
Please find the review response and revision regarding our manuscript “Significant Sparse Polygenic
Risk Scores across 813 traits in UK Biobank” (PGENETICS-D-21-01210). Our responses to the
reviewers’ individual comments below are in blue font, the comments from the reviewer are copied in
black, and quoted texts from the updated manuscript are shown in gray with a vertical bar (examples
are shown below):

This is an example of the reviewer’s comments
This is an example of our response.
This is an example of quoted texts from the updated manuscript

Based on the feedback from the reviewers, we made significant updates to the manuscript. The major
points of updates are as follows:

● The list of traits analyzed in the study. In the original manuscript, we have included 1,617 traits
but in the latest version of the manuscript, we present the results for 1,565 traits. We realized
that there were some issues in the trait definition and needed to revise the list.

● The number of significant PRS models. In the original manuscript, we reported the significant
PRS models for 428 traits. While we were preparing the revision of the manuscript, we realized
that there was a critical mistake when evaluating the significance of the PRS models
(specifically, the coefficients of covariates were mistakenly estimated on the test set
individuals, not on the score development set). We fixed this issue and now present 813
significant PRS models in the latest version of the manuscript. We sincerely apologize for our
mistake and inconvenience in the review process.

● Following the suggestions by reviewer #2, we added a new figure (Fig 2) comparing the
estimated SNP-based heritability vs. the predictive performance of PRS models. For this
figure, we computed pseudo-R2 for binary traits.

● We added a few additional analyses, including the effects of the UK Biobank assessment
center in the predictive performance (S1 Fig), effects of prioritization of medically-relevant
alleles (S2 Fig), and comparison of predictive performance when we include the imputed
variants (S3 Fig).

Our specific point-to-point responses to the reviewer’s comments are listed below.
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Referee #1:

In this paper, the authors have applied BASIL, a method previously developed by the authors, to 1600 traits in
the UK Biobank. They have also provided a Global Biobank Engine which shows the predictive power of their
PRS. However, given the current state of this paper, I cannot recommend this for publishing, and here are my
reasons:

Thank you very much for taking the time to review the manuscript and for providing detailed
feedback. We are confident that your comments have improved the clarity of the manuscript. The
summary of the key changes in this revision is summarized on the first page of this document. Here
are the responses to your suggestions.

1. Most of the methods were “described elsewhere”, reading the current paper, it is not possible for readers to
know how exactly the PRS were calculated. It is also unclear how the authors incorporate the HLA allelotype,
CNV data and how the penalty factors were applied to the BASIL model.

Thank you for encouraging us to improve the method section so that the descriptions are
self-contained. Following your advice, we added the following descriptions:

Lines 405-424, Pages 15-16, Population stratification and genetic data, Methods

Using a combination of genotype principal components (PCs), the self-reported ancestry (UK Biobank
Field ID 21000, https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21000), and
“in_white_British_ancestry_subset” column in the sample QC file from UK Biobank, we subsequently
focused on people of self-identified white British (n = 337,129), self-identified non-British white (n =
24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n = 1,704) ancestry as
described elsewhere[23]. Briefly, we used a two-step procedure to define the five groups. We first
used the genotype principal component loadings of the individuals and set thresholds on component
1 and component 2 as follows: (1) self-identified White British: -20 ≤ PC1 ≤ 40 and -25 ≤ PC2 ≤ 10
and in_white_British_ancestry_subset == 1; (2) self-identified non-British White: -20 ≤ PC1 ≤ 40, -25
≤ PC2 ≤ 10, has a self-reported ancestry of White, and does not identify themselves as White British;
(3) African: 260 ≤ PC1, 50 ≤ PC2, and does not identify themselves as any of the following: Asian,
White, Mixed, or Other population groups; (4) South Asian: 40 ≤ PC1 ≤ 120, -170 ≤ PC2 ≤ -80, and
does not identify themselves as any of the following: Black, White, Mixed, or Other population groups;
and (5) East Asian: 130 ≤ PC1 ≤ 170, PC2 ≤ -230, and does not identify themselves as any of the
following: Black, White, Mixed, or Other population groups. To refine the population definition by
removing the outliers, we computed population-specific genotype PCs using approximately LD
independent (R2 < 0.5) common (population-specific minor allele frequency > 5%) biallelic variants
outside of the major histocompatibility complex region[23]. We applied following thresholds[23]: (1)
South Asian: -0.02 ≤ population-specific PC1 ≤ 0.03, -0.05 ≤ population-specific PC2 ≤ 0.02; and (2)
East Asian: -0.01 ≤ population-specific PC1 ≤ 0.02, -0.02 ≤ population-specific PC2 ≤ 0.

Lines 440-448, Page 16, Variant quality control and variant annotation, Methods
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  We performed variant quality control as described elsewhere[23,47,56]. Briefly, we focused on the
variants passing the following criteria: (1) outside of the major histocompatibility complex (MHC)
region (hg19 chr6:25477797-36448354); (2) the missingness of the variant is less than 1%,
considering that the two genotyping arrays (the UK BiLEVE Axiom array and the UK Biobank Axiom
array) cover a slightly different set of variants[19]; (3) the minor-allele frequency is greater than
0.01%; (4) Hardy-Weinberg disequilibrium test p-value is less than 1.0x10-7; (5) Passed the
comparison of minor allele frequency with the gnomAD dataset (version 2.0.1) as described
before[47,50]; (6) We manually investigated the cluster plots for a subset of variants and removed 11
variants that have unreliable genotype calls[47].

Following your advice, we expanded the description of how we constructed the sparse PRS models.
Of note, we clarified that the BASIL algorithm implemented in the R snpnet package takes
individual-level data, not the GWAS summary statistics, as the input and the hold-out test set was
used in the evaluation of the predictive performance.

Lines 495-515, Pages 17-18, Methods

Construction of sparse PRS models

Using the batch screening iterative Lasso (BASIL) algorithm implemented in the R snpnet
package[10], we constructed the sparse PRS models for the 1,565 traits. We used the Gaussian
family and the R2 metric for quantitative traits, whereas we used the binomial family and the
AUC-ROC metric for the binary traits[10]. For each trait, we fit a series of regression models with a
varying degree of sparsity on the training set, consisting of 70% (n = 235,991) of unrelated individuals
of white British ancestry. The predictive performance of each of the models is evaluated on the
validation set, which consists of 10% (n = 33,713) of unrelated individuals of white British ancestry to
guide the selection of the optional level of sparsity. We selected the sparsity that maximizes the
predictive performance in the validation set. We subsequently refit the penalized regression model
using the individuals in the combined training and validation set individuals (n = 269,704), which we
denote as score development set, to maximize the power in the regression model[10]. We used the
same training, validation, and test set split across all the PRS models analyzed in this study.

