Supplementary Materials

Supplementary Table 1.

CD8 effector	PD1 High	MYC	TP53
vs		Targets	Targets
exhausted			(cell cycle)
ACOT8	CKS1B	ANLN	CDKN1A
ADAMTS6	MCM5	ASPM	GAS2L1
ADGRL2	CENPM	AURKA	HRAS
ADIPOQ	MCM3	BIRC5	JAG2
ADORA2A	MCM7	BRCA2	LTBP2
ADPRM	TK1	BUB1	NEDD9
AGR2	FEN1	CCNB1	SEPTIN9
AIF1L	UBE2T	CCNB2	SFN
ALOX5AP	TUBB	CDK1	TP53
ALS2	STMN1	CDKN3	
AOPEP	NUSAP1	CKS1B	
ARHGAP30	TROAP	CKS2	
ARHGAP8	CHAF1A	CLIC4	
ARL4C	TRAIP	DCTPP1	
ATOX1	CDKN3	DTL	
ATP8A1	NDC80	E2F8	
B4GALT1	RNASEH2A	ECT2	
BAK1	CENPA	FAM136A	
BATF2	SMC2	FDPS	
BBS4	SPAG5	GMNN	
BCL2L14	CENPE	GSDME	
BCL9L	CENPF	HMGB2	
BEND6	RAD51AP1PLK4	HMGN2	
C19orf12	KIF2C	HNRNPLL	
C19orf53	UBE2C	IDI1	
C1orf54	CHEK1	KIF20A	
C3orf80	ZWINT	KPNA2	
C9orf64	MTFR2	MKI67	
CA2	CDCA5	NUDCD2	
CASP7	RMI2	NUP54	
CASS4	SPC24	PCLAF	
CCDC12	CKAP2L	PCNA	
CCND3	CDCA2	PLK1	
CCRL2	ESCO2	RACGAP1	
CD40	ECT2	RRM1	

CD86	SKA1	STRAP	
CDC42EP2	SKA3	TFDP1	
CES5A	TPX2	TOP2A	
CFAP126	FOXM1	TSPAN4	
CFAP36	ORC6	TXN	
CFAP410	POLA2	UBE2S	
CLCN1	POC1A	UCHL5	
CLEC6A	ASPM	YBX3	
COA5	RACGAP1		
CSF1	UHRF1		
CSF2	HIST1H1B		
СТЅК	HELLS		
CUEDC1	HMMR		
D2HGDH	BIRC5		
DAAM1	INCENP		
DAPP1	FAM111B		
DDX58	KIF11		
DENND2B	KIFC1		
DENR	CENPW		
DHRS7	MAD2L1		
DNAL1	MCM2		
DOCK8	MCM4		
DOK1	MKI67		
DTX3L	MTHFD1		
ENG	MYBL2		
ENPP4	NEK2		
EPSTI1	GTSE1		
F11R	DTL		
FAM209A	GINS2		
FAM221A	PLK1		
FCER1G	POLE2		
FECH	ANLN		
FRMD4A	NCAPG2		
FXN	SPDL1		
GBP2	PARPBP		
GBP4	FANCL		
GCH1	CDCA8		
GCHFR	CEP55		
GDI1	CENPQ		
GMPPB	FANCI		
GPR18	HJURP		

GSAP	MCM10	
GSDMD	ASF1B	
GSN	C1orf112	
GZMB	PRR11	
HK1	DEPDC1B	
HLA-B	KIF15	
HLA-C	SPC25	
HSPB11	BARD1	
IDNK	RAD51	
IFIT1	RFC4	
IFITM3	RRM2	
IFNG	CLSPN	
IFT80	NCAPG	
IKZF2	STIL	
IL12A	BRCA1	
IL12RB1	BRCA2	
IL2RB	AURKA	
IP6K1	BUB1	
IRF1	BUB1B	
IRF7	TOP2A	
IRGM	ТТК	
ISG20	TYMS	
ITM2B	DSCC1	
ITPR1	CENPU	
KIF13B	SUV39H2	
LAMTOR4	SHCBP1	
LGALS3BP	ATAD5	
LGALS9B	DSN1	
LLGL1	DIAPH3	
LYN	CDC45	
LYST	CDCA3	
MAF	NUF2	
MCEMP1	RAD54L	
MED15	GGH	
MIDN	CCNA2	
MPEG1	TIMELESS	
MYCBP2	CCNF	
MZT2B	PRC1	
NACC2	PKMYT1	
NAGA	CCNB2	
NBAS	AURKB	

