimes. Let us start with the anomalous regime,
where we can calculate the change of conductivity perturbatively in B. The linearized Boltzmann equation at the classical level
is (neglecting the label (s)): (

iω + 1
Γ

)
η − iqvp̂zη + evEp̂x + evB

(
p̂z∂py − p̂y∂pz

)
η = 0. [S32]

Here Γ is some relaxation time; it does not matter which one, as all relaxation times, as well as ω, are much smaller than qv.
The leading order solution in the anomalous regime is

η0 = −i evEp̂x
qv (p̂z + iδ) [S33]

with δ infinitesimal. Solving perturbatively in B at the next two orders produces

η1 = −e
2vEB

q2εF

p̂xp̂y
p̂3
z + iδ

, [S34]

η2 = i
e3v2EB2

q3ε2
F

(
p̂x

p̂3
z + iδ

+
3p̂xp̂2

y

p̂5
z + iδ

)
. [S35]

Calculating the current and multiplying by 2 due to the two nodes (s) and (−s) gives

J = 2e
∫

d3p

(2π~)3 vp̂∂εMf0η =
(

1 + e2v2B2

4q2ε2
F

)
3π
2
εω2

P
qv

E. [S36]

So, magnetic field causes positive magnetoconductivity. Using the parameters for WP2 (4, 5) and taking qv = 5Γtot, we obtain
e2v2/q2ε2

F ≈ 10−3 T−2, while for comparison the magnitude of quantum effects is α2/|B|2 ≈ e2~2v4/ε4
F ≈ 10−8 T−2.

In the hydrodynamic regime, we estimate the classical magnetoconductivity by resorting to the following picture. The
relaxation of momentum happens, when particles traverse the skin layer while performing a random walk with the step size lmc.
The presence of the magnetic field curves the path and makes the total path traversed between the two boundaries of the skin
layer longer: see Fig. S1. For a particle whose x component of the momentum reads εFp̂x/v, the radius of the cyclotron orbit is
rc = εF

evB
√

1−p̂2
x

. The length of the arc traversed by a particle between two collisions is roughly equal to lmc

(
1 + l2mc

8r2c

)
. Because

conductivity is proportional to the relaxation time, we can hypothesise that the effective Γtot changes to K(p̂)Γtot where

K(p̂) =
(

1 + e2v4B2(1− p̂2
x)

Γ2
totε

2
F

)
. [S37]

Then, the total current is of the order

J ≈
∫

d3p

(2π~)3 p̂∂εMf0
e2v2EΓtotp̂x

q2v2 K(p̂) ≈
(

1 + e2v4B2

Γ2
totε

2
F

)
Γtot

q2v2 εω
2
PE. [S38]

So in this regime the classical magnetoconductivity is also positive. Using the parameters for WP2 (4, 5), we obtain
e2v4/Γ2

totε
2
F ≈ 10−2 T−2, while for comparison the magnitude of quantum effects is α2/|B|2 ≈ e2~2v4/ε4

F ≈ 10−8 T−2.
Let us now show that the magnetization current (Eq. 29) is zero. It can be written as

Jmagn = ∇×M, [S39]

where
M =

∑
s=±1

∫
d3p

(2π)3D(p)(s) se~v
2|p| p̂f

(s)(q,p) [S40]

is the total magnetization. Because the distribution functions only change along z, we have

Jmagn = −iq (ŷMx − x̂My) . [S41]
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Due to the symmetry of the problem, My = 0. However, also the total magnetization in the x̂ direction is identically null,
which can be inferred as follows. The expression S40 can be expanded in α in the same way as the current in Eq. 31:

Mx = − eεF

v(2π~)3 ×
∑
s=±1

s

∫
d(cos θ)dφ [1 + sαp̂x] p̂xη(s)(q, p̂). [S42]

The sum over s selects contributions on the order α. There are two such contributions. One comes from evaluating the integral
of αp̂2

x

{
η(s)}

α=0
, where

{
η(s)}

α=0
is the distribution function at the classical order, and the result of the integration is a

combination of A0
0, A0

2 and A±2
2 (which correspond to modes even in p̂x). However, these coefficients are zero as seen in Eq.

39. The second contribution comes from evaluating the integral of p̂x
{
η(s)}

α
, where

{
η(s)}

α
is the distribution function at

the linear order in α, and the result of the integration is a combination of B±1
1 (which correspond to modes odd in p̂x). These

coefficients, however, are also zero, as seen in Table S1. Therefore, the total Mx summed over the two valleys is zero, and thus
Jmagn = 0.
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