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Please find the review response and revision regarding our manuscript “Significant Sparse Polygenic 
Risk Scores across 813 traits in UK Biobank” (PGENETICS-D-21-01210R1). Our responses to the 
reviewers’ individual comments below are in blue font, the comments from the reviewer are copied in 
black, and quoted texts from the updated manuscript are shown in gray with a vertical bar (examples 
are shown below):  
 
This is an example of the reviewer’s comments 
This is an example of our response. 
This is an example of quoted texts from the updated manuscript 
 
 
We revised the manuscript based on the feedback from the reviewers. The major points of the 
revision include: 
 

● Given the feedback from reviewers #1 and #2, we removed the sentences that inappropriately 
mentioned genetic architecture in binary traits. We instead clarified that there is a power 
difference between quantitative traits and binary traits. 

● Given the concerns (from reviewer #2) regarding the lack of theoretical basis in using 
incremental ROC-AUC for assessing linear relationship (estimated SNP-based heritabilities 
and transferability assessment), we now use Nagelkerke's pseudo-R2 as the primary 
evaluation metric of predictive performance for binary traits in the current version of the 
manuscript. 

● As we change the evaluation metric for binary traits, we now observe a significant rank-based 
correlation between the effect size (incremental Nagelkerke's pseudo-R2) and the model size 
(number of genetic variants with non-zero coefficients) of the sparse PRS model. 

 
Our specific point-to-point responses to the reviewer’s comments are listed below. 
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Reviewer #1: 

This manuscript has certainly been improved with the addition of more detail descriptions of the method and 
procedure involved. Thank you to the authors for making all these efforts. 

Overall, I am still slightly confused as to what are the main messages of the current paper. I am also slightly 
concern about some interpretation of the results. 

Thank you very much for taking the time to review the manuscript and for providing detailed 
feedback. We are confident that your comments have improved the clarity of the manuscript. Here 
are the responses to your suggestions. 

1. While the authors have now included much of the needed details regarding the procedure and methods 
performed, there are still some critical information that are missing. For example, quantitative traits were 
calculated as the “median of non-NA values, as described elsewhere”, does that mean that the authors took 
the measurement across multiple assessment time points and took the median of that? Did the author perform 
any quality controls on the phenotype to remove outliers? 

Thank you very much for clarifying the phenotype definition. Indeed, some of the phenotypes are 
collected at multiple time points (called “instances” in UK Biobank) at the assessment center. The 
non-NA median was taken across those multiple timepoints. We have clarified this in the updated 
texts in the manuscript. 
 
Lines 470-479, Page 17, Methods 

Phenotype definitions in the UK Biobank 

We analyzed a wide variety of traits in the UK Biobank, including disease outcome[46,60], family 
history [46,60], cancer registry data[46], blood and urine biomarkers[23], hematological 
measurements, and other binary and quantitative phenotypes[55,56]. Some phenotype information 
collected at UK Biobank’s assessment center contains up to four instances, each of which 
corresponds to (1) the initial assessment visit (2006-2010), (2) first repeat assessment visit (2012-
2013), and (3) imaging visit (2014-), and (4) first repeat imaging visit (2019-). Briefly, for binary traits, 
we performed manual curation of phenotypic definitions and assigned “case” status if the participants 
are classified as case in at least one of their visits and “control” otherwise. For quantitative traits, we 
took the median of non-NA values, as described elsewhere[55]. 

The phenotypes analyzed in the present study were derived using the procedure described in the 
previously published studies. As we did not derive any new phenotype, we did not perform additional 
phenotype quality controls in this study. As you will see in the response to your log-transformation of 
the biomarker phenotypes, outlier values of the biomarker measurements were flagged by UK 
Biobank and we have removed such outliers in our analysis. 

2. In a similar vein, for the blood and urine biomarkers, the covariate adjusted phenotype were calculated using 
the log transformed phenotypic value and the incremental predictive performance were calculated against the 
predictive value based on the original measurement. Were the original measurements also log transformed? 
Or was the untransformed value being used? If it is the latter, wouldn’t that introduce some bias? In addition, it 
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is not uncommon to have blood or urine biomarker measurement of 0. In those scenarios, log transformation 
will lead to undefined value. How was that accounted for? 