NDUFA7	KIF23	
NIT1	DLGAP5	
NKG7	ARHGAP11A	
NOD1	CDK1	
NQO2	MELK	
NSG2	CDC6	
NT5C3A	CDC20	
OAS1	DEPDC1	
OAS2	KIF4A	
OAS3	KIF14	
OCEL1	POLQ	
P3H1	E2F2	
PAGR1	MND1	
PARP11		
PARP12		
PARP14		
PARP8		
PCBD1		
PDE1B		
PDE8A		
PDLIM4		
PLAC8		
PLSCR3		
PLXNA3		
PSMB8		
PSMB9		
PTK2		
RAB19		
RBM43		
RERE		
RGS12		
RIN1		
RSAD2		
SCLY		
SERPINB6		
SERPINB9		
SESTD1		
SGCB		
SH3BP2		
SIAE		
SIN3B		

SLFN12L		
SOAT2		
SOCS1		
SPACA1		
SPATA13		
SQOR		
STAT1		
STMP1		
SUCO		
TALDO1		
ТАРВР		
TAPBPL		
TBX21		
TFEC		
TLR4		
TMBIM6		
TMEM106A		
TMEM140		
TMEM219		
TMEM87A		
TOR3A		
TP53BP1		
TRAF5		
TRAFD1		
TRIM5		
TSGA10		
ТТҮНЗ		
UBALD2		
UHRF1		
UMODL1		
UNC93B1		
VGLL4		
WLS		
XDH		
ZBP1		
ZCCHC18		
ZFYVE26		
ZNF23		
ZNF449		
ZNF513		
ZNF691		

ZNFX1

Supplemental figures

Supplementary Figure 1. (A) Flow cytometric analysis of peripheral natural killer (NK) cells (CD16+/CD56+) and monocytes (CD14+) before obinutuzumab pretreatment (Gpt; C1D-7, predose) and before the first glofitamab infusion (C1D1, predose). (B) Graphs represent Log₂ fold change from baseline (C1D1 predose) of peripheral CD4+ T-cell subsets at indicated timepoints during cycle 1, as measured by flow cytometry. Error bars indicate confidence intervals. (C) Box plots (left) represent Log₂ fold change from baseline (C1D1 predose) of peripheral CD3+ T cells at 6 hours post-end of infusion (6H post-EOI) of cycle 2 day 1 (top) and cycle 5 day 1 (bottom) in relation to the best overall response (BOR), as measured by flow cytometry. Scatter plots (right) indicate the correlation between Log₂ fold change from baseline (C1D1 predose) of peripheral CD3+ T cells and the administered glofitamab dose (mg) at 6h post-EOI of cycle 2 day 1 (top) and cycle 5 day 1 (bottom). Colors indicate BOR categories. *P*-values >0.05 for complete response (CR) vs partial response/stable disease/progressive disease (PR/SD/PD). (D) Plots show Log₂ fold change from baseline (C1D1 predose) of peripheral CD8+ T-cell subsets measured by flow cytometry on the first day of cycle 4 (C4D1 predose; top panel; n = 37) and the first day of cycle 5 (C5D1 predose; bottom panel; n = 29) for the high dose cohort (4-25 mg). X-axes indicate the BOR. Means of each response category are shown. P-values >0.05 for CR vs PR/SD/PD. In panels (B and D) dotted lines indicate baseline levels and dashed lines indicate 2-fold change from baseline. Statistical analysis was not adjusted for log(glofitamab dose) and International Prognostic Index (IPI) category. Data in (A-C) are from n = 119 patients with evaluable flow cytometry data.

В

6H post-EOI, 6 hours post-end of infusion; BOR, best overall response; C, cycle; CR, complete response; D, day; NK, natural killer cells; PD, progressive disease; PR, partial response; SD, stable disease.