As opposed to many PRS methods that operate on the GWAS summary statistics[3–9,13–15], our
method takes individual-level genotype and phenotype data. Using L1 penalized regression (also
known as Lasso), BASIL simultaneously performs variable selection and effect size estimation of the
selected variants. We included age, sex, and top ten population-specific genotype PC loadings
computed for the white British individuals[23] as unpenalized covariates. Thanks to the L1 penalty
term in the objective function that penalizes the number of features of non-zero regression
coefficients, the resulting models will be sparse, meaning that they will have fewer genetic variants
than unpenalized models[10].

Lines 526-531, Page 18, Methods
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Predictive performance and transferability of PRS models

We evaluated the predictive performance (R2 for quantitative traits and receiver operating
characteristic area under the curve [ROC-AUC] for binary traits) of PRS models. We used the
individuals in the hold-out test set (n = 67,425) of white British ancestry as well as additional sets of
individuals in non-British white (n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East
Asian (n = 1,704) ancestry groups.

Following your advice, we expanded our description on the copy number variants (CNVs) and HLA
allelotypes used in the analysis.

Lines 455-463, Page 16, Variant quality control and variant annotation, Methods

We included the imputed copy number variants (CNVs)[22] and imputed HLA allelotypes[21]. The
CNVs were called using PennCNV (v.1.0.4)[60] on raw signal intensity data from each genotyping
array as described elsewhere[22]. Because the precise location of the CNVs is not identified, we did
not infer the functional consequences of CNVs with variant annotation. The HLA allelotypes at HLA-A,
-B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, and -DRB5 loci were imputed using
the HLA*IMP:02 and imputed dosage file is provided by the UK Biobank. We included 156 alleles
across all 11 loci that had a frequency of 0.1% or greater in the white British. We rounded allele
dosage when they were within plus or minus 0.1 of 0, 1, or 2. We excluded the remaining nonzero
entries. We also excluded erroneous total allele counts post-rounding[21].

We have also expanded our description on the derivation of the penalty factors. Of note, we added
two supplementary tables (S4 Table and S5 Table) to improve the clarity of the description.

Lines 430-438, Page 16, Methods

Variant quality control and variant annotation

We used genotype datasets (release version 2 for the directly genotyped variants and the imputed
HLA allelotype datasets)[19], the CNV dataset[22], and the hg19 human genome reference for the
main PRS analyses in the study. Additionally, we considered imputed variants (release version 3) to
investigate whether the imputed variants would improve the predictive performance. We annotated
the directly-genotyped variants using Ensembl’s Variant Effect Predictor (VEP) (version 101)[58,59]
with the LOFTEE plugin (https://github.com/konradjk/loftee)[50], for which we created a Docker
container image (https://github.com/yk-tanigawa/docker-ensembl-vep-loftee). Using ClinVar (version
20200914)[28], we annotated “pathogenic” and “likely pathogenic” variants.

Lines 450-453, Page 16, Variant quality control and variant annotation, Methods

We grouped the VEP-predicted consequence of the variants into six groups: protein-truncating
variants (PTVs), protein-altering variants (PAVs), proximal coding variants (PCVs), Intronic variants
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(Intronic), variants in the untranslated region (Intronic), and other variants (Others). Our grouping rule
of the VEP-predicted consequence is summarized in (S4 Table).

Lines 517-525, Page 18, Construction of sparse PRS models, Methods

To prioritize coding variants over non-coding variants in linkage, we assigned three levels of penalty
factors (also known as penalty scaling parameter)[62]: 0.5 for pathogenic variants in ClinVar[53] or
protein-truncating variants according to VEP-based variant annotation[59]; 0.75 for likely pathogenic
variants in ClinVar, VEP-predicted protein-altering variants, or imputed allelotypes; and 1.0 for all
other variants. The assignment rules of the penalty factors are summarized in (S5 Table). The
variants with lower values of penalty factors are prioritized in the L1 penalized regression. To assess
the degree of prioritization of the medically relevant alleles and their impacts on the predictive
performance, we focused on four traits (standing height, BMI, high cholesterol, and asthma) and fit a
separate model without penalty factors. We compared the number of selected variants and the
predictive performance.

Thank you very much for your suggestion.

2. In addition, the authors did not provide any details of how they obtained the GWAS summary statistics
required for PRS calculation (presumably using the 70% UK biobank data using PLINK?)

Thank you very much for clarifying this. As described in the previous item, the BASIL algorithm
implemented in the R snpnet package takes individual-level data, not the summary statistics. We
agree that this could be a potential source of confusion to the readers who are familiar with the PRS
methods that take GWAS summary statistics. We updated our description.

Lines 495-515, Pages 17-18, Methods

Construction of sparse PRS models

Using the batch screening iterative Lasso (BASIL) algorithm implemented in the R snpnet
package[10], we constructed the sparse PRS models for the 1,565 traits. We used the Gaussian
family and the R2 metric for quantitative traits, whereas we used the binomial family and the
AUC-ROC metric for the binary traits[10]. For each trait, we fit a series of regression models with a
varying degree of sparsity on the training set, consisting of 70% (n = 235,991) of unrelated individuals
of white British ancestry. The predictive performance of each of the models is evaluated on the
validation set, which consists of 10% (n = 33,713) of unrelated individuals of white British ancestry to
guide the selection of the optional level of sparsity. We selected the sparsity that maximizes the
predictive performance in the validation set. We subsequently refit the penalized regression model
using the individuals in the combined training and validation set individuals (n = 269,704), which we
denote as score development set, to maximize the power in the regression model[10]. We used the
same training, validation, and test set split across all the PRS models analyzed in this study.

As opposed to many PRS methods that operate on the GWAS summary statistics[3–9,13–15], our
method takes individual-level genotype and phenotype data. Using L1 penalized regression (also
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known as Lasso), BASIL simultaneously performs variable selection and effect size estimation of the
selected variants. We included age, sex, and top ten population-specific genotype PC loadings
computed for the white British individuals[23] as unpenalized covariates. Thanks to the L1 penalty
term in the objective function that penalizes the number of features of non-zero regression
coefficients, the resulting models will be sparse, meaning that they will have fewer genetic variants
than unpenalized models[10].

3. Usually, we would include the UK Biobank assessment centre as a covariate to UK Biobank related analysis
to avoid systematic collection error. In addition, for blood biomarkers, we usually want to include Fasting time,
dilution factor and statin use, as those usually have significant impact to the model fit.

Thank you very much for raising the points on covariate adjustment.