Thank you very much for the clarification. The original values were not log-transformed with the 
exception of the three derived traits (eGFR, AST/ALT ratio, and non-albumin protein, where the 
“original” phenotype values were not available as those values are derived from other biomarker 
values).  
 
The UK Biobank scientists performed phenotype quality control for the biomarker values 
(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf). We excluded the 
“Outside of the Observed Reportable Range” and QC failed measurements from our analysis, as 
described in our previously published paper (PMID: 33462484). After removing those measurements, 
we did not observe zero value in the biomarker measurement value. As such, we simply took the log 
transformation. 
 
To investigate whether the inclusion of the log-transformed traits introduces unexpected biases, we 
performed sensitivity analysis where we excluded all of the biomarker traits and repeated all the 
analyses. The correlation between the estimated SNP-based heritability and predictive performance 
of the PRS models (R2), distribution of incremental predictive performance, the correlation between 
the size of the PRS model (the number of variants with non-zero BETA value) and predictive 
performance of the PRS models (R2), as well as the transferability assessment within UK Biobank 
populations were all largely consistent with the original analysis. 
 

 
 
Figure. Comparison of the estimated SNP-based heritability and predictive performance. The 
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predictive performance (R2) of the PRS models that only consider genetic variants are compared 
against the estimated SNP-based heritability. The plots are shown for all 569 quantitative traits (left) 
and 535 non-biomarker traits (right). The solid gray lines represent y = x. We show the points on the 
bottom left corners in the inset plots. The error bars represent standard error. BMD: Bone mineral 
density.  

 
 
 

 
 
Figure. Incremental predictive performance of the PRS model across the quantitative traits 
with significant predictive performance in the hold-out test set individuals of white British 
ancestry. The predictive performance (R2) of the full models that consider both the genotype and 
covariates are compared against that of the covariate-only models, and their difference (the 
incremental predictive performance) is shown as a histogram. The plots are shown for all 569 
quantitative traits (left) and 535 non-biomarker traits (right). 
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Figure. Comparison of the effect size and the model size of sparse PRS. The number of the 
genetic variants included in the model (size of the model, x-axis) and the incremental predictive 
performance (effect size of the model, y-axis) are shown. The plots are shown for all 569 
quantitative traits (left) and 535 non-biomarker traits (right). 
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Figure. Transferability assessment of PRS models across ancestry groups in the UK 
Biobank. The incremental predictive performance (incremental R2) was quantified in individuals in 
different ancestry groups in the UK Biobank and was compared against that in the hold-out test set 
constructed from the individuals of white British ancestry. The plots are shown for all 569 
quantitative traits (top) and 535 non-biomarker traits (bottom). (Left) the difference in the 
incremental predictive performance between the target group (x-axis, double-coded with color) and 
the source white British cohort. The median values are shown as black horizontal bars and 
numbers. (Right) comparison of the incremental predictive performance in the target group (color) 
and the test set. A simple linear regression fit was shown for each ancestry group with the dashed 
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lines. The slopes of the regression lines were also shown. 
 

 

3. For the SNP-heritability estimates, the authors perform GWAS on the quantile normalized phenotype. Were 
the phenotypes also log transformed? It is difficult to assess the relationship between the PRS performance 
and SNP-heritability if they were performed on phenotypes undergone different transformation. Also, was the 
quantile normalization done on both quantitative traits and binary traits? 

Thank you very much for your clarification question. The quantile normalization was performed only 
for the quantitative traits when performing the GWAS analysis. We did not apply the quantile 
normalization in the PRS analysis. This is clarified in the current version of the manuscript. 
 
Lines 571-573, Page 19, SNP-based Heritability estimation, Methods 

In the regression analysis, we standardized the variance of the covariates (--covar-variance-
standardize option) and applied quantile normalization for the quantitative phenotype (--pheno-
quantile-normalize option). Note, we did not perform quantile normalization in the PRS analysis. 

