
1 
 

Example of a Reduced Gradient Nonlinear Programming 1 

Algorithm 2 

A general equality-constrained nonlinear programming problem is shown in (S1.1). Here, ( )f x  is the 3 

objective function to be minimized, which may be nonlinear. The vector function ( )g x  is the system of 4 

equality constraints, which may in general be nonlinear. The variables, x, may additionally be bounded by 5 
lower and upper bounds, lb and ub, respectively. 6 

 

minimize

s.t.

( )

( )

f

g

lb ub

x

x 0

x

 (S1.1) 7 

The Lagrangian (S1.2) may be formed from the model components introduced in (S1.1). 8 

 T( , ) ( ) ( )L f gx x x  (S1.2) 9 

In equation (S1.2), ( , )L x  is the Lagrangian, and  is the vector of Lagrange multipliers corresponding to 10 

the equality constraints, ( )g x . Each ( )
i
g x  has an associated Lagrange multiplier 

i
. Optimizing an equality-11 

constrained program involves finding stationary points of the Lagrangian (S1.3). A stationary point is 12 
identified as one in which ( , )L x 0. 13 

 
T

( , ) ( ) ( )L f gx x x 0 (S1.3) 14 

In (S1.3), ( , )L x  is the gradient of the Lagrangian with respect to the model variables, x. This gradient 15 

may be zero at a maximum, minimum, or a saddle point of the Lagrangian. The term ( )g x  is a matrix 16 

whose rows consist of the gradients of the constraints (S1.4), and is also known as the Jacobian of the 17 
constraints, ( )J x . 18 

 

T

T

T

1

2

( )

( )
( ) ( )

( )
m

g

g
g J

g

x

x
x x

x

 (S1.4) 19 

With the notational substitution of (S1.4), (S1.3) becomes (S1.5). 20 

 T( , ) ( ) ( )L f Jx x x 0 (S1.5) 21 

 22 

The form shown in (S1.5) is used in constructing the reduced gradient algorithm. 23 

The generalized reduced gradient (GRG) algorithm works well for nonlinear optimization problems in 24 
which the objective function and constraints are smooth and differentiable [1,2]. It is particularly well-25 
suited for optimization problems in which the total number of equality constraints is similar to the total 26 
number of model variables. This is because the GRG algorithm involves partitioning the variables into 27 

sets. One set consists of basic variables, 
b
x , and the other of nonbasic variables, 

nb
x . At each iteration of 28 

the GRG algorithm, the nonbasic variables are propagated to a better point (one that improves the 29 
objective function), and the basic variables are propagated to the new point such that they satisfy the 30 
equality constraints [1,3]. The following list of steps in a general GRG algorithm was adapted from Drud 31 
[3]: 32 

1. Find a feasible starting point, 
0
x . At this point, compute the objective function 

0
( )f x , gradient of the 33 

objective function 
0
( )f x , and Jacobian of the constraints 

0
( )J x . 34 

2. Select a set of n basic variables, 
b
x , such that 

b
J , the submatrix of the basic columns of J , is 35 

nonsingular. 36 



2 
 

3. Solve for the multipliers T
b b
J f . 37 

4. Compute the reduced gradient Tf Jr . 38 
5. Terminate if a stopping criterion is met. 39 
6. Find a search direction, d, for the nonbasic variables based on r and compute the tangent direction. 40 

7. Perform a search along direction d. For each step, adjust 
b
x  to satisfy ( , )

b nb
g x x 0 using a pseudo-41 

Newton process. 42 
8. Repeat these steps with the current point. 43 

This process is next illustrated in a simple example. This example GRG algorithm is simply used for 44 
illustration purposes. Large-scale GRG algorithms, such as CONOPT [2,3], are far more sophisticated, 45 
making them much more effective and efficient. Therefore, the following example is illustrative only, and is 46 
not representative of the CONOPT implementation. 47 

The example equality-constrained nonlinear program is shown in (S1.6). 48 

 

minimize

s.t.

