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Fig. S1. 

Flow diagram showing dilution rates and antibiotic concentration increments during 

experimental evolution treatments. To ensure that experimental cultures were not over-

diluted (leading to extinction) or under-diluted (slowing the chronological rate of adaptation), 

the rates of dilution and concentrations of antibiotics were modified during the course of the 

experiment. While all non-HGT treatments evolved in clarithromycin or clarithromycin + 

metronidazole conditions went extinct, two of the non-HGT treatments propagated in 

metronidazole survived and evolved resistance to metronidazole. The generations where 

dilution rates or antibiotic concentrations were varied are indicated on the right. The 

generations where donor genomic DNA (gDNA) was added are also shown. The dilution 

rates are indicated by ratios. For example, 1:16, 48 hours indicates a 16-fold dilution once 

every 48 hours. * indicates each donor strain. 



 
 

Fig. S2. Generating donor-recipient hybrid reference genomes and calling variants for 

each evolved HGT treatment population. Path 1 shows how a core genome reference was 



constructed by incorporating all possible variants from the donor genomes that can map onto 

the H. pylori P12 genome. This is referred to as the “core genome reference” since this 

reference contains genes shared by the recipient and donor strains. Path 2 includes regions of 

the donor genomes that are highly diverged from the H. pylori P12 genome, including 

accessory genes that do not have orthologues in the H. pylori P12 genome. Every sequenced 

HGT genome has its own Extended HGT reference. To call variants that have evolved in that 

particular population, reads from evolved population were aligned to its extended HGT 

reference and the H. pylori P12 reference. Each read should map to one reference genome but 

not the other. The frequency of the HGT variant were determined by comparing coverage at 

the wt. equivalent site on the reference genome. For example, if an HGT originated variant at 

site A on the HGT genome has 300-fold coverage, and the wt. equivalent variant at site x also 

has 300-fold coverage, the HGT allele frequency is 0.5, or 50%.  



Fig. S3. The divergence of evolved populations from H. pylori P12. 

Top row: Nucleotide p-distance between each replicate population and the H. pylori P12 

recipient. We include only core-genome differences attributed to horizontally transferred 

variants at or above 1% frequency (a), 50% frequency (b), and 80% frequency (c). Donor p-

distances to the ancestor are also indicated for comparison (grey circles). Note that the core 

genome is comprised of open reading frames (ORFs) that are shared by the two donor strains 

and H. pylori P12. ORFs are considered as “shared” if they have a 90% BLASTP identity or 

above. Middle row: Group pairwise (number of pairs given six replicates per treatment = 15) 

nucleotide p-distance (per-base difference) due to horizontally transferred variants at or 

above 1% frequency (d), 50% frequency (e), and 80% frequency (f) in the core genome. 

Bottom row: Group pairwise number of pairs given six replicates per treatment = 15) 

unshared accessory gene content (Euclidean distance, where each accessory gene is either 



present or absent) due to horizontally transferred variants at or above 1% frequency (g), 50% 

frequency (h), and 80% frequency (i). Accessory genes are those which are not shared 

between all donors, all evolved populations, and the ancestor according to 90% BLASTP 

cutoff. 

Fig. S4. The distribution of HGT events across the H. pylori genome populations 

evolving with HGT from CH426. Each panel shows the frequency of genetic variants along 

the length of the H. pylori 12 genome. Populations evolving with HGT from the CH426 

donor, in growth media with clarithromycin and metronidazole (a), clarithromycin (b), 



metronidazole (c) or in growth media without antibiotic (d). Each panel shows sequencing 

data from 6 replicate populations, including data points from each individual population (grey 

dots) and the average frequency of each variant for HGT (green bars) and de novo (red bars) 

genetic variants.  Red stars indicate 23S mutations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S5 Flow diagram showing an overview of the sequencing-based fitness assay’s 

populations and experimental treatments.   

 



 

 

Fig. S6. Schematic of converting whole population sequencing at multiple time points 

into fitness data, and “blocks”. 



 

Fig. S7 Correlation of fitness measurements for the same sets of genetic variants 

measured in two growth conditions. Panel A shows fitness measurements (selection 

coefficient, s) for HGT treatment population E3 which evolved in growth media with 

clarithromycin and metronidazole. The fitness in clarithromycin and metronidazole is shown 

on the y axis, and the measurement in metronidazole are shown on the x-axis. Panel B shows 

fitness measurements (s) for HGT treatment population F1 which evolved in growth media 

with clarithromycin. The fitness in clarithromycin is shown on the y-axis, and the 



measurement in growth media without antibiotic are shown on the x-axis. R values calculated 

using Pearson’s correlation coefficient. 

