

Supplementary Information for Multiple lines of evidence of early goose domestication in a 7,000-y-old rice cultivation village in the lower Yangtze River, China

Masaki Eda^{1*}, Yu Itahashi^{2,3}, Hiroki Kikuchi⁴, Guoping Sun⁵, Kai-hsuan Hsu⁶, Takashi Gakuhari⁷, Minoru Yoneda³, Leping Jiang⁵, Guomei Yang⁸, Shinichi Nakamura⁹

¹ Hokkaido University Museum, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan.

² Faculty of Humanities and Social Sciences, University of Tsukuba, Tennohdai1-1-1, Tsukuba, Ibaraki 305-8571, Japan.

³ The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan.

⁴ Department of Archaeology and Museology, Lanzhou University, 3 Jiayuguan West Road, Lanzhou, Gansu 730020, China.

⁵ Zhejiang Provincial Institute of Cultural Relics and Archaeology, No. 71, Jiaogong-lu, Xihu-qu, Hangzhou, Zhejiang 310012, China.

⁶ Graduate School of Humanities and Human Sciences, Hokkaido University, Kita 10, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan.

⁷ Center for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.

⁸ Xiao Shan Museum, No. 651, Beiganshan South-Iu, Xiaoshan-qu, Hangzhou, Zhejiang 311201, China.

⁹ Faculty of Letters, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.

*Corresponding author: Masaki Eda Email: edamsk@museum.hokudai.ac.jp

This PDF file includes:

Tables S1 to S5 Figures S1 to S4 Supplemental Information S1

Table S1. Histological observations of age-known goose bones.	
---	--

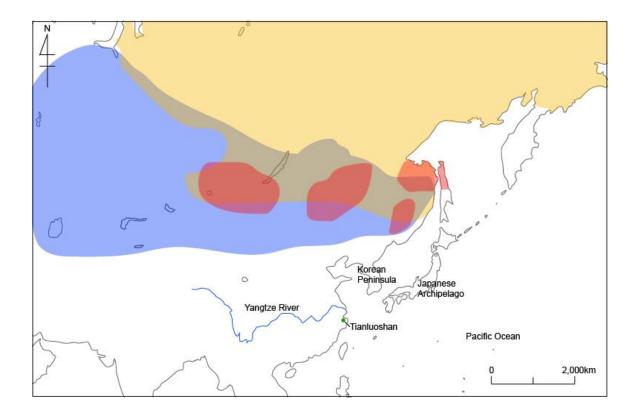
Species	Anser caerulescens	Anser anser	Anser anser	Anser anser	Anser anser
Age at death	2 days	4 weeks	4-8 weeks	c.16 weeks	16 weeks
Stored	UCZM	UCZM	BSCAP	UCZM	Southampton University
Specimen number	A759	A 84	10	A 79	968
Sex	unknown	Male	Unknown	Male	Unknown
Sternum	-	Porous	Porous	Mature, keel porous	Mature, keel porous
Coracoid	Porous	Porous	Porous	Mature	Mature
Scapula	Porous	Porous	Porous	Mature	Mature
Humerus	Porous	Porous	Porous	Mature	Mature
Radius	Porous	Porous	Porous	-	Mature
JIna	Porous	Porous	Porous	-	Mature
Carpometacarpus	Porous. Mc II and III not united	Porous. Mc II and III not united	Porous. Mc II and III not united	-	-
ynsacrum	Not united, neither ilium nor ischium unfused to pubis	Not united, ilium unfused to pubis. Ischium fused to pubis, fusion line visible	United, ilium and Ischium fused to pubis, only ilium and pubis fusion lines visible	Partly united, ilium and ischium fused to pubis, only ilium and pubis fusion lines visible	Partly united, ilium fused to pubis, fusion lines invisible
emur	Porous	Porous	Porous	Mature	Mature
libiotarsus	Unfused prox, unfused dist, porous.	Fused prox and dist, prox and dist fusion line visible, porous.	Fused prox and dist, prox fusion line visible, dist fusion line invisible, porous.	Fused prox and dist, mature.	Fused prox and dist, mature
Farsometatarsus	Unfused prox, porous	Unfused prox, fusion line of metatarsi visible, porous	Fused, prox fusion line visible, porous.	Fused prox fusion line visible, slightly porous	-
Prox phalanx	Unfused prox, porous	Unfused prox, porous	Unfused, porous	Fused prox, slightly porous	-