2 2
1 2 1 2 1 2

2 2
1 1 3 1 2

2 1 2 1 4

3 5 2 1

( ) 200 360 240 168

( ) 0.5 0

( ) 1 0

( ) 0

0

f x x x x x x

g x x x x

g x x x x

g x x x

x

x

x

x

x

 (S1.6) 49 

This example was chosen because it consists of a nonlinear objective function with nonlinear constraints. 50 

Specifically, 
3
( )g x  is linear, while 

1
( )g x  and 

2
( )g x  are both nonlinear. Also note that (S1.6) is in the general 51 

format shown in (S1.1). Here, the objective function is only a function of two of the model variables, 
1
x  and 52 

2
x . Problems with this structure are very common in least-squares model fitting. This problem has a total 53 

of 5 variables and 3 equality constraints. 54 

Operating the GRG algorithm requires repeated use of the gradient of the objective function and the 55 
Jacobian of the constraints. They are listed here for the example problem for reference: 56 

 

1 2

2 1 1 3

2 1

400 200 360

400 200 240 2 1 1 2 0 0

0( ) , ( ) 1 0 1 0

0 1 1 0 0 1

0

x x

x x x x

f J x xx x  (S1.7) 57 

 58 

Step 1: Initialize with a feasible starting point 59 

Start with a point that satisfies the constraints ( )g x 0. Calculate the objective function, gradient of the 60 

objective function, and Jacobian at this point. We will begin with the arbitrarily chosen feasible point 61 
T

0
0 0.5 0 1 0.5x . This starting point is chosen simply because it satisfies the constraints. The 62 

objective function 
0
( )f x , objective function gradient 

0
( )f x , and Jacobian 

0 0
( )J Jx  at this point are 63 

shown in (S1.8). The subscript, 0, is the index of the current iteration. 64 

 
0 0 0

260

40 1 1 0 0 0

0( ) 98.0, ( ) , 1.5 0 0 1 0

0 1 1 0 0 1

0

f f Jx x  (S1.8) 65 

 66 



3 
 

Step 2: Select a set of basic variables 67 

To simplify the notation, the subscripted iteration index is omitted from J  for the remaining steps. The best 68 
set of basic variables is usually not obvious and is determined by the solver, however it is generally wise 69 

to choose a set of basic variables such that the submatrix, 
b
J , of the Jacobian corresponding to the basic 70 

variables is well-conditioned. This is because  
b
J must be invertible [1]. The remaining nonbasic columns 71 

of J  are stored in matrix 
nb
J . The variable vector, x, is partitioned accordingly. It is important to note that 72 

for a given choice of basic variables, 
b
J  may be well-conditioned at one point, but ill-conditioned at 73 

another point. Therefore, the best set of basic variables may change from one iteration to the next. In this 74 

example, 
3
x  would be a poor choice for a basic variable in the first iteration. This is because the column of 75 

the Jacobian corresponding to 
3
x  is all zeros at the initial point. Choosing 

2
x , 

4
x , and 

5
x  to be basic, the 76 

vectors  
b
x  and 

nb
x , and matrices 

b
J  and 

nb
J  are shown in (S1.9) for the first iteration. 77 

 
2

1

4
3

5

1 0 0 1 0

, , 0 1 0 , 1.5 0

1 0 1 1 0
b nb b nb

x
x

x J J
x

x

x x  (S1.9) 78 

 79 

Step 3: Solve for the Lagrange multipliers 80 

Candidate optima are found as the stationary points of the Lagrangian, defined in (S1.2). These 81 

stationary points, ,x , will satisfy ( , )L x 0. Here we seek points that satisfy (S1.10). 82 

 T( , ) ( ) ( )L f Jx x x 0 (S1.10) 83 

Considering only the basic variables, (S1.10) becomes (S1.11), which is an exactly determined system for 84 
the multipliers, . 85 

 T

b b
f J 0 (S1.11) 86 

Solving (S1.11) for  gives (S1.12) for the first iteration. 87 

 

1

1
1 0 1 40 40

0 1 0 0 0

0 0 1 0 0

T
b b
J f  (S1.12) 88 

In solvers using the GRG method, T
b
J  is typically not inverted at each iteration of the algorithm, as this 89 

would be computationally inefficient. Instead, the inverse is computed at the first iteration and updated at 90 
each subsequent iteration using a suitable approximation [1]. 91 

 92 

Step 4: Compute the reduced gradient 93 

Next, the reduced gradient, r, is computed using (S1.13). The reduced gradient is calculated as the 94 
gradient of the Lagrangian using the values of the multipliers calculated in (S1.12). 95 

 
Tf Jr  (S1.13) 96 

Only the nonbasic variables may have nonzero values in the reduced gradient. This results from the 97 
values of the multipliers being calculated using (S1.11). The value of the reduced gradient is shown in 98 
(S1.14) for the first iteration. 99 



4 
 

 