Supplementary Figure 2. (A) Plasma cytokine concentrations (pg/mL) of B-cell activating factor, IL-1 β , IL-10, IL-15, IL-17, IL-8, MIP-1 β , MCP1, soluble IL-2R (sCD25), TGF- β and TNF- α are shown at indicated timepoints during the first cycle. (A) Plasma cytokine concentrations (pg/mL) of (B) IFN γ , (C) IL-6, and (D) IL-2 are shown at indicated timepoints during cycles 1, 2 and 5. In panels (A-D), y-axes are in logarithmic scales and error bars indicate standard error of the mean. Data are generated from n = 119 patients with evaluable cytokine data.

6H post-EOI, 6 hours post-end of infusion; BOR, best overall response; C, cycle; CR, complete response; D, day; MI, mid-infusion; NK, natural killer cells; PD, progressive disease; PR, partial response; pre-Gpt, before obinutuzumab pretreatment; SD, stable disease.

Supplementary Figure 3. Box plots demonstrate (A) percentage of total (CD8-) Ki67+ cells, (B) percentage of CD8+Ki67+ cells, and (C) percentage of CD8+Ki67- cells in baseline tumor biopsies (n = 51) in relation to the best overall response (BOR) categories. All fractions are shown as of total cells in the tumor area. *P*-values >0.05. Statistical analyses in panels A-C were performed for complete response (CR) vs partial response/stable disease/progressive disease (PR/SD/PD) and adjusted for log (glofitamab dose) and International Prognostic Index (IPI) category.

BOR, best overall response; CR, complete response; IPI, International Prognostic Index; PD, progressive disease; PR, partial response; SD, stable disease.

Supplementary Figure 4. Scatter plots show correlation between log (CD8A expression) (RNAseq) and (A) MYC targets or (B) TP53 targets signature scores in baseline biopsies. (C) Table of identified *TP53* mutations in the mutant patient population, and (D) their schematic mapping on TP53 protein. LOF indicates loss-of-function. (E) Box plots represent the TP53 signature score (RNA-seq) for the *TP53* wild-type (WT) and mutant (mut) subsets. Asterisk denotes *P*-value <0.05. (F) Box plots represent the Log (CD8A expression) (RNA-seq) for the TP53 wild-type (WT) and mutant (mut) subsets. TP53 mutation data is generated from n = 33 patients with targeted sequencing data.

Hugo_Symbol	Protein_Change	Mutation_Type	Biological_Effect	Frequency
TP53	R248Q	Missense_Mutation	LOF (likely)	2
TP53	T155_R156	In_Frame_Del	LOF (likely)	1
TP53	C176R	Missense_Mutation	LOF (likely)	1
TP53	C176Y	Missense_Mutation	LOF (likely)	1
TP53	C275Y	Missense_Mutation	LOF (likely)	1
TP53	12545	Missense_Mutation	LOF (likely)	1
TP53	K132R	Missense_Mutation	LOF (likely)	1
TP53	LIIIR	Missense_Mutation	LOF (likely)	1
TP53	L194R	Missense_Mutation	LOF (likely)	1
TP53	M1K	Missense_Mutation	LOF (likely)	1
TP53	N235D	Missense_Mutation	LOF (likely)	1
TP53	N2 39D	Missense_Mutation	LOF (likely)	1
TP53	N2395	Missense_Mutation	LOF (likely)	1
TP53	P2 78R	Missense_Mutation	LOF (likely)	1
TP53	R110L	Missense_Mutation	LOF (likely)	1
TP53	R2 48Q	Missense_Mutation	LOF (likely)	1
TP53	R273H	Missense_Mutation	LOF (likely)	1
TP53	R282P	Missense_Mutation	LOF (likely)	1
TP53	R282W	Missense_Mutation	LOF (likely)	1
TP53	Y2 34C	Missense_Mutation	LOF (likely)	1
TP53	Y234D	Missense_Mutation	LOF (likely)	1
TP53	P27*	Nonsense_Mutation	LOF (likely)	1
TP53	V203*	Nonsense_Mutation	LOF (likely)	1
TP53	V73*	Nonsense_Mutation	LOF (likely)	1
TP53	splicesite 672+1G>T	Splice site variant	Unknown	1 ,

Del, deletion; LOF, loss of function; Mut, mutant; WT, wildtype.