-: absent, UCZM: University of Copenhagen Zoological Museum, BSCAP: Bavarian State Collection for Anthropology and Palaeoanatomy

Sample No.	Grid	Layer	Age	C/N	$\delta^{13}C_{Co}$	$\delta^{15}N_{Co}$	$\delta^{18}O_p$	$\delta^{18}O_{\rm w}$	LDS	Lab. code #	¹⁴ C ag	e (BP)	cal BP (o)	No. in Fig. 2
517	T106	3		3.2	-22.0	5.9	9.6	-13.5						
587	T406	4		No	ot determine	ed	14.6	-7.8	0.021					
501	T206	4		3.3	-21.2	5.5	13.7	-8.9	-0.093					
586	T406	4		No	ot determine	ed	13.5	-9.1	0.021					
502	T206	4		3.2	-20.9	6.3	12.9	-9.8						
514	T305	4		No	ot determine	ed	12.7	-10.0						
527	T406	5		3.2	-14.1	12.4	15	-7.5						
513	T206	5		3.2	-18.6	9.8	14.6	-7.8						
526	T406	5		No	ot determine	ed	14	-8.5	0.020					
528	T406	5		No	ot determine	ed	13.8	-8.8	0.021					
511	T206	5		3.2	-21.7	6.5	10.3	-12.7	-0.009					
504	T106	6	4-16 weeks	3.2	-13.7	0.3	18.6	-3.4		TKA-19343	6085	± 40	7146-6890	2
542	T406	6		3.3	-21.1	9.2	16.3	-5.9	0.053	TKA-19341	6005	± 30	6887-6793	7
544	T406	6	4-16 weeks	3.3	-24.3	9.8	16.1	-6.2		TKA-19345	5900	± 35	6746-6797	1
509	T305	6		3.5	-20.7	11.2	15.4	-7.0	0.045					8
521	T406	6		3.8	-16.4	8.2	13.4	-9.2	0.052					
523	T406	6		3.2	-22.2	6	11.6	-11.3						
585	T406	6		4.5	-22.9	7.2	11.2	-11.7	0.086					
539	T303	7	4-8 weeks	3.3	-19.1	2.6	18.3	-3.8		TKA-19344	6025	± 30	6937-6797	4
582	T406	7		3.2	-15.3	11.7	14.2	-8.3	0.013					
551	T406	8		3.2	-21.0	7.3	15.9	-6.4	0.046					6
549	T406	8		3.3	-18.9	9.5	15.5	-6.9	0.044	TKA-19342	5885	± 35	6740-6668	5
577	T406	8		3.2	-21.8	7	13.3	-9.3	0.042					
550	T406	8		3.2	-20.3	6.6	13.1	-9.5	0.043					
575	T406	8			ot determine	ed	10.8	-12.2	0.056					
569	T406	8	4-16 weeks		N	lot analyzed								3

Table S2. List of goose bones analyzed from the Tianluoshan site, and their characteristics.

Sample Name	Species	Layer	Grid	C/N	$\delta^{13}C_{Co}$	$\delta^{15} N_{Co}$	$\delta^{18}O_p$	$\delta^{18}O_w$
Buffalo_1	Bubalus sp.	7	T406	3.1	-12.8	8.7	16.9	-6.8
Buffalo_2	<i>Bubalus</i> sp.	6	T406				16.8	-6.9
Buffalo_3	<i>Bubalus</i> sp.	7	T301				18.3	-5.2
Buffalo_4	<i>Bubalu</i> s sp.	8	T307				18.4	-5.1
Buffalo_5	<i>Bubalu</i> s sp.	8	T305				18.1	-5.4
Père David's deer_1	Elaphurus davidianus	7	T303	3.1	-19.6	8.3	16.7	-7.0
Père David's deer_2	Elaphurus davidianus	7	T303	3.1	-19.0	8.6	17.3	-6.3
Sambar_1	Rusa unicolor	8	T207	3.1	-22.8	5.7	16.7	-7.0
Sambar_2	Rusa unicolor	8	T103	3.4	-23.1	5.5	16.4	-7.3
Sambar_3	Rusa unicolor	8	T206	3.1	-22.5	5.3	17.5	-6.1
Sika deer_1	Cervus nippon	6	T207	3.2	-22.3	5.8	17.3	-6.3


Table S3. Results of isotope analysis of mammal bones collected at Tianluoshan.