Regarding the assessment centers, we performed additional analysis to investigate whether the
assessment center is significantly correlated with the phenotypes of our interest. As you may see
below, we found the assessment center terms do not pass the significance threshold (after correcting
it with Bonferroni). We, therefore, did not include the assessment center in the covariates. We
updated the manuscript. Thank you for your suggestion.

Fig S1. Statistical significance of the assessment center terms in phenotype prediction. We fit a regression
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model on age, sex, the types of genotyping arrays, polygenic risk score, and assessment centers for each of
the 1,565 traits analyzed in the study. The frequency of the statistical significance (-log10(P)) of assessment
center variables was shown. The cumulative frequency was shown on the secondary axis on the right. The
statistical significance after the Bonferroni correction was shown as a red vertical line.

Line 150-151, Page 5, Characterizing sparse PRS models with BASIL algorithm, Results

We found the identity of the UK Biobank assessment centers mostly has a non-significant impact on
the predictive performance (S1 Fig, Methods).

For the blood biomarker traits, we have previously investigated the effects of the covariates and
derived covariate-adjusted biomarker values (Sinnott-Armstrong, et al. 2021, PMID: 33462484).
There, we found that most of the 35 blood and urine biomarker traits are quite correlated between the
raw biomarker levels and the fully adjusted values (Pearson’s correlation ~0.95). Of note, after
adjustments for age and sex, most results will remain interpretable without adjusting for additional
variables.

Figure. The effects of covariates on blood and urine biomarker levels. We adjusted technical and
biological covariates for blood and urine biomarkers analyzed in our previous study
(Sinnott-Armstrong, et al. 2021, PMID: 33462484). The Pearson’s correlation between the
fully-adjusted models and partially-adjusted (or the raw measurement values) are shown for 35
biomarker traits. The three outlier traits with lower correlations in the more adjustments are Vitamin
D (for which month of assessment is quite important), Phosphate (for which assessment center is
quite important), and Glucose (for which fasting time is quite important).

In the original version of the manuscript, we have included both the raw measured biomarker values
and the covariate-adjusted biomarker values as separate traits and characterized the PRS model for
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each of them. We apologize that this point was not clear in the original manuscript, which caused the
confusion of the predictive performance of the covariate-only model for some traits (point #7).

We now removed those duplicated biomarker traits. Specifically, we used the PRS models trained on
covariate-adjusted biomarker traits and evaluated their predictive performance using the raw
phenotype values, with the exception of the following three traits: eGFR, AST/ALT ratio, and
non-albumin protein. Those three phenotypes are derived based on a combination of
covariate-adjusted other biomarker traits and do not have the raw measurements.

Line 480-491, Page 17, Phenotype definitions in the UK Biobank, Methods

Previously, we analyzed blood and urine biomarker traits, investigating the effects of covariates on
the biomarker levels and derived covariate-adjusted biomarker values[23]. Briefly, we used a linear
regression model to account for the covariate effects on the log-transformed measurement values
from UK Biobank and adjusted for principal component loadings of genotype, age, sex, age by sex
interactions, self-identified ancestry group, self-identified ancestry group by sex interactions, fasting
time, estimated sample dilution factor, assessment center indicators, genotyping batch indicators,
time of sampling during the day, the month of assessment, and day of the assay. We used the PRS
models trained for the covariate-adjusted traits[23]. To quantify the incremental predictive
performance against the covariate-only models, we quantified predictive performance against the
original measurement values, except eGFR, AST/ALT ratio, and non-albumin protein, where we used
the covariate-adjusted trait values. Those three traits are derived from covariate-adjusted
biomarkers[23] and do not have raw measurement values.

Thank you very much for giving us an opportunity to clarify the covariate handling.

4. Was the metric reported based on the test sets?

Yes, we used the hold-out test set when evaluating the performance metric. We improved the clarity
on this throughout the manuscript.

Lines 81-83, Page 3, Introduction

Using individuals in a hold-out test set, we evaluated their predictive performance and their statistical
significance, resulting in 813 significant (p < 2.5 x 10-5) PRS models

Lines 135-142, Page 5, Characterizing sparse PRS models with BASIL algorithm, Results

To evaluate the predictive performance (R2 for quantitative traits and receiver operating characteristic
area under the curve [ROC-AUC] for binary traits) and its significance of PRS models, we focused on
the remaining 20 % of unrelated individuals in the hold-out test set (n = 67,425) as well as additional
sets of unrelated individuals in the following ancestry groups in UK Biobank: non-British European
(non-British white, n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n =
1,704) (S2 Table, Methods). We found 813 PRS models with significant (p < 2.5 x 10-5 = 0.05/2,000,
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adjusted for multiple hypothesis testing with Bonferroni method) predictive performance in the
hold-out test set of white British individuals (Methods).

Lines 526-531, Page 18, Methods

Predictive performance and transferability of PRS models

We evaluated the predictive performance (R2 for quantitative traits and receiver operating
characteristic area under the curve [ROC-AUC] for binary traits) of PRS models. We used the
individuals in the hold-out test set (n = 67,425) of white British ancestry as well as additional sets of
individuals in non-British white (n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East
Asian (n = 1,704) ancestry groups.

5. How did the authors use the PCS and self-reported ancestry to identify the sample population? K mean
clustering on PC1 and PC2? Or did they performed calculate the Euclidian distance between each sample and
the PC centroid of each self-reported cluster?

Thank you very much for encouraging us to further clarify the population stratification procedure.
Following your advice, we expanded the description in the methods section.

Lines 405-424, Pages 15-16, Population stratification, Methods

Using a combination of genotype principal components (PCs), the self-reported ancestry (UK Biobank
Field ID 21000, https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21000), and
“in_white_British_ancestry_subset” column in the sample QC file from UK Biobank, we subsequently
focused on people of self-identified white British (n = 337,129), self-identified non-British white (n =
24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n = 1,704) ancestry as
described elsewhere[23]. Briefly, we used a two-step procedure to define the five groups. We first
used the genotype principal component loadings of the individuals and set thresholds on component
1 and component 2 as follows: (1) self-identified White British: -20 ≤ PC1 ≤ 40 and -25 ≤ PC2 ≤ 10
and in_white_British_ancestry_subset == 1; (2) self-identified non-British White: -20 ≤ PC1 ≤ 40, -25
≤ PC2 ≤ 10, has a self-reported ancestry of White, and does not identify themselves as White British;
(3) African: 260 ≤ PC1, 50 ≤ PC2, and does not identify themselves as any of the following: Asian,
White, Mixed, or Other population groups; (4) South Asian: 40 ≤ PC1 ≤ 120, -170 ≤ PC2 ≤ -80, and
does not identify themselves as any of the following: Black, White, Mixed, or Other population groups;
and (5) East Asian: 130 ≤ PC1 ≤ 170, PC2 ≤ -230, and does not identify themselves as any of the
following: Black, White, Mixed, or Other population groups. To refine the population definition by
removing the outliers, we computed population-specific genotype PCs using approximately LD
independent (R2 < 0.5) common (population-specific minor allele frequency > 5%) biallelic variants
outside of the major histocompatibility complex region[23]. We applied following thresholds[23]: (1)
South Asian: -0.02 ≤ population-specific PC1 ≤ 0.03, -0.05 ≤ population-specific PC2 ≤ 0.02; and (2)
East Asian: -0.01 ≤ population-specific PC1 ≤ 0.02, -0.02 ≤ population-specific PC2 ≤ 0.

