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S1. Materials and Methods 

S1.1 QCEIMS 

The simulated electron impact (EI) mass spectrum for 1-pristene was generated using the 

Quantum Chemical Electron Ionization Mass Spectra (QCEIMS) program [1, 2]. The molecule 

of interest was visualized using Gaussview 6. The geometry of the investigated systems was 

optimized using the DFT/ 6-31G(d) level of theory with a hybrid functional B3LYP. To make 

the constructed systems interests compatible with QCEIMS, 3-D coordinates were extracted 

from the optimized (*.log) output files and converted to Turbmole format (*.tmol) format using 

Openbabel. The cartesian coordinates of the optimized 1-pristene structure can be found in Table 

S2. 

Within QCEIMs, the standalone method GFN-xTB2 method with D4/SV(P) basis set was 

used for the molecular dynamic calculations. Each system was run with the following 

parameters: 70 eV ionization energy, 500 K initial temperature, 0.25 fermotsecond time steps 

with 1425 parallel cluster runs and an impact excess energy (IEE)/atom of 0.6eV. The theoretical 

spectra were exported using the QCEIMS plotms program and visualized with a python script.  
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Table S1. Summary of VEA vaping emission products.  1 

Name Formula M.W.a CAS # Structure EIC 

Average 

NIST Match 

Scorec 

DL-alpha tocopherol acetate (VEA) 
C31H52O3 472.7 58-95-7 

 

472, 430 902 

DL-alpha tocopherol (VE) 
C29H50O2 430.7 10191-41-0 

 

205 895 

Duroquinone 
C10H12O2 164.2 527-17-3 

 

121 892 

1-Pristened 
C19H38 266.5 2140-82-1 

 

111, 266 N/A 

1-Dodecanol, 3,7,11-trimethyl 
C15H32O 228.41 6750-34-1 

 
111 856 

1-Heptene, 2,6-dimethyl 
C9H18 126.24 3074-78-0 

 

69, 126 848 

1-Undecene, 4-methyl 
C12H24 168.32 74630-39-0 

 

57, 126 800 

1-Heptene, 2-methyl 
C8H16 112.21 15870-10-7 

 

56, 112 801 

Durohydroquinone 
C10H14O2 166.22 527-18-4 

 

164 890 

1-Decene, 4-methyl 
C11H22 154.29 13151-29-6 

 

71, 112 839 

2,6,10-trimethylundeca-1,3-diene 
C14H26 194.36 20056-22-8 

 

109 817 
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Benzaldehyde, 2-hydroxy-4-methoxy-

3,6-dimethyl 
C10H12O3 180.2 34883-15-3 

 

180 823 

3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

(Phytol) 
C20H40O 296.5 150-86-7 

 

123 804 

Dodecane, 2,6,10-trimethyl 
C15H32 212.41 3891-98-3 

 

71, 85 832 

1,4-Benzenediol, 2,3,5-trimethyl C
9
H

12
O

2
 152.19 700-13-0 

 

152 836 

2,6-Dimethyl-1,6-heptadiene 
C9H16 124.22 51708-83-9 

 

109 876 

1-Octene, 3,7-dimethyl 
C10H20 140.27 4984-01-04 

 

55, 140 853 

1-Octene, 3-methyl 
C9H18 126.24 13151-08-01 

 

55, 70 813 

Summary of compounds identified from VEA vaping emission at each temperature. Information for each compound was obtained from 2 

PubChem [3]. 3 

a M.W.: Molecular Weight (g mol-1) 4 
b EIC: extracted ion chromatograph; ion selected for quantification  5 
c Average match score over all collections 6 
d tentative identification based on QCEIMS 7 

  8 
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Table S2. Cartesian Coordinates for optimized 1-pristene structure calculated by DFT/B3LYP/6-31G(d) level of theory using 9 

Gaussian 16W. 10 

C 1.4556 2.5588 -0.4419 

C 0.1548 2.5618 0.3875 

C -1.0279 1.8209 -0.2468 

C -3.5385 1.3131 -0.0081 

C -2.2859 1.9557 0.6197 

C 2.1424 1.1834 -0.5674 

C 2.3946 0.5004 0.7801 

C -3.3939 -0.1882 -0.3362 

C 3.0745 -0.869 0.6531 

C 1.2248 3.1483 -1.8381 

C -3.1609 -1.0999 0.8754 

C -4.7563 1.5737 0.8849 

C 4.4851 -0.8724 0.0339 

C -2.9747 -2.5739 0.4878 

C 5.0206 -2.3064 -0.0179 

C 5.4639 0.0175 0.8 

C -1.8207 -2.8385 -0.4504 

C -0.443 -2.5224 0.0546 

C -2.0145 -3.3627 -1.6705 

H 2.158 3.2241 0.0791 

H 0.3402 2.1775 1.3962 

H -0.1409 3.6105 0.5312 

H -0.7624 0.7681 -0.3705 

H -1.2459 2.2263 -1.2402 

H -3.727 1.8254 -0.9616 

H -2.0951 1.5249 1.6099 

H -2.4872 3.0225 0.7836 

H 1.5337 0.5206 -1.1952 

H 3.0942 1.3243 -1.0927 
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H 1.4397 0.3266 1.2883 