Sample No.	Layer	Grid	C/N	$\delta^{13}C_{\text{Co}}$	$\delta^{15}N_{Co}$	$\delta^{18}O_p$	$\delta^{18}O_{w}$
191	8c, 10, 11	0411	3.2	-21.4	7.9	7.2	-16.1
193		0512	3.2	-21.8	8.5	9.5	-13.6
194	3b	0511	3.2	-21.0	5.0	13.2	-9.5
195	8c	0511	3.2	-20.8	4.5	14.0	-8.6
196	4	0411	3.2	-20.8	5.5	13.8	-8.8

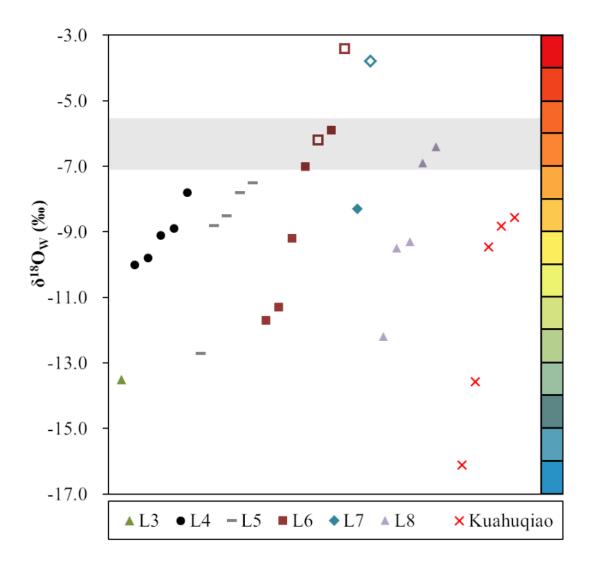

 Table S4. Results of isotope analysis of goose bones collected at Kuahuqiao.

Table S5. Results of isotope analysis (the $\delta^{18}O_C$ contents of tooth enamel and the $\delta^{18}O_P$ contents of tooth enamel, dentin, and bone) of four water buffalo samples collected from Tianluoshan. $\Delta^{18}O_P$ Ena–Den and $\Delta^{18}O_P$ Ena–Bone indicate the differences in $\delta^{18}O_P$ between tooth enamel and dentin, and between tooth enamel and bone, respectively.

Sample	$\delta^{18}O_C$	$\delta^{18}O_P$ Enamel	$\delta^{18}O_P$ Dentine	$\delta^{18}O_P$ Bone	∆ ¹⁸ O _P Ena-Den	$\Delta^{18}O_P$ Ena-Bon
Buffalo_2	24.9	18.0	17.9	16.8	0.0	1.2
Buffalo_3	24.0	17.7	18.0	18.3	-0.3	-0.6
Buffalo_4	23.1	17.5	17.4	18.4	0.0	-0.9
Buffalo_5	23.5	17.9	17.9	18.1	0.0	-0.2
Mean ± S.D.	23.9 ± 0.8	17.8 ± 0.2	17.8 ± 0.3	17.9 ± 0.7	−0.1 ± 0.2	−0.1 ± 0.9

Figure S1. Modern breeding distribution range of greylag geese (*Anser anser*, blue color), bean geese (*A. fabalis*, orange color) and swan geese (*A. cygnoides*, red color) after del Hoyo and Collar (1). Note that all three species winter in the lower Yangtze River.