 
In the previous version of Figure 2 (a plot comparing estimated SNP-based heritability and predictive 
performance), we had a linear regression fit summarizing the relationship between the two variables. 
We agree with your concern and dropped the linear regression fit. Instead, we report Spearman’s 
rank-based correlation to indicate the relationship between the estimated heritability and predictive 
performance without assuming the linear relationship between the two. 
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Figure 2. Comparison of the estimated SNP-based heritability and predictive performance across 
the 813 traits with significant PRSs. The predictive performance (Nagelkerke's pseudo-R2 for 244 
binary traits [left] and R2 for 569 quantitative traits [right]) of the PRS models that only consider 
genetic variants are compared against the estimated SNP-based heritability. The solid gray lines 
represent y = x. We show the points on the bottom left corners in the inset plots. The error bars 
represent standard error. BMD: Bone mineral density.  

 
 

4. It is odd to have PRS that report a higher predictive performance than SNP-heritability, as the SNP-
heritability are the theoretical upper bound of the PRS. It will be helpful if the authors can provide an 
explanation as to why the PRS performance is higher than the SNP-heritability (possibly due to different 
phenotypic transformation, or that the PRS include information that were excluded from the SNP-heritability 
estimate?). Standard error of the predictions should ideally be also reported to provide a better understanding 
of the power. 

Thank you very much for clarifying the consistency of the reported predictive performance and the 
estimated heritability. For most traits analyzed in the study, we observed the predictive performance 
of the PRS models was lower than the SNP-based heritability estimates. The exceptions include hair 
color traits, lipoprotein A, and total bilirubin. We think the heritability estimates for those traits have 
downward biases due to the presence of the strong-acting alleles in a few loci. 
 
We used LD score regression (LDSC, PMID: 26414678) to estimate the SNP-based heritability. 
LDSC estimates the SNP-based heritability of the trait by fitting a linear regression model for the chi-
squared statistics on the LD score, which summarizes the degree of linkage with neighboring genetic 
variants. LDSC removes GWAS associations with extreme association statistics (discussed in the 



 

9/24 

software’s GitHub page: https://github.com/bulik/ldsc/issues/144), potentially introducing downward 
bias in the heritability estimates. 
 
Taking “hair color (red)”, “hair color (blonde)”, “hair color (dark brown)”, “Lipoprotein A”, and “Total 
bilirubin” as example traits where we have higher predictive performance than estimated SNP-based 
heritability from LDSC, we examined the GWAS Manhattan plots. As you will see in the plots below, 
those traits all have extremely large chi-squared association statistics (as well as -log10(P) value). 
 

 
Figure Manhattan plot for Hair color (natural, before graying) red. 
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Figure Manhattan plot for Hair color (natural, before graying) blonde. 

 

 
Figure Manhattan plot for Hair color (natural, before graying) dark brown. 
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Figure Manhattan plot for Lipoprotein A. 

 

 
Figure Manhattan plot for Total bilirubin. 
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When we check the LD score intercept of the GWAS summary statistics of those traits, their LD score 
intercept values are smaller than that of body mass index (BMI). 
 

Table. LD score regression-based heritability estimates and LD score intercept for selected traits. 
The full table is available as Supplementary Table S7. 
Trait h2_obs h2_obs_se intercept intercept_se 

Hair color (natural, before graying) red 0.1097 0.0949 1.014 0.0111 

Hair color (natural, before graying) blonde 0.1307 0.029 1.0556 0.0125 

Hair color (natural, before graying) dark brown 0.1542 0.044 1.0538 0.0119 

Lipoprotein A 0.1038 0.0964 1.0151 0.0109 

Total bilirubin 0.1841 0.1006 1.0364 0.0114 

Body Mass Index (BMI) 0.2221 0.0096 1.0671 0.0116 
 

 

Nonetheless, we agree that it is not appropriate to emphasize that we observe higher predictive 
performance than SNP-heritability in the main text. We dropped the sentence.  
 