6. Given the small sample size of non-European samples, does the author also split them into validation and
test sets, or were the training all done on the validation sets? Based on page 10 line 230-242, I am guessing
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that the GWAS is performed on the British white, and parameter optimization / variable selections were done
on the British white and then the predictive performance is performed on each of the populations? Or were the
parameter optimization / variable selections also done in each of the populations?

We used individual-level data of the unrelated individuals in the white British ancestry group to fit the
PRS model. We evaluated the model using a hold-out test set of white British ancestry as well as
additional test sets of different ancestry groups.

Lines 135-140, Page 5, Characterizing sparse PRS models with BASIL algorithm, Results

To evaluate the predictive performance (R2 for quantitative traits and receiver operating characteristic
area under the curve [ROC-AUC] for binary traits) and its significance of PRS models, we focused on
the remaining 20 % of unrelated individuals in the hold-out test set (n = 67,425) as well as additional
sets of unrelated individuals in the following ancestry groups in UK Biobank: non-British European
(non-British white, n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n =
1,704) (S2 Table, Methods).

Lines 526-531, Page 18, Methods

Predictive performance and transferability of PRS models

We evaluated the predictive performance (R2 for quantitative traits and receiver operating
characteristic area under the curve [ROC-AUC] for binary traits) of PRS models. We used the
individuals in the hold-out test set (n = 67,425) of white British ancestry as well as additional sets of
individuals in non-British white (n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East
Asian (n = 1,704) ancestry groups.

We also included the study cohort information as a panel (A) in Fig 1 and provided the basic
characteristics of each set in S1 Table.
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Figure 1. Significant sparse polygenic risk scores (PRSs) across 813 traits in the UK Biobank. (A) We
analyzed a total of more than 378,000 unrelated individuals and 1,565 traits in UK Biobank. We used 80 % of
individuals of white British ancestry for score development. For evaluation, we used the remaining 20 % of
individuals and additional individuals in other ancestry groups.

7. Looking at the results shown in the Global Biobank Engine, there are many traits where the covariate has a
predictive performance of 0 (assuming this is measured in R2). Specifically, for Lipoprotein A, its PRS
performance is as high as 0.57 but the covariate has performance of 0, which is hard to believe.

Thank you very much for looking into the results on Global Biobank Engine.

As we explained in point #3 above, our original manuscript included covariate-adjusted biomarker
traits from our previous study (Sinnott-Armstrong, et al. 2021, PMID: 33462484) and the predictive
performance of the covariate-only model for those traits were zero. We agree that such treatment was
inappropriate and have revised the analysis of biomarker traits. Specifically, we now have a
non-redundant set of 35 biomarker traits. For eGFR, AST/ALT ratio, and non-albumin protein, which
were all derived from other covariate-adjusted biomarker traits, we do not have the raw measurement
and the predictive  performances of the covariate-only models were zero. For the remaining 32
biomarker traits, we used the raw phenotypes for the performance evaluation.

On the Global Biobank Engine, the predictive performance of Lipoprotein A is now shown as follows:

The “Predictive performance and transferability in UK Biobank” table for Lipoprotein A in the Global
Biobank Engine: https://biobankengine.stanford.edu/RIVAS_HG19/snpnet/INI30790

8. The correlation of number of selected variable and the predictive performance sounds like an issue with
power. This is similar to the self-contained test-statistics in gene set studies where including more information
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has a higher chance of having a high predictive performance. The lack of correlation in binary traits might be
due to rare variants that have large effect or ascertainment of case control. For example, only one variants
were selected for Iritis. Also, if we look at the Global Biobank Engine, we can see a lot of duplicated traits that
were assigned to different categories. For example, Lipoprotein A is both a biomarker and blood assays. Were
this duplicated removed from the correlation analyses? If not, then duplicated traits or highly correlated traits
(e.g. Hand grip strength left and right) might have inflated the correlation. Considering the trait definition, it is
also much easier to have duplication and correlation between quantitative traits than the binary traits.

Thank you very much for raising this important point.

We totally agree that it is not appropriate to include duplicated traits in the correlation analysis. As we
described above (points #3 and #7), there were duplicates in the original version of the manuscript.
We had two versions of biomarker traits: one with covariate adjustment and one without adjustment.
In the revised version of the manuscript, we removed those duplicates.

The lack of the observed correlation stems from the power limitation in the binary traits or due to the
potential differences in the underlying genetic architecture. With the data we have access to, it is not
feasible to pinpoint the exact reason. We, therefore, expanded the discussion.

Lines 330-338, Page 13, Discussion

When we compared the number of independent loci included in the model and their incremental
predictive performance, we found a significant correlation across quantitative traits but not within
binary traits. While the underlying genetic architecture of binary traits may span the gamut of a wide
variety of polygenicity — from Mendelian and monogenic to oligogenic, omnigenic, and polygenic —,
that of highly heritable quantitative traits may not be compatible with monogenic inheritance as
illustrated in the wide adoption of Fisher’s infinitesimal model[31–33]. In addition to potential
differences in the underlying genetic architectures across traits, the limitation in power for some traits,
especially for the binary traits with limited case counts, differences in heritability, and a combination of
all of those may be the contributing factor to the lack of the observed correlation in binary traits.

Thank you very much for your suggestion.

Referee #2:

Here the authors investigate properties of PRS across 428 traits in the UK. The work is nicely conducted and
explained.

Thank you very much for taking the time to review the manuscript and for providing detailed
feedback. We are confident that your comments have improved the clarity of the manuscript. The
summary of the key changes in this revision is summarized on the first page of this document. Here
are the responses to your suggestions.
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The introduction and Discussion need to better sign post what this study IS and what it is NOT about. For
example, it is NOT promoting BASIL at the best PRS method, but rather it can be considered as a method that
can be easily applied across many traits and could be useful across a range of genetic architectures without
explicitly modelling genetic architectures. Also it is NOT proposing the best predictor for a trait because a) it
only uses UKB data and not other GWAS data available for some traits b) relatives are excluded which
(although independence of discovery and test sample are important) the GWAS discovery could be more
powerful by including relatives (I am not saying you need to include the relatives for the purpose of this paper
but rather more clearly define its boundaries). The purpose of this study is more about considering the
properties of PRS of many traits from the same data set and examining trends across the traits.