 

 

 



Fig. S8 Gene blocks in evolved HGT treatment populations carry a wide range of 

selective effects. Gene blocks were determined using a custom script that identified linked 

groups of horizontally transferred variants (methods). The fitness effect of each block was 

taken as the average fitness of each variant within the block, and the average fitness effects of 

all blocks is shown by black horizontal lines. Plotting these blocks shows that strongly gene 

blocks with strongly deleterious fitness effects are interspersed by gene blocks with strongly 

beneficial fitness effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix. 

Validation of HGT variant calling pipeline. 

In this study, we describe a bioinformatics pipeline for calling SNP’s in population sequence 

data for populations of H. pylori that have evolved with Horizontal Gene Transfer.  In part I 

of this appendix, we describe computer simulations that were designed to compare the 

performance of our variant calling pipeline to a perfectly understood in silico population of 

H. pylori P12 that had received simulated (biologically plausible) horizontal gene transfer 

from the donor H. pylori CH426. Then, in part II, we describe the iterative process that we 

used to improve the capacity to call the frequency of HGT variants in the sequencing based 

fitness assay, and confirm that the extended HGT genome references (Fig. S2) were capturing 

a significant proportion of HGT variants in each experimental population. 

 

Part I: In-silico simulations of evolved H. pylori P12 populations with horizontal gene 

transfer from H. pylori CH426.  

 

Approach: We simulated populations of H. pylori P12 that had undergone horizontal gene 

transfer from the H. pylori CH426 donor. The aim was to have a continuous distribution of 

HGT variant frequencies, around 500-fold coverage and recombination breakpoints that 

mapped to homologous regions between the two genomes. We started with a pangenome 

analysis that described the gene content differences between the CH426 donor and P12 

recipient from Roary to determine the most likely sites of recombination. The aim was to 

avoid making genomes with recombination of identical fragments, but wanted enough 

homology that recombination was possible as well as including some accessory gene transfer. 

Methods: 1. Identify all core genes (genes shared by both recipient and donor genomes with 

a 95% identify cut-off) where the length of the donor gene was unequal to the length of the 



recipient’s version of the gene. This ensured that there was enough homology to simulate a 

reasonable site of HGT integrations, without having the HGT event result in the transfer of 

identical an DNA sequence.  

2. Group the two donor genes immediately upstream and downstream of this core gene to 

make a trio. These other genes can include identical genes, or accessory genes (genes found 

in the donor but not the recipient). 

3. For trios that overlap, collect into a single block. This produced around 180 blocks. In our 

real evolution experiment data, we found many more blocks (~500) of smaller size. The 

method used to ensure that each simulated block includes at least one equal core gene as well 

as genes of other classifications (identical, accessory) meant that the blocks were quite large 

and only so many were possible given the small size of the H. pylori genome. This could be a 

drawback, though sequence divergence of the in-silico genomes could still be high. 

4. Next, we randomly selected of these 150 blocks for integration into the H. pylori P12 

recipient genome. 

5. To do this, the recipient genes that had corresponding donor genes (shared core genes) 

included in these blocks, were replaced with the donor gene. The integration site was 

determined by the gene order in the recipient. 

6. To find integration sites for accessory donor genes, we located block members and 

replaced the accessory H. pylori P12 gene, if there is one, while retaining the gene order 

within the parent genome. For example, donor gene 5 is an accessory gene and therefore 

doesn’t have a corresponding recipient gene. To figure out where this gene should be inserted 

by homologous recombination (if it were taken up by HGT), we would find out where either 

donor gene 4 or 6 is in the recipient genome by looking for their orthologs. One of the 

constraints built into the definition of “blocks” is that at least one of the genes will not be an 

accessory gene and will be locatable in the recipient genome. An example of a common 



result would be to see donor gene 7, donor gene 6, recipient gene 117, donor gene 4, so 

simply replace recipient gene 117 with donor gene 5. Another possibility is that there is no H. 

pylori P12 accessory gene but there is an obvious insertion point. An example would be the 

insertion of accessory donor gene 1001 in a block that includes donor gene 999, donor gene 

1000, donor gene 1002 and donor gene 1003. Donor accessory genes that do not have an 

obvious “fit” within the genome are excluded. This incorporates the biologically realistic 

requirement for sequence homology for DNA integration via homologous recombination. 

This results in some refining of the block definitions and a final list of genes representing 

HGT events from the donor to the recipient genome. 

7. Next, we wanted to make a population representing different combinations of these blocks. 

The list of genes representing the HGT genome were divided into several parts, where blocks 

were redefined as the group of donor genes as well as all recipient genes upstream of them. 