Lines 199-204, Page 7, Results 

!"#$%%&'((&)*+,#-&.#,*.%&,+/&012&34,+.*.,.*56&.#,*.%&7*.8&%*9+*:*",+.&;<=&>$/6?%@&76&:$4+/&8*986#&

6%.*>,.6/&$)%6#56/A%",?6&86#*.,)*?*.-&:$#&34,+.*.,.*56&.#,*.%B&C56#,??@&76&:$4+/&,&%*9+*:*",+.&"$##6?,.*$+&

)6.766+&.86&6%.*>,.6/&=D;A),%6/&$)%6#56/A%",?6&86#*.,)*?*.-&,+/&E#6/*".*56&E6#:$#>,+"6&

F=E6,#>,+G%&#,+H&"$##6?,.*$+&"$6::*"*6+.&I&J&KB((@&EA5,?46&J&LB0&M&NKANL&:$#&)*+,#-&.#,*.%@&I&J&KB(1@&EA

5,?46&J&NB(&M&NKALN&:$#&34,+.*.,.*56&.#,*.%OB 

 

5. Based on how this paper is structured, it seems like the main message is that there is a significant positive 
correlation between the number of active variables in the PRS model and the incremental predictive 
performance in quantitative traits but not in binary traits, and this “highlighting the presence of diverse genetic 
architecture across disease outcomes.”. However, because the population prevalence of the binary traits is 
usually not known, and that the UK Biobank is a prospective cohort where the case numbers might not reflect 
the true population prevalence, the prediction performance of the binary traits, and their SNP-heritability 
estimations will likely be biased by ascertainment. In addition, in the main analysis, the authors “used the same 
split of training, validation and test set for all tested traits.”, which means that the case control ratio for the 
binary traits are likely different between the different set of samples, leading to a greater disparity of 
performance. Considering the lower heritability of binary traits (mean = 0.04 for binary trait, mean = 0.23 for 
quantitative traits, based on provided supplementary), reporting on observed instead of liability scale, and the 
different level of ascertainment bias, it is not surprising that the correlation between the number of active 
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variables in the PRS model and the incremental predictive performance in binary traits are not significant. And 
it might be slightly misleading to conclude that the lack of correlation in binary traits, but in quantitative traits is 
a result of “the presence of diverse genetic architecture”. 

Thank you very much for raising important concerns about our previous statements on the 
interpretation of the results. Based on your feedback and comments from reviewer #2, we (1) 
dropped the inappropriate sentences mentioning the “diverse genetic architecture”, (2) swapped 
incremental ROC-AUC with Nagelkerke's pseudo-R2, and (3) found that there was a significant 
correlation between the number of active variables and the incremental predictive performance for 
both quantitative and binary traits. We also acknowledged the presence of the power difference 
between binary traits and quantitative traits as well as the difference in the observed-scale trait 
heritability. 
 
Lines 269-274, Page 10, Results 

P6&6M,>*+6/&786.86#&.86#6&*%&,&#6?,.*$+%8*E&)6.766+&.86&+4>)6#&$:&,".*56&5,#*,)?6%&*+&.86&%*9+*:*",+.&

;<=&>$/6?&,+/&.86&*+"#6>6+.,?&E#6/*".*56&E6#:$#>,+"6B&Q86&%*9+*:*",+.&"$##6?,.*$+&)6.766+&.86&.7$&

34,+.*.*6%&*%&%.#$+96#&*+&34,+.*.,.*56&F=E6,#>,+G%&#,+H&"$##6?,.*$+&"$6::*"*6+.&I&J&KB1N@&E&J&'B'&M&NK-59O&

.#,*.%&.8,+&*+&)*+,#-&FI&J&KB'N@&E&J&2B1&M&NK-4), reflecting the difference in power between binary and 

quantitative traits[31]. 

 
Lines 322-327, Page 13, Discussion 

We assessed the effect size of the PRS model by quantifying the incremental predictive performance, 
which we define as the difference in the predictive performance between the covariate-only model 
and the full model consisting of both covariates and genetics. In both quantitative and binary traits, we 
find a significant correlation between the number of independent loci included in the model and their 
incremental predictive performance. 