Thank you very much for providing specific suggestions on how we can further clarify the scope of the
work. Following your advice, we have updated the introduction and discussion sections.

Lines 62-81, Page 3, Introduction

Polygenic risk score (PRS), an estimate of an individual’s genetic liability to a trait or disease, has
been proposed for disease risk prediction with potential clinical relevance for some traits[1,2]. Due to
training data sample size increase and methods development advances for variable selection and
effect size estimation, PRS predictive performance has improved[3–17]. However, it has not been
clear what would be the predictive performance of PRS models when it is applied to a wide range of
traits, which may have diverse genetic architecture and their transferability across ancestry groups.
Rich phenotypic information in large-scale genotyped cohorts provides an opportunity to address this
question.

Here, we present significant sparse PRSs across 813 traits in the UK Biobank[18,19]. We applied the
recently developed batch screening iterative lasso (BASIL) algorithm implemented in the R snpnet
package[10] across more than 1,500 traits consisting of binary outcomes and quantitative traits,
including disease outcomes and biomarkers, respectively (Fig. 1, S1 Table). As opposed to most of
the recently developed PRS methods that take genome-wide association study (GWAS) summary
statistics as input, BASIL/snpnet is capable of performing variable selection and effect size estimation
simultaneously from individual-level genotype and phenotype data. BASIL/snpnet results in sparse
PRS models, meaning that most genetic variants in the input dataset have zero coefficient. For
example, the snpnet PRS for standing height, a classic example of polygenic traits, includes 51,209
variants, which has non-zero coefficients for 4.7% of 1,080,968 genetic variants and allelotypes
present in the input genetic data. Moreover, this approach does not require the explicit specification of
the underlying genetic architecture of traits, suitable for a phenome-wide application of PRS
modeling.

Lines 340-350, Page 13, Discussion

Our study is complementary to many other studies that focus on fewer traits to construct PRS models
from GWAS meta-analysis and mixed models. While the sample size in our study is sufficiently large
to observe statistical significance in predictive performance across hundreds of traits, it does not
necessarily mean the clinical relevance of the PRS models. Moreover, population-based recruitment
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in UK Biobank may not be the best strategy to achieve the highest predictive performance for some
traits. A disease-focused study[6,34–36] would be an attractive alternative strategy, especially when
multiple genotyped cohorts recruited for the same disease are available or the disease of interest has
a low prevalence. Our study, instead, focused on the phenome-wide application of PRS across
hundreds of traits in a single cohort by applying BASIL algorithm with readily available implementation
in R snpnet package[10], which does not require explicit modeling of underlying genetic architecture
across a wide variety of traits.

1. Line 40 Define “sparse PRS”, this may be unclear to some readers.

Thank you very much for your suggestion. Following your advice, we have included the description.

Lines 70-80, Page 3, Introduction

Here, we present significant sparse PRSs across 813 traits in the UK Biobank[18,19]. We applied the
recently developed batch screening iterative lasso (BASIL) algorithm implemented in the R snpnet
package[10] across more than 1,500 traits consisting of binary outcomes and quantitative traits,
including disease outcomes and biomarkers, respectively (Fig. 1, S1 Table). As opposed to most of
the recently developed PRS methods that take genome-wide association study (GWAS) summary
statistics as input, BASIL/snpnet is capable of performing variable selection and effect size estimation
simultaneously from individual-level genotype and phenotype data. BASIL/snpnet results in sparse
PRS models, meaning that most genetic variants in the input dataset have zero coefficient. For
example, the snpnet PRS for standing height, a classic example of polygenic traits, includes 51,209
variants, which has non-zero coefficients for 4.7% of 1,080,968 genetic variants and allelotypes
present in the input genetic data.

2. Lines 55-61 do not define how you made discovery, tuning and testing samples, although the info is in the
methods a brief summary is needed to interpret results presented

Thank you very much for your suggestion. We completely agree with you regarding the need for more
description of the analysis in the results section so that people would easily interpret the results
presented in the manuscript. We expanded our description in the results section.

Lines 116-144, Page 5, Results

Characterizing sparse PRS models with BASIL algorithm

To build sparse PRSs across a wide range of phenotypes, we compiled a total of 1,565 traits in the
UK Biobank. We grouped them into trait categories, such as disease outcomes, anthropometry
measures, and cancer phenotypes (S1 Table, Methods). We analyzed a total of 1,080,968 genetic
variants and allelotypes from the directly-genotyped variants[19], imputed HLA allelotypes[21], and
copy number variants[22]. Using 80% (n = 269,704) of unrelated individuals of white British ancestry,
we applied batch screening iterative lasso (BASIL) implemented in the R snpnet package[10]. This
recently developed method characterizes PRS models by simultaneously performing variable
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selection and effect size estimation. Applying different levels of penalization in the Lasso regression
with penalty factors, we prioritized the medically relevant alleles in the PRS model. Specifically, we
used the predicted consequence of the genotyped variants and the pathogenicity information in the
ClinVar database. We prioritized protein-truncating variants, protein-altering variants, imputed HLA
allelotype, and known pathogenic and likely-pathogenic variants by assigning lower penalty factors
(Methods). As unpenalized covariates, we included age, sex, and the loadings of the top ten principal
components (PCs) of genotypes. For 35 blood and urine biomarker traits, we took the snpnet PRS
models from a recently published study[23], where the PRS models were characterized with the same
methods on the same set of individuals following the adjustment for an extensive list of technical
covariates, including fasting time and dilution factors, as well as for age, sex, and genotype PCs.

To evaluate the predictive performance (R2 for quantitative traits and receiver operating characteristic
area under the curve [ROC-AUC] for binary traits) and its significance of PRS models, we focused on
the remaining 20 % of unrelated individuals in the hold-out test set (n = 67,425) as well as additional
sets of unrelated individuals in the following ancestry groups in UK Biobank: non-British European
(non-British white, n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n =
1,704) (S2 Table, Methods). We found 813 PRS models with significant (p < 2.5 x 10-5 = 0.05/2,000,
adjusted for multiple hypothesis testing with Bonferroni method) predictive performance in the
hold-out test set of white British individuals (Methods). For the binary traits, we also evaluated
pseudo-R2 using Tjur's Coefficient of Discrimination[24] and Cragg and Uhler’s pseudo-R2 (also
commonly known as Nagelkerke’s pseudo-R2)[25,26].