Figure S2. $\delta^{18}O_W$ values in goose bones (immature: open symbol) collected from several layers in Tianluoshan and the $\delta^{18}O_W$ values in goose bones (adult: red cross symbols) collected from Kuahuqiao. The gray shaded area delineates the range in $\delta^{18}O_W$ values (mean $\pm \sigma$) observed in mammalian bones from Tianluoshan. Note that the samples represented by the five symbols in the gray shaded area are presumably from local individuals. The colored bars that represent $\delta^{18}O_W$ values correspond to the same colors used in Figure 1 for the oxygen isotope composition of annual precipitation.

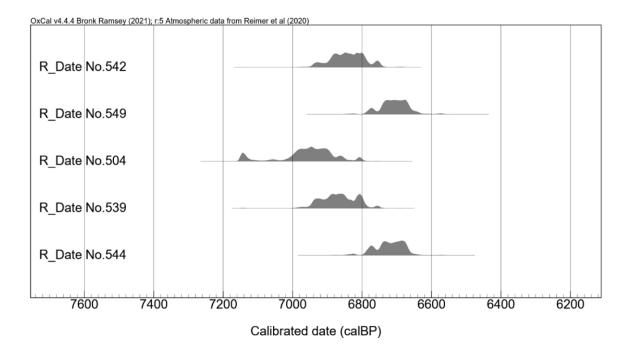
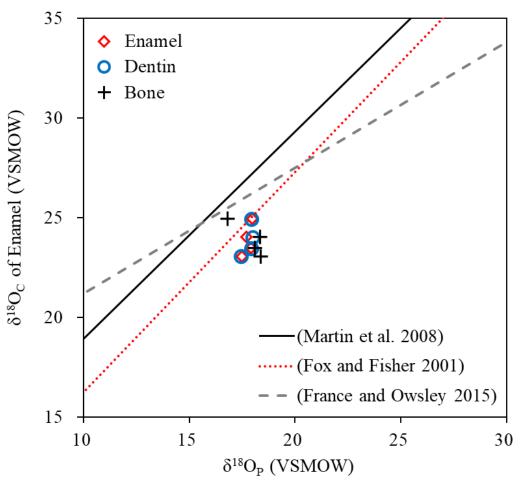



Figure S3. Calibrated ¹⁴C dates of collagen from five goose bones collected at Tianluoshan.

Figure S4. The $\delta^{18}O_C$ values for tooth enamel versus $\delta^{18}O_P$ values for tooth enamel, dentin, and bone from water buffaloes calculated in our study. Each line represents a regression line, derived from the results of previous studies (2-4), and depicts the $\delta^{18}O_C$ versus $\delta^{18}O_P$ values calculated for tooth enamel from well-preserved samples. The oxygen isotope compositions are shown as standardized by Vienna Standard Mean Ocean Water (VSMOW), an isotopic standard of water.

S1. Preservation status and diagenetic alternation for bioapatite

The bioapatite of archaeological animal remains is exposed to the risk of post-mortem diagenetic alteration during burial, and the oxygen may be exchanged in the soil or contain secondary deposited oxygen (5). As tooth enamel has a more densely packed crystalline structure than tooth dentine or bone, tooth enamel is usually considered to be a more reliable material for oxygen isotope analyses of archaeological samples (2, 6). However, geese, our study species, do not have tooth enamel; therefore, we measured the oxygen isotope compositions of phosphate in bone. To evaluate the diagenetic effects of phosphate in bird bones, we used water buffalo teeth and bone samples from the same individual from Tianluoshan for reference.

In well-preserved samples, the δ^{18} O component of structural carbonate (δ^{18} O_C) and δ^{18} O_P are known to correlate, and this correlation is considered to be a diagenetic indicator for ancient materials (4, 5). In contrast, it has been reported that there are inter-species differences in the intercept of the regression line between δ^{18} O_P and δ^{18} O_C (4), and it has been proposed that diagenetic alterations in apatite should be evaluated in combination with another indicator such as collagen C/N (2).