 
Lines 350-356, Page 13, Discussion 

Nonetheless, when we assess the incremental predictive performance across ancestry groups by 
comparing the full model consisting of the genetic data and basic covariates and the covariate-only 
model, we found the binary traits, including disease outcomes, have lower transferability compared to 
quantitative traits, including biomarkers, blood measurements, and anthropometric traits. The power 
difference between binary and quantitative traits[31], limitation in power for some traits, especially for 
the binary traits with limited case counts, and differences in heritability may be the contributing factors 
of the observed difference.  

 
Also, as you correctly pointed out, we used the same set of training, validation, and test set split 
across all the samples. Those sets are all derived from white British individuals in UK Biobank and 
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they are equally affected by the ascertainment bias in the population-based cohort. Nonetheless, to 
investigate your concerns of potential difference in the case frequency in the score development set 
(training and validation set) and the evaluation set (test set). As you can see in the plot below, we did 
not see notable differences between the two across 244 binary traits (including disease outcomes 
and non-disease traits) with significant PRS. 
 

 
Figure. The case frequency difference between the score development set (training set and 
validation set, x-axis) and the hold-out test set (test set, y-axis). The error bars represent 95% 
confidence intervals. 

 
 

6. Similar to the above comment, the case control ratio in different population might also differ, which was not 
accounted for here. 

We refit the logistic regression across additional populations when evaluating the predictive 
performance. The intercept term in the logistic regression accounts for the difference in the case 
prevalence. This is now clarified in the text. 
 
Lines 553-556, Page 19, Methods 

To evaluate the predictive performance of the full model, we fit a model, trait ~ 1 + covariate-only 
score + PRS, using the covariate-only score and PRS described above. The constant term accounts 
for the potential differences in the trait mean (for quantitative traits) or case prevalence (for binary 
traits) between the score development population and the target population. 
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Other minor comments: 

1. On line 197, line 249 and line 532, a different style of citation seems to be used? (ref:[#] , instead of [#]) 

Thank you very much. We now have the correct citation style in the latest version of the manuscript. 

 

2. For figure 4 top right, are the range inclusive or exclusive? E.g. for sample at 10 percentile, will they be 
grouped in [0-10%] or [10-20%]? Also, for multipaned plots, might be easier if the individual sub-plots are also 
labeled (e.g. 4a, 4b, 4c) 

Thank you very much for pointing out the ambiguity in the notation. We used left-open intervals with 
the exception of the top 10%-tile bin. We have updated the figure. Thank you very much for your 
suggestion. 
 

 
Figure 4. The sparse PRS model and their predictive performance for celiac disease. (A, B) the 
predictive performance of celiac disease PRS. (A) the celiac disease PRS distribution (y-axis) in a 
hold-out test set stratified by the disease case status (x-axis). The dashed lines represent the mean 
and the quantiles are shown as box plots. (B) The disease prevalence odds ratio compared to the 
individuals with middle (40-60th percentile) PRS score stratified by PRS percentile bins. The error 
bars represent standard error (SE). 

 
Thank you very much for taking the time to review the manuscript and for providing detailed 
feedback. 

Reviewer #2 

The authors have addressed my comments, but the revision has introduced some strong statements in the 
discussion which I believe are scale and power dependent. Therefore, I have additional comments. 
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Thank you very much for taking the time to review the manuscript and for providing detailed 
feedback. We are confident that your comments have improved the clarity of the manuscript. Here 
are the responses to your suggestions. 

New Figure 2A. For binary traits estimates of SNP-based heritability depends on proportion of GWAS 
discovery sample are cases, and Pseudo-R2 depend on the proportion of the target sample are cases. 
Although requiring a user-specified lifetime risk it would make more sense for these axes to be on the liability 
scale (even if lifetime risk used is the proportion of cases in the sample since all traits are in UKB) since then 
both axes are on the same scale and comparisons across traits are more valid. 