3. Figure 1 Axis labels too small – especially part D- lake plot – not an informative title; The entries of column 1
are not self-evident in terms of discovery/target, from lines 139-145 I see that other ancestries were not
included in discovery sample, but not obvious from Fig 1 legend. Line 206, add to avoid ambiguity “The
non-British white, African, South Asian and East Asian samples were only used as test sets”

Thank you for providing specific suggestions. We agree with all of your points and updated the figure
and the texts.

● We added a new panel (A) in Figure 1 to further clarify the set of individuals used in the study.
● The figure axis labels are now in larger font sizes
● The panel (E) (previously panel D) is now titled “non-zero coefficients of sparse PRS model”
● The ancestry group column in panel (F) (previously panel E) has user-friendly labels
● We added the suggested sentence in the Methods section (now line 426-429, previously line

206).

Lines 426-429, Page 16, Study population and genetic data, Methods

We randomly split the white British cohort into 70% training (n = 235,991), 10% validation (to select
the optimal sparsity level) (n = 33,713), and 20% test (n = 67,425) sets[23,57]. We used the same
split of training, validation, and test set for all tested traits. The non-British white, African, South Asian,
and East Asian samples were only used as test sets.
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Figure 1. Significant sparse polygenic risk scores (PRSs) across 813 traits in the UK Biobank. (A) We
analyzed a total of more than 378,000 unrelated individuals and 1,565 traits in UK Biobank. We used 80 % of
individuals of white British ancestry for score development. For evaluation, we used the remaining 20 % of
individuals and additional individuals in other ancestry groups.

4. I think “ethnic” is now regarded as cultural, and the preferred term in this context is “ancestry”

We agree with your point. Following your suggestion, we replaced “trans-ethnic predictive
performance assessment” with “transferability assessment of PRS models across ancestry groups in
UK Biobank” in the updated version of the manuscript.

5. Figure 5 would benefit from “quotable” mean number stats for each ancestries

We completely agree with your point. We added the coefficients of a linear regression fit in the main
text.

Lines 288-300, Page 11, Results

Sparse PRS models exhibit limited transferability across ancestry groups

While the majority of the participants in the UK Biobank are of European ancestry, the inclusion of
individuals from African and Asian ancestry enables an assessment of the transferability of the PRS
models across ancestry groups in UK Biobank. In addition to the hold-out test set that we derived
from the white British population, we focused on additional sets of individuals from non-British
European (non-British white), African, South Asian, and East Asian ancestry groups and compared
the incremental predictive performance with that in white British hold-out test set (Fig 6). For
quantitative traits, the models predicted well for non-British white (linear regression fit of the
incremental predictive performance: y = 0.91x), but they suffer limited transferability for the
non-European ancestry groups (y = 0.56x, y = 0.47x, and y = 0.13x for South Asian, East Asian, and
African, respectively). Similarly, in binary traits, the non-British white showed higher transferability (y =
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0.60 x) than the non-European ancestry groups (y = 0.095x, y = 0.011x, and y = -0.086x for South
Asian, East Asian, and African, respectively).

We also included those numbers in figure 6 (previously figure 5) panels as well.

Figure 6. Transferability assessment of PRS models across ancestry groups in the UK Biobank. The
incremental predictive performance (incremental AUC for 244 binary traits [left] and incremental R2 for 569
quantitative traits [right]) was quantified in individuals in different ancestry groups in the UK Biobank and was
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compared against that in the hold-out test set constructed from the individuals in white British ancestry
group. (Top) the difference in the incremental predictive performance between the target group (x-axis,
double-coded with color) and the source white British cohort. The median values are shown as black
horizontal bars and numbers. (Bottom) comparison of the incremental predictive performance in the target
group (color) and the test set. A simple linear regression fit was shown for each ancestry group with the
dashed lines. The slopes of the regression lines were also shown.

6. It would be of interest to have a plot of x-axis SNP-based heritability, y-axis increase in r2/AUC.

Thank you very much for the great suggestion. We added a figure comparing the estimated
SNP-based heritability (from LD score regression) and the predictive performance of the PRS model.
We used R2 and Tjur’s pseudo-R2 for quantitative traits and binary traits, respectively.

Figure 2. Comparison of the estimated SNP-based heritability and predictive performance across the
813 traits with significant PRSs. The predictive performance (Tjur's pseudo-R2(ref: [24]) for 244 binary
traits [left] and R2 for 569 quantitative traits [right]) of the PRS models that only consider genetic variants are
compared against the estimated SNP-based heritability. The solid gray lines represent y = x, and the dashed
gray lines represent a linear regression fit (y = 0.20 x and y = 0.15 x for binary traits and quantitative traits,
respectively). We show the points on the bottom left corners in the inset plots. The error bars represent
standard error. BMD: Bone mineral density.

7. Given the differing sizes of test sets across ancestries it would be good to remind readers how this
does/does not impact on interpretation of cross-ancestry comparisons.
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We added a sentence in the discussion section to remind the reader that the non-European ancestry
groups in UK Biobank are of a smaller sample size.

Lines 352-361, Page 13, Discussion

Like other PRS approaches that consider datasets from one source population in the PRS training,
our sparse model trained on the individual-level data of white British showed limited transferability
across diverse ancestry groups[37–39]. The sample sizes of non-European ancestry groups in UK
Biobank are smaller than that of European ancestry groups. In general, that will result in larger
uncertainties in predictive performance assessment. Nonetheless, when we assess the incremental
predictive performance across ancestry groups by comparing the full model consisting of the genetic
data and basic covariates and the covariate-only model, we found the binary traits, including disease
outcomes, have lower transferability compared to quantitative traits, including biomarkers, blood
measurements, and anthropometric traits. Improvements of PRS models with high transferability
across ancestry groups and the admixed individuals are of interest for future research.

Referee #3:

In this paper Tanigawa et al. describe the systematic creation of polygenic risk scores (PRS) for > 1,600 traits
using data from the UK Biobank (UKB). The construction and evaluation of the PRS is well-described, and the
main result of the manuscript is a large resource of PRS built using a single method and a comprehensive web
portal describing the results that will be useful for others looking to better understand the performance of each
score and apply them to other cohorts. I do not have any major concerns about the manuscript; however, I
think some of the unique features of the analysis should be better described and contextualised:

Thank you very much for taking the time to review the manuscript and for providing detailed
feedback. We are confident that your comments have improved the clarity of the manuscript. The
summary of the key changes in this revision is summarized on the first page of this document. Here
are the responses to your suggestions.

• The choice of variants (directly genotyped, imputed HLA, and CNVs) is quite different from classical PRS
analyses that usually employs the full-set of imputed variants with MAF/INFO filtering. Does the performance
improve if these imputed variants are included in the dataset? It is probably relevant to list the genotyping
arrays employed, and adjust for the different arrays used in the performance evaluation.