H 2.9791 1.1582 1.4324 

H -4.3073 -0.5205 -0.8474 

H -2.5885 -0.3114 -1.0677 

H 3.1233 -1.3144 1.6556 

H 2.4275 -1.5257 0.0587 

H 0.7095 4.1125 -1.7772 

H 2.1829 3.3172 -2.342 

H 0.6359 2.4797 -2.4738 

H -4.0164 -1.0369 1.5575 

H -2.2852 -0.7625 1.4402 

H -4.943 2.6496 0.9733 

H -4.6115 1.1804 1.8961 

H -5.6566 1.1152 0.4628 

H 4.4258 -0.5093 -0.9988 

H -3.9131 -2.9391 0.0505 

H -2.8218 -3.162 1.4017 

H 5.1201 -2.7309 0.987 

H 6.0048 -2.3371 -0.4974 

H 4.3494 -2.9518 -0.5944 

H 5.5127 -0.2643 1.8573 

H 5.1748 1.0711 0.7395 

H 6.473 -0.0651 0.3818 

H 0.3325 -2.8176 -0.6603 

H -0.3302 -1.4514 0.2388 

H -0.2497 -3.0576 0.9899 

H -3.0093 -3.6015 -2.0314 

H -1.1832 -3.5626 -2.3382 

  11 
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 12 

Fig S1. Set up of e-cigarette temperature measurements. (A) Set-up of temperature 13 

measurements. Set up of e-cigarette temperature measurements. Three k-type thermocouple wires 14 

were connected to a data logger, which recorded the temperature of (a) ambient air, (b) the ceramic 15 

coil of the e-cigarette cartridge, and (c) VEA oil in contact with the atomizer tube every 1s.  (B) 16 

Close up of thermocouples inserted into the cartridge.  17 
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 18 

Fig S2. Schematic diagram of a high temperature quartz tube-furnace system. Gas flow is 19 

regulated by a 0.18 L min-1 critical orifice and argon gas is delivered into the quartz tube by a gas 20 

tank. Pyrolysis of VEA occurs as the furnace is heated by heating coils and generated aerosol is 21 

carried into a cold trap. The exhaust is removed via fume extractor.  22 
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 23 

Fig S3. Cartridges heated at 176 and 356 °C. Visible degradation and discoloration could be 24 

seen in the cartridge heated at 356 °C (right) versus the cartridge heated at 176 °C (left) after 13 25 

cycles of 4s battery activation during temperature measurements.   26 
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 27 

Fig S4. Comparison of mass spectra for 1-pristene identification. (A) Experimental mass 28 

spectrum obtained from vaping of VEA containing signature fragments with m/z: 266 (consistent 29 

with the molecular ion of 1-pristene), 111, 126, 97, 83, 69, 55. These identified fragments are 30 

consistent with the experimental mass spectrum identified as 1-pristene by Mikheev et al (4). (B) 31 

Simulated mass spectrum of 1-pristene obtained using QCEIMS containing signature fragments 32 

of m/z: 266, 111, 97, 83, 69, and 55. 33 

  34 
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 35 

Fig S5. Comparison of mass spectra for 2-methyl-1-heptene identification (A) Experimental 36 

mass spectrum obtained from vaping of VEA containing signature fragments with m/z: 41, 56, and 37 

112, consistent with 2-methyl-1-heptene. (B) Mass spectrum of authentic 2-methyl-1-heptene 38 

standard containing m/z: 41, 56, 112.  39 
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 40 

Fig S6. Comparison of mass spectra for phytol identification. (A) Experimental mass spectrum 41 

obtained from vaping of VEA containing signature fragments with m/z: 123 and 71, consistent 42 

with the natural isomer of phytol. (B) Mass spectrum of authentic phytol standard (natural isomer) 43 

containing m/z: 123 and 71.   44 
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 45 

Fig S7. Comparison of mass spectra for 2,3,5-trimethyl-1,4-benzenediol identification. (A) 46 

Experimental mass spectrum obtained from vaping of VEA containing signature fragments with 47 

m/z: 152, consistent with 2,3,5-trimethyl-1,4-benzenediol. (B) Mass spectrum of authentic 2,3,5-48 

trimethyl-1,4-benzenediol standard containing m/z: 152. 49 

50 
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