Tooth enamel and dentin were collected from four water buffalo individuals whose bones were measured. $\delta^{18}O_P$ was measured using the same pretreatment as for bone. After treatment with acetic acid, a part of each tooth enamel was split and the $\delta^{18}O_C$ values were measured. The stable oxygen isotope compositions for the structural carbonate of tooth enamel were determined using an IRMS system (GasBench II coupled to a Delta V Plus IRMS, Thermo Fisher Scientific, Bremen, Germany) with a PAL autosampler (GC PAL, CTC Analytics, Zwingen, Switzerland) at the Research Institute for Humanity and Nature. As a result, the $\delta^{18}O_P$ and $\delta^{18}O_C$ contents in the enamel from the water buffalo samples from Tianluoshan generally follow the same regression line shown in previous studies (Fig. S4). Therefore, it is likely that the $\delta^{18}O$ in the enamel samples from the Tianluoshan water buffaloes did not undergo significant post-mortem diagenetic shifts.

The $\delta^{18}O_P$ values in the enamel and dentin from the water buffaloes were measured at 17.8 ± 0.2 ‰ and 17.8 ± 0.3 ‰, respectively, and did not differ from that of bone (17.9 ± 0.7 ‰) (Table S5). The mean difference in $\delta^{18}O_P$ values between the enamel and dentin in each individual was -0.1 ± 0.2 ‰. Between enamel and bone the mean difference in $\delta^{18}O_P$ values was -0.2 ± 1.0 ‰. The difference between enamel and bone was slightly higher than that found between enamel and dentin, but this variation is probably due to the difference in time needed for teeth and bone to undergo crystallization. Therefore, it was assumed that less post-mortem diagenetic alterations have occurred in the phosphate of the water buffalo bones that would affect the $\delta^{18}O_P$. Therefore, using the water buffalo as a reference, it was expected that diagenetic $\delta^{18}O_P$ shifts would also not have occurred in goose bones that were exposed to the same depositional environment in Tianluoshan, nor would it have affected the habitat estimates in this study.

In addition, it is also said that the preservation of collagen, such as C/N ratios, can be a diagenetic indicator of bioapatite (2). The atomic C/N ratio of well-preserved collagen was expected to be in the range of 2.9–3.6 (7). As all the immature and adult individuals with high $\delta^{18}O_P$ values, identified as local geese, had well-preserved collagen (Table S2), there was no danger of mistakenly identifying poor-preserved samples as being locally derived. In addition, the samples with C/N ratios outside this range (2.9–3.6), or which contained less preserved collagen, also showed no indication that their $\delta^{18}O_P$ values were different from the others.

References

1. del Hoyo J & Collar NJ (2014) HBW and Birdlife International Illustrated Checklist of the Birds of the World. *Volume 1. Non-Passerines* (Lynx Edicions, Barcelona).

2. France CAM & Owsley DW (2015) Stable Carbon and Oxygen Isotope Spacing Between Bone and Tooth Collagen and Hydroxyapatite in Human Archaeological Remains. *International Journal of Osteoarchaeology* 25(3):299-312.

3. Fox DL & Fisher DC (2001) Stable Isotope Ecology of a Late Miocene Population of Gomphotherium Productus (Mammalia, Proboscidea) from Port of Entry Pit, Oklahoma, USA. *Palaios* 16(3):279-293.

4. Martin C, Bentaleb I, Kaandorp R, Iacumin P, & Chatri K (2008) Intra-Tooth Study of Modern Rhinoceros Enamel δ 180: Is the Difference Between Phosphate and Carbonate δ 180 a Sound Diagenetic Test? *Palaeogeography, Palaeoclimatology, Palaeoecology* 266(3-4):183-189.

5. Iacumin P, Bocherens H, Mariotti A, & Longinelli A (1996) Oxygen Isotope Analyses of Co-Existing Carbonate and Phosphate in Biogenic Apatite: A Way to Monitor Diagenetic Alteration of Bone Phosphate? *Earth and Planetary Science Letters* 142(1-2):1-6.

6. Blyth L (2001) Oxygen Isotope Analysis and Tooth Enamel Phosphate and Its Application to Archaeology. *The University of Western Ontario Journal of Anthropology* 9(1):1-13.

7. DeNiro MJ (1985) Postmortem Preservation and Alteration of In Vivo Bone-Collagen Isotope Ratios in Relation to Paleodietary Reconstruction. *Nature* 317(6040):806-809.