Thank you very much for asking about the imputed variants and the types of genotyping arrays in UK
Biobank.

Following your suggestions, we performed an additional analysis asking whether the inclusion of the
imputed variants further improves the predictive performance of the PRS model by focusing on four
traits. As you may see below, we did not see a clear difference in predictive performance (for 3 out of
4 traits, the inclusion of the imputed variants helped improve the predictive performance but it was
otherwise for the renaming one trait). Nonetheless, we have included this analysis as a
supplementary figure. Thank you.
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Lines 164-169, Page 6, Characterizing sparse PRS models with BASIL algorithm, Results

With the same set of four traits, we asked whether including the imputed genetic variants could
improve the predictive performance. We saw some gain in the predictive performance in three traits
but not for standing height (S3 Fig). Based on those results, we decided to move on to the
phenome-wide application of the BASIL algorithm implemented in the R snpnet packages on the
directly genotyped variants, imputed allelotypes, and copy number variants while prioritizing the
medically relevant alleles with penalty factors.

Fig S3. The impact of the imputed genetic variants on the predictive performance of snpnet PRS models.
The predictive performance (AUC for binary traits and R2 for quantitative traits) evaluated across hold-out
test set individuals of different ancestry groups in UK Biobank are shown for four traits. The error bars
represent the 95% confidence interval.
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Regarding the types of genotyping arrays used in the UK biobank, we have revised the performance
evaluation of the PRS models and included an indicator variable of the types of arrays in the
covariates.

Lines 146-150, Page 5, Characterizing sparse PRS models with BASIL algorithm, Results

The participants of the UK Biobank were genotyped on two different arrays: about 10 % of
participants were genotyped on the UK BiLEVE Axiom array, whereas the rest were genotyped on the
UK Biobank Axiom array[19]. To account for the potential biases correlated with the types of arrays,
we evaluated the predictive performance of the PRS by accounting for the types of the arrays in
addition to the age, sex, and the top ten genotype PCs.

Lines 526-547, Page 18, Methods

Predictive performance and transferability of PRS models

We evaluated the predictive performance (R2 for quantitative traits and receiver operating
characteristic area under the curve [ROC-AUC] for binary traits) of PRS models. We used the
individuals in the hold-out test set (n = 67,425) of white British ancestry as well as additional sets of
individuals in non-British white (n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East
Asian (n = 1,704) ancestry groups. We evaluated the 95% confidence interval of predictive
performance using approximate standard error of R2 (ref:[63,64]) and DeLong’s method[65] for R2 and
AUC, respectively. For the binary traits, we also evaluated pseudo-R2 using Tjur's Coefficient of
Discrimination[24] and Cragg and Uhler’s pseudo-R2 (also commonly known as Nagelkerke’s
pseudo-R2)[25,26]. We evaluated the predictive performance of (1) the genotype-only model, (2) the
covariate-only model, and (3) the full model that considers both covariates and genotypes. We
computed the difference between the full model and the covariate-only model to derive the
incremental predictive performance.

To evaluate the predictive performance of the covariate-only model in the hold-out test set of white
British ancestry, we fit a generalized regression model, trait ~ age + sex + array + Genotype PCs,
using the individuals in the score development set. We subsequently computed the risk scores based
on the covariate terms for the individuals in the hold-out test set. The array is an indicator variable
denoting the types of the genotyping array (either the UK BiLEVE Axiom array or the UK Biobank
Axiom array). For the individuals in non-British white, African, South Asian, and East Asian ancestry
groups, we took the ancestry group-specific PCs computed for each set[23] and fit the same
regression model for each group. We did not use the array indicator variable for African, South Asian,
and East Asian because all individuals in those ancestry groups were genotyped on the UK Biobank
Axiom Array (S2 Table).

• The prioritization of medically-relevant (ClinVar pathogenic/likely-pathogenic, VEP predicted
protein-truncating/altering variants) for non-zero effect weights in the PRS is also a quite interesting addition;
however, I was surprised to see no quantitative analysis of its impact on PRS performance. I would also
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hypothesize that the weighting would also impact the number of variants selected in the model (Figure 4)?
Some comparison of the PRS performance and transferability with/without the variant prioritisation is
necessary.

Thank you very much for your great suggestion. We performed an additional analysis evaluating the
effects of the prioritization of the medically relevant alleles focusing on four traits. As you may see
below, we found a little difference in the predictive performance in the hold-out test set as well as in
other ancestry groups in UK Biobank while we saw an enrichment of the prioritized alleles.

Fig S2. The impact of prioritizing the medically relevant alleles with penalty factors on the predictive
performance of snpnet PRS models. The predictive performance (AUC for binary traits and R2 for
quantitative traits) evaluated across hold-out test set individuals of different ancestry groups in UK Biobank
are shown for four traits. The error bars represent the 95% confidence interval.

Table 1. The prioritization of the medically relevant alleles with penalty factors. The number of the
genetic variants or allelotypes with non-zero coefficient values are shown for the four traits. The denominator

22/26



represents the total number of variables included in the model. The numerator represents the number of the
medically relevant alleles, which are one of the following: protein-truncating variants, protein-altering
variants, imputed HLA allelotypes, the pathogenic or likely-pathogenic variants in the ClinVar database. The
enrichment of the medically relevant variants is also shown.

Trait
Number of selected genetic variants or allelotypes

with penalty factor without penalty factor enrichment

Standing height 4187 / 51209 2129 / 55937 2.15

Body mass index 2543 / 27126 977 / 28667 2.75

High cholesterol 969 / 5987 215 / 5506 4.14

Asthma 1022 / 6430 250 / 6819 4.34

Lines 153-162, Pages 5-6, Results

To assess the degree of prioritization of the medically relevant alleles, we selected standing height,
body mass index (BMI), high cholesterol, and asthma. We compared the predictive performance and
the number of genetic variants for each functional category. For the four selected traits, we found a
little difference in the predictive performance (R2 = 0.177 vs. 0.176 for the PRS model with penalty
factor and without penalty factor, respectively, for standing height, R2 = 0.111 vs. 0.111 for BMI, AUC =
0.620 vs. 0.619 for high cholesterol, and AUC = 0.617 vs. 0.617 for asthma) (S2 Fig) while we saw an
enrichment of the number of the medically relevant alleles with non-zero coefficients in the PRS
model with prioritization (2.14 fold enrichment standing height, 2.75 fold for BMI, 4.14 fold for high
cholesterol, and 4.33 fold asthma) (Table 1, S3 Table), highlighting the flexibility of the BASIL/snpnet
in assigning different levels of penalization based on the variant-level information.