Thank you very much for pointing out the fact that pseudo-R2 depends on the case prevalence. While 
conversion of heritability and pseudo-R2 to liability scale is an attractive suggestion, the population 
prevalence parameter is not available only for some of the traits and we are unaware of how to 
properly consider the potential ascertainment bias in the UK Biobank study. 
 
In the previous version of the manuscript, we had Figure 2A comparing the estimated SNP-based 
heritability (in observed scale) against the predictive performance of the PRS models quantified by 
Tjur’s pseudo-R2 (in observed scale). Based on your feedback on the types of pseudo-R2, we revised 
Figure 2A using Nagelkerke’s pseudo-R2. 
 

 
Figure 2A. Comparison of the estimated SNP-based heritability and predictive performance across 
the 813 traits with significant PRSs. The predictive performance (Nagelkerke's pseudo-R2 for 244 
binary traits [left]) of the PRS models that only consider genetic variants are compared against the 
estimated SNP-based heritability. The solid gray lines represent y = x. We show the points on the 
bottom left corners in the inset plots. The error bars represent standard error. 
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When we take the case frequency in the UK Biobank as the estimate of the population case 
prevalence, we can convert the SNP-based heritability estimates and Nagelkerke’s pseudo-R2 into 
liability scale. As you will see in the plot below, the liability-scale metrics, especially Nagelkerke's 
pseudo-R2, for some traits (especially the ones with lower case counts in UK Biobank) showed very 
high value. For example, Iritis has a case count of 146 and 40 in the PRS model development set and 
hold-out test set, respectively. 
 

 
Figure. Comparison of the estimated SNP-based heritability (liability scale) and predictive 
performance (Nagelkerke’s pseudo-R2 in liability scale) across the 244 binary traits with significant 
PRSs. The left panel shows all the 244 traits. A subset of traits marked with black box is shown in 
the right panel. 

 
For the proper conversion to liability-scale metrics, we believe the reliable estimate of population 
prevalence of the binary traits would be helpful, but such parameters are not available for 244 traits 
(including both disease and non-disease traits) considered in the study. To avoid the potential 
confusion, we decided to show the results on the observed-scale. Related to this, reviewer #1 also 
asked if there are differences in the case frequency between the PRS score development set and 
PRS evaluation set. As you see in the plot below, we confirmed that there is no notable difference. 
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Figure. The case frequency difference between the score development set (training set and 
validation set, x-axis) and the hold-out test set (test set, y-axis). The error bars represent 95% 
confidence intervals. 

 
 
With those observations, we now show the observed-scale heritability and observed-scale predictive 
performance (Nagelkerke’s pseudo-R2 and R2 for binary and quantitative traits, respectively) in Figure 
2. In the updated version of the manuscript, we clarified the presented SNP-based heritability 
estimates are the observed scale. We also acknowledged the advantage of the liability-scale 
heritability/pseudo-R2 in the discussion. 
 
Lines 195-202, Page 7, Results 

We estimated the SNP-based heritability by applying linkage disequilibrium (LD) score regression 
(LDSC)[27] on genome-wide association study (GWAS) summary statistics. We compared it against 

the predictive performance (R2 for quantitative traits and Nagelkerke's pseudo-R2&:$#&)*+,#-&.#,*.%O&$:&

.86&%*9+*:*",+.&;<=&>$/6?%&FR*9&'OB&!"#$%%&'((&)*+,#-&.#,*.%&,+/&012&34,+.*.,.*56&.#,*.%&7*.8&%*9+*:*",+.&

;<=&>$/6?%@&76&:$4+/&8*986#&6%.*>,.6/&$)%6#56/A%",?6&86#*.,)*?*.-&:$#&34,+.*.,.*56&.#,*.%B&C56#,??@&76&

:$4+/&,&%*9+*:*",+.&"$##6?,.*$+&)6.766+&.86&6%.*>,.6/&=D;A),%6/&$)%6#56/A%",?6&86#*.,)*?*.-&,+/&
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E#6/*".*56&E6#:$#>,+"6&F=E6,#>,+G%&#,+H&"$##6?,.*$+&"$6::*"*6+.&I&J&KB((@&EA5,?46&J&LB0&M&NK-13&:$#&

)*+,#-&.#,*.%@&I&J&KB(1@&EA5,?46&J&NB(&M&NK-31 for quantitative traits). 