The corresponding blocks were identified in the recipient genome as well, so that each block 

had both an HGT (mixed donor and recipient) and ancestral version (only recipient) version, 

giving two possible groups of genes for each of “n” blocks. These gene lists can be found in 

Table 1 of Dataset 3.  A custom script was written that would randomly select either the 

ancestral or HGT version of the gene for each block, with the probability favouring the 

selection of the ancestral block (70% to 30%) to get a low-intermediate amount of HGT. This 

was repeated five times to produce five lists of genes representing five genomes, excluding 

intergenic regions (Supplementary Dataset 3). Because HGT blocks are selected randomly, 

blocks are expected to overlap between genomes. An example of the full gene arrangements 

from a simulation run is provided in Dataset 3. 

8. The gene lists were converted into nucleotide sequences. The resultant FASTA sequences 

are supplied as Supplementary Dataset 4. 



9. Next, we generated reads with 100x depth for each of the five HGT genomes using 

randomreads from the BBMap suite of tools (default settings, with no additional mutations, 

default Illumnia sequencing error rate, 150 bp, average Phred quality ≥ 30). Each of the five 

simulated genomes therefore represented 20% of the population, but because the blocks 

overlap between genomes and are selected randomly, HGT block frequencies will be either 0, 

20, 40, 60, 80 or 100%. Since block selection was weighted toward ancestral blocks, most 

HGT blocks will be of a lower frequency. See Supplementary Dataset 3 for block overlaps 

between the genomes. 

10. Next we carried out a Mauve alignment between the ancestor (H. pylori P12 chromosome 

with no intergenic sequences) and each HGT genome to get the SNP and indel calls. These 

are given in Dataset 3, with the sheets marking each output. Note that Mauve reports indels 

as gaps with reference to each of the sequences. 

11. Then, we perform the HGT identification protocol for the generated reads, starting with 

alignment to the ancestral (H. pylori P12 chromosome with no intergenic sequences) 

sequence. 

12. Compare the variants identified using our pipeline to known frequency of variants 

generated in step 9. 

 

SNP discovery   

Total SNPs found in in silico population (observed) 12631 

Total # SNPs from combined genome (expected) 18651 

% SNPs  0.677 

False SNPs 400 

False SNPs at >= 1%  377 

% false SNPs  0.031 

False SNPs >= 1%  0.029 

SNP frequency paired t test (observed vs expected    

P value <0.0001 

P value summary **** 

Significantly different (P < 0.05)? Yes 



One- or two-tailed P value? Two-tailed 

t, df t=4.177, df=12230 

Number of pairs 12231 

Mean of differences (B - A) -0.00152 

SD of differences 0.0404 

SEM of differences 0.000365 

95% confidence interval -0.002242 to -0.00081 

R squared (partial eta squared) 0.00142 

Table S1. Performance of HGT SNP identification pipeline compared to known frequency of 

HGT SNPs in the in silico generated genomes with HGT from H. pylori CH426.  

 

Indel discovery  

Total indels found in in silico population (observed) 83 

Total # indels from combined genome (expected) 585 

% indels found  0.141 

False indels  36 

False indels at >= 1%  31 

% false indels  0.433 

False indels >= 1%  0.373 

Indel frequency paired t test (observed vs 
expected) 

 

P value 0.616 

P value summary ns 

Significantly different (P < 0.05)? No 

One- or two-tailed P value? Two-tailed 

t, df t=0.504, df=46 

Number of pairs 47 

Mean of differences (B - A) -0.0101 

SD of differences 0.138 

SEM of differences 0.02013 

95% confidence interval -0.0506 to 0.0303 

R squared (partial eta squared) 0.00549 

Table S2. Performance of HGT indel identification pipeline compared to known frequency of 

HGT indels in the in silico generated H. pylori P12 genomes with HGT from H. pylori 

CH426.  

 

Conclusions: We found 67% of SNPs were identified with the first iteration. Our false 

discovery rate and incorrect annotation rates for SNPs were both <0.05. While the observed 

frequency of SNPs was significantly less that the expected frequency, the magnitude of this 

difference was very small: we underestimated the frequency of SNPs by -0.001526. Our 



capacity to identify indels was quite poor relative to SNPs, although the frequency of 

identified indels was not significantly different from expectations, we underestimated indel 

frequency by -0.01015. Indel identification is known to be difficult with short read data and 

higher error rates are expected compared to SNPs.  

 

Part II: Iterative test of the extended HGT Reference Genome to refine estimates of 

HGT variant frequencies in population sequence data. 