Lines 517-525, Page 18, Construction of sparse PRS models, Methods

To prioritize coding variants over non-coding variants in linkage, we assigned three levels of penalty
factors (also known as penalty scaling parameter)[62]: 0.5 for pathogenic variants in ClinVar[53] or
protein-truncating variants according to VEP-based variant annotation[59]; 0.75 for likely pathogenic
variants in ClinVar, VEP-predicted protein-altering variants, or imputed allelotypes; and 1.0 for all
other variants. The assignment rules of the penalty factors are summarized in (S5 Table). The
variants with lower values of penalty factors are prioritized in the L1 penalized regression. To assess
the degree of prioritization of the medically relevant alleles and their impacts on the predictive
performance, we focused on four traits (standing height, BMI, high cholesterol, and asthma) and fit a
separate model without penalty factors. We compared the number of selected variants and the
predictive performance.

• Are there any obvious reasons that the correlation of predictiveness and number of variants changes? Is it
dictated by differences in effect-size distributions or the MAF of selected variants?
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Thank you for asking for further clarification of our observation. Indeed, reviewer #1 also asked a
similar line of question and suggested the difference in the power between the binary and quantitative
traits as one of the possible reasons. As it is not feasible to pinpoint the exact reason for our
observation, we expanded the discussion section.

Lines 330-338, Page 13, Discussion

When we compared the number of independent loci included in the model and their incremental
predictive performance, we found a significant correlation across quantitative traits but not within
binary traits. While the underlying genetic architecture of binary traits may span the gamut of a wide
variety of polygenicity — from Mendelian and monogenic to oligogenic, omnigenic, and polygenic —,
that of highly heritable quantitative traits may not be compatible with monogenic inheritance as
illustrated in the wide adoption of Fisher’s infinitesimal model[31–33]. In addition to potential
differences in the underlying genetic architectures across traits, the limitation in power for some traits,
especially for the binary traits with limited case counts, differences in heritability, and a combination of
all of those may be the contributing factor to the lack of the observed correlation in binary traits.

Minor comments:

• A table with the age/sex/follow-up time/ancestry breakdown of the different training and test sets should be
included. Were individuals included in the 70% training set consistent across all PRS being built?

Thank you very much for your suggestion. We added Supplementary Table 2 to describe the sample
characteristics. We also added panel (A) in figure 1 to further clarify the different sets of individuals
used in the manuscript.

Figure 1. Significant sparse polygenic risk scores (PRSs) across 813 traits in the UK Biobank. (A) We
analyzed a total of more than 378,000 unrelated individuals and 1,565 traits in UK Biobank. We used 80 % of
individuals of white British ancestry for score development. For evaluation, we used the remaining 20 % of
individuals and additional individuals in other ancestry groups.
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The 70 % training set, the 10 % validation set (to determine the level of sparsity in the penalized
regression), and the 20 % test set split is the same across all the PRS models. We clarified these
points. We clarified this point in the Methods section.

Lines 495-507, Page 17, Methods

Construction of sparse PRS models

Using the batch screening iterative Lasso (BASIL) algorithm implemented in the R snpnet
package[10], we constructed the sparse PRS models for the 1,565 traits. We used the Gaussian
family and the R2 metric for quantitative traits, whereas we used the binomial family and the
AUC-ROC metric for the binary traits[10]. For each trait, we fit a series of regression models with a
varying degree of sparsity on the training set, consisting of 70% (n = 235,991) of unrelated individuals
of white British ancestry. The predictive performance of each of the models is evaluated on the
validation set, which consists of 10% (n = 33,713) of unrelated individuals of white British ancestry to
guide the selection of the optional level of sparsity. We selected the sparsity that maximizes the
predictive performance in the validation set. We subsequently refit the penalized regression model
using the individuals in the combined training and validation set individuals (n = 269,704), which we
denote as score development set, to maximize the power in the regression model[10]. We used the
same training, validation, and test set split across all the PRS models analyzed in this study.

• Description of how the p-value threshold for incremental predictiveness was selected should be provided.

Thank you very much for your suggestion. We clarified the p-value threshold in the results and the
methods section.

Lines 135-142, Page 5, Characterizing sparse PRS models with BASIL algorithm, Results

To evaluate the predictive performance (R2 for quantitative traits and receiver operating characteristic
area under the curve [ROC-AUC] for binary traits) and its significance of PRS models, we focused on
the remaining 20 % of unrelated individuals in the hold-out test set (n = 67,425) as well as additional
sets of unrelated individuals in the following ancestry groups in UK Biobank: non-British European
(non-British white, n = 24,905), African (n = 6,497), South Asian (n = 7,831), and East Asian (n =
1,704) (S2 Table, Methods). We found 813 PRS models with significant (p < 2.5 x 10-5 = 0.05/2,000,
adjusted for multiple hypothesis testing with Bonferroni method) predictive performance in the
hold-out test set of white British individuals (Methods).

Lines 554-557, Page 19, Predictive performance and transferability of PRS models, Methods

We looked at the p-value reported for the PRS term for the statistical significance of the PRS model.
We used p < 2.5 x 10-5 (= 0.05/2000, adjusted for multiple hypothesis testing using the Bonferroni
method for the number of traits analyzed in the study) as the significance threshold.

• A major advantage of the BASIL/snpnet application in comparison to other PRS-derivation methods seems to
be that it does not rely on LD reference panels which often limit the PRS derivation set to being a
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single-ancestry group. Given that the manuscript is somewhat focused on transferability of sparse PRS: would
it be possible to derive new PRS using a random sample of the entire cohort (all ancestries) and evaluate how
the multi-ancestry PRS compare to European-PRS at the whole population and single-ancestry level? [I realize
this is beyond the scope of the current analysis but would be informative and may greatly improve the impact]

Thank you very much for pointing out the requirement of individual-level data as one of the unique
features of the BASIL/snpnet. We agree with your insightful comments but such investigation is
beyond the scope of the current work. We updated the discussion section.

Lines 352-361, Page 13, Discussion

Like other PRS approaches that consider datasets from one source population in the PRS training,
our sparse model trained on the individual-level data of white British showed limited transferability
across diverse ancestry groups[37–39]. The sample sizes of non-European ancestry groups in UK
Biobank are smaller than that of European ancestry groups. In general, that will result in larger
uncertainties in predictive performance assessment. Nonetheless, when we assess the incremental
predictive performance across ancestry groups by comparing the full model consisting of the genetic
data and basic covariates and the covariate-only model, we found the binary traits, including disease
outcomes, have lower transferability compared to quantitative traits, including biomarkers, blood
measurements, and anthropometric traits. Improvements of PRS models with high transferability
across ancestry groups and the admixed individuals are of interest for future research.
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