Lines 341-344, Page 13, Discussion 

For binary traits, we used observed-scale pseudo-R2 and observed-scale SNP-based heritability 
estimates, given that population prevalence is available for only a subset of binary traits considered in 
the present study. Conversion to liability-scale estimates will further enhance the validity of the 
comparison[35] and is of interest for future investigation. 

References: 

35.  Lee SH, Goddard ME, Wray NR, Visscher PM. A better coefficient of determination for genetic 
profile analysis. Genet Epidemiol. 2012;36: 214–224. doi:10.1002/gepi.21614 

 
 

Figure 5A and Figure 6 LHS use “incremental AUC”. AUC has the nice property that it doesn’t depend on the 
proportion of cases in the sample, both other than that it has very non-linear properties with respect to 
quantitative genetic metrics of polygenic traits such as heritability. For example, while a linear relationship 
might be expected in incremental R2 for quantitative traits (Figure 6 bottom left quadrant) I wouldn’t expect a 
linear relationship in incremental AUC. This may impact the conclusion line 331 “we found a significant 
correlation across quantitative traits but not within binary traits” Suggest of these analyses R2 liability is used. 

Thank you very much for raising this important point. In the revised manuscript, we now use 
Nagelkerke's pseudo-R2 (observed-scale) as the primary metric to evaluate the predictive 
performance for binary traits. Indeed, when we use Nagelkerke's pseudo-R2 (observed-scale), we 
observed the significant rank-based correlation between the incremental predictive performance and 
the number of active variables in PRS models for both binary and quantitative traits. 
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Figure 5. Comparison of the effect size and the model size of sparse PRS. The number of the 
genetic variants included in the model (size of the model, x-axis) and the incremental predictive 
performance (effect size of the model, y-axis) are shown for 244 binary traits (left) and 569 
quantitative traits (right). TTE: time-to-event phenotype. 

 
Following your suggestion, we now report the results of the transferability assessment using  
Nagelkerke's pseudo-R2.  
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Figure 6. Transferability assessment of PRS models across ancestry groups in the UK 
Biobank. The incremental predictive performance (Nagelkerke's pseudo-R2 for 244 binary traits (A, 
B) and incremental R2 for 569 quantitative traits (C, D)) was quantified in individuals in different 
ancestry groups in the UK Biobank and was compared against that in the hold-out test set 
constructed from the individuals in white British ancestry group. (A, C) the difference in the 
incremental predictive performance between the target group (x-axis, double-coded with color) and 
the source white British cohort. The median values are shown as black horizontal bars and 
numbers. (B, D) comparison of the incremental predictive performance in the target group (color) 
and the test set. A simple linear regression fit was shown for each ancestry group with the dashed 
lines. The slopes of the regression lines were also shown. 
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The point being made here “While the underlying genetic architecture of binary traits may span the gamut of a 
wide variety of polygenicity, that of highly heritable quantitative traits may not be compatible with monogenic 
inheritance as illustrated in the wide adoption of Fisher’s infinitesimal model”. That is a very broad statement 
not really relevant to the study, suggest delete. Moreover, expressions of genes are quantitative traits that 
likely span the gamut of genetic architectures. 

Thank you very much for pointing this out. We removed the sentence in the updated version of the 
manuscript. 

I am concerned about the new conclusions that contrast binary traits with quantitative traits with only a nod to 
differences in power. It is intuitive that for the same N (ie UKB sample size) as the proportion of cases tends to 
zero the power of the sample for detection of association is reduced. I think Yang et al (2009) equation 3 could 
help quantify expectations doi:10.1002/gepi.20456 

Thank you very much for raising important concerns and for pointing out the relevant literature, which 
is now cited as reference [31]. With Nagelkerke's pseudo-R2, we now observe the significant 
correlation between the incremental predictive performance and the number of active variables in 
PRS models for both binary and quantitative traits. Nonetheless, we noted the power difference in 
binary traits and quantitative traits in the discussion. 
 