Approach: Part of the process of accurately identifying HGT variants in the evolved 

populations is to build a hybrid reference genome comprised of the H. pylori P12 reference 

sequence and those parts of the donor genome that had been identified as having coverage in 

an evolved HGT treatment population (Fig. S2). The creation of this reference facilitated 

more accurate calls for individual HGT variant frequencies. This is because variants near 

donor-recipient junctions (integration sites for HGT events) are more likely to be 

underestimated since the reads that cover those regions are more likely to be hybrid reads 

containing regions that align with both the donor and recipient genomes. We noticed that the 

bam files following the final alignment of the evolved short reads to the 

ancestral+plasmid+maxHGT genome sequences (Fig. S2) revealed previous undetected HGT 

variants discovered around the HGT junction regions. We ruled out that these were evolved 

reads corresponding to the ancestral sequence that were aligning to the HGT events, by 

finding that these reads were matching perfectly at the HGT event positions. However, we 

found that the variants were occurring at sequences that had not been incorporated into the 

maxHGT genome, so they were actually indicative of further HGT that had not been 

discovered. To maximise the number of detected HGT variants and to accurately measure the 

frequency of variants, we used these newly discovered HGT variants to improve the extended 

HGT reference genome, and then repeated the alignment of the evolved reads. To determine 



how many iterations of this process we should carry out, we determined whether successive 

iterations facilitated new HGT variant discovery and whether doing so would lead to changes 

in estimation of block size and the estimation of fitness from sequence data taken at multiple 

time points.  

Methods 

1. First, we selected one of the populations that had been used in the sequencing based 

fitness assays—in this case, 426F4. 

2. We aligned the short reads for the appropriate donor (CH426) against the 

P12+plasmid+426F4maxHGT reference that had been generated (see path 2 in Fig. S2). 

This was also done for the ancestral reads as a control—the expectation is that reads from 

the ancestral P12 genome should only align to P12+plasmid, but not to the 

426F4maxHGT genome. 

3. The variants identified in these runs were compared to those identified when the 

population short reads had been run against this reference set (this had been completed 

previously as part of the workflow). Variants in common with the donor appearing on the 

maxHGT genome would indicate HGT events, while those that were in common with the 

ancestor would indicate artefacts from read mismapping. The HGT events identified at 

this stage were then applied to the maxHGT genome to update the 

P12+plasmid+maxHGT genome reference set. 

4. Short reads from 426F4, the donor (CH426) and the ancestor (P12, including its plasmid) 

were aligned using breseq against the new reference set. 

5. Steps 3 and 4 were repeated until the newly identified HGT variants were fewer than 10 

(6 rounds). 

6. The short reads for the 42F4 fitness assay timepoints (T0,T1,T3,T5) were aligned to the 

final reference set. 



7. The HGT events for all 426F4 sequences were quantified as in the end of the general 

HGT identification workflow (ie using Mauve to identify reciprocal nucleotide changes 

between the ancestor and maxHGT genome and find the read coverage based on the bam 

file from the breseq output). 

8. The selection coefficients for all HGT variants were calculated and blocks determined as 

previously described. The ancestral and de novo variants would not have changed across 

iterations (because the P12 sequence wasn’t altered), so the ancestral and de novo variants 

were kept the same.  

 

Figure S9. Number of HGT variants identified with each iteration. 
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Figure S10. Total number of evolved population reads that mapped to the HGT reference 

genome at each iteration. Note that the y-axis does not start at 0. 

 

Conclusions: We found diminishing returns with each iteration of improving the HGT 

reference genome (Fig. S9), with each round resulting in the discovery of fewer HGT events 

(Fig. S10). At each iteration, a control experiment was carried out by aligning reads from the 

H. pylori P12 ancestor. No variants identified by read mapping were shared between either 

the evolved population or donor, and the P12 ancestor. This supports that the iterations were 

discovering HGT variants, at each iteration and not haplotypes from the H. pylori P12 

reference genome. Moreover, we found that 76% of SNPs that could be discovered after 7 

iterations were discovered in the first iteration. Altogether, these data support that while the 

max HGT genome increased the number of discovered HGT variants, two iterations of this 

process were sufficient to discover ~ 90% of all possible HGT snps. In the original fitness 

assay analysis, we had included additional variants beyond those identified in the 

evolutionary endpoints found in the time-point populations when they were aligned against 

the corresponding P12+plasmid+maxHGT genome reference set with breseq as “misc”. 

These suspected HGT “misc” variants were included for downstream analysis of the 
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recombinative blocks based on selection coefficient. Therefore, most of the HGT events 

discovered via the iterative method overlapped with “misc” variants discovered later upon 

alignment of the populations representing fitness assay time-points to the corresponding 

reference, and simply led to these variants being reclassified, but as all variant types must be 

considered in the generation of the selection coefficient blocks, this reclassification had no 

impact on the distribution of fitness effects of the size distribution of blocks.  
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