Lines 269-274, Page 10, Results 

P6&6M,>*+6/&786.86#&.86#6&*%&,&#6?,.*$+%8*E&)6.766+&.86&+4>)6#&$:&,".*56&5,#*,)?6%&*+&.86&%*9+*:*",+.&

;<=&>$/6?&,+/&.86&*+"#6>6+.,?&E#6/*".*56&E6#:$#>,+"6B&Q86&%*9+*:*",+.&"$##6?,.*$+&)6.766+&.86&.7$&

34,+.*.*6%&*%&%.#$+96#&*+&34,+.*.,.*56&F=E6,#>,+G%&#,+H&"$##6?,.*$+&"$6::*"*6+.&I&J&KB1N@&E&J&'B'&M&NK-59O&

.#,*.%&.8,+&*+&)*+,#-&FI&J&KB'N@&E&J&2B1&M&NK-4), reflecting the difference in power between binary and 

quantitative traits[31]. 

 
Lines 322-327, Page 13, Discussion 

We assessed the effect size of the PRS model by quantifying the incremental predictive performance, 
which we define as the difference in the predictive performance between the covariate-only model 
and the full model consisting of both covariates and genetics. In both quantitative and binary traits, we 
find a significant correlation between the number of independent loci included in the model and their 
incremental predictive performance. 

 
Lines 350-356, Page 13, Discussion 

Nonetheless, when we assess the incremental predictive performance across ancestry groups by 
comparing the full model consisting of the genetic data and basic covariates and the covariate-only 
model, we found the binary traits, including disease outcomes, have lower transferability compared to 
quantitative traits, including biomarkers, blood measurements, and anthropometric traits. The power 
difference between binary and quantitative traits[31], limitation in power for some traits, especially for 
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the binary traits with limited case counts, and differences in heritability may be the contributing factors 
of the observed difference  

 

Supp Table 6 seems to have a column missing -across the labels in column A-D there are 3 sets of results. 
Model column? I have never seen TjurR2 presented before in this context. It is presented together with 
NagelkerkeR2. There is not justification as to why TjurR2 should be presented. Both I believe are dependent 
on the proportion of cases in the sample . Some of the AUC values seem implausibly high given the R2? 
Check? 

Thank you very much for pointing this out. The model column was indeed missing in the previous 
version. We have now included the “model” column in the S6 table. 
 
Tjur’s pseudo-R2 is a recently proposed metric (Tjur T 2009) and is defined as the difference in the 
mean predicted probability between cases and controls and is closely related to the sum of squared 
residuals. While this has ease of interpretation, the metric is not based on the likelihood function and 
is not clear how one would convert it to a liability scale, given the population prevalence. Moreover, 
as you correctly pointed out, Tjur’s pseudo-R2 is less consistent with ROC-AUC than Nagelkerke's 
pseudo-R2. 
 

 
Figure. Comparison of Nagelkerke's pseudo-R2 vs ROC-AUC (left) and Tjur's pseudo-R2 vs ROC-
AUC (right) for the predictive performance of PRS across 244 binary traits. 

 
For those reasons, we now use Nagelkerke's pseudo-R2 as the primary metric of evaluation. Tjur’s 
pseudo-R2 is provided only in the supplementary table S6 (where we provide Nagelkerke's pseudo-
R2, Tjur’s pseudo-R2, and ROC-AUC) as well as on Global Biobank Engine. 
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Thank you very much for taking the time to review the manuscript and for providing detailed 
feedback. 

Reviewer #3 

The additional analyses and explanations in this revision result in a much improved manuscript describing the 
phenome-wide application of BASIL to derive PGS in UKB. The authors have addressed all my concerns 
(especially with respect to the description of variant-penalties), the analyses are technically sound and well 
described. 

Thank you very much for taking the time to review the manuscript and for providing detailed 
feedback. 
 