260 1 1.5 1 220

40 1 0 1 040

0 0 0 0 00

0 0 1 0 00

0 0 0 1 0

r  (S1.14) 100 

 101 

Step 5: Check the stopping criterion 102 

As the iterations proceed, points are generated which become successively closer to optimality. As these 103 
points approach optimality, the gradient of the Lagrangian (S1.5) moves closer to zero, and the 104 
magnitude of the reduced gradient decreases. At optimality, the magnitude of the reduced gradient is 105 
identically zero. Numerically, it is necessary to specify a threshold at which the algorithm terminates to a 106 
point that is “good enough”. This optimality tolerance on the magnitude of the reduced gradient is a user-107 
specified input, . At each iteration of the GRG algorithm, (S1.15) is checked, and once satisfied, the 108 
algorithm terminates. 109 

 r  (S1.15) 110 

At the input point, the magnitude of the reduced gradient is 
0
220.0r . 111 

 112 

Step 6: Find a search direction 113 

To minimize the objective function subject to the constraints, one choice for the search direction for the 114 

nonbasic variables is 
nb
r , where 

nb
r  is the reduced gradient of the nonbasic variables. This gives a 115 

steepest descent direction in the nonbasic variables, which will be used in this example. Designating the 116 
search direction as s gives (S1.16) for the nonbasic variables. 117 

 
nb nb
s r  (S1.16) 118 

The search direction for the basic variables is chosen with the goal of minimizing the violation of the 119 

constraints, ( )g x 0. To find this direction, consider each constraint ( )
i
g x  to be a function of 

b
x  and 

nb
x , so 120 

that ( ) ( , )
i i b nb
g gx x x . The total differential of ( , )

i b nb
g x x  is shown in (S1.17) with x partitioned in this way 121 

for a single constraint ( ) ( , )
i i b nb
g gx x x  [4]. 122 

 ( , )

T T
T T

i i
i b nb b nb b i b nb i nb

b nb

g g
dg d d g d g dx x x x x x

x x
 (S1.17) 123 

Considering the full vector of m equality constraints, ( , )
b nb

g x x , (S1.17) is generalized to (S1.18). 124 

 
1 1
( ) ( )

( , ) ( ) ( )

( ) ( )

T T
b nb

b nb b nb b b nb nb
T T

b m nb m

g g

dg d d J d J d

g g

x x

x x x x x x x x

x x

 (S1.18) 125 

For a small finite change x, the constraints ( ) 0g x  are satisfied to first order using (S1.19), obtained 126 

from (S1.18) by setting the constraint violation, g, equal to zero. 127 

 ( ) ( )
b b nb nb
J Jx x x x 0 (S1.19) 128 

Rearranging (S1.19) and substituting 
nb nb
x s  and 

b b
x s  provides a way to compute 

b
s  from 

nb
s  at 129 

each iteration (S1.20). 130 

 1
b b nb nb

J Js s  (S1.20) 131 



5 
 

The search direction for the nonbasic variables, 
nb
s , and basic variables, 

b
s , is thereby determined for the 132 

current iteration. The full search direction, s, is now defined. For the initial point, the search direction is 133 

0
220 220 0 330 0

T

s . 134 

 135 

Step 7: Perform a line search along the search direction. Use a pseudo-136 

Newton process to correct any constraint violation after the step. 137 

Using the search direction, s, the next step is to perform a line search in the direction of s. The next point 138 
is calculated as shown in (S1.21). 139 

 
1

ˆ
i i i i i i i i
x x s x s s  (S1.21) 140 

Here, ̂
i
s  is the unit vector in the search direction, 

i
s , at iteration i  and 

i
s  is the magnitude of 

i
s . Ideally,  is 141 

chosen to find the global minimizer of the objective along the search direction. However, this is highly 142 
computationally expensive in practice. For practical applications, a step size is accepted if it satisfies 143 
some sufficient decrease condition [5]. For the purpose of illustrating the GRG algorithm in this simple 144 

example,  is held constant at 0.001
i

 for each iteration. The magnitude of the reduced gradient, r, is 145 

large far from an optimum and decreases as iterations approach an optimum. Because s is determined 146 

from r, s  will decrease with subsequent iterations, and the step length will automatically decrease as the 147 

optimum is approached despite  being held constant in the example. From the initial point, the next point 148 
is calculated as shown in (S1.22) using (S1.21). 149 

 
1

0 220 0 0.4851

0.5 220 0.5 0.4851

0 0 0 00.001 0.001 453.54

1 330 1 0.7276

0.5 0 0.5 0

x

0.2200

0.2800

0

0.6700

0.5000

 (S1.22) 150 

The “~” decoration is added to 
1
x  in (S1.22) because this point may violate some constraints. After the 151 

step, it may be necessary to correct the constraint violation to within a tolerance. The constraint violation 152 

for 
1
x  in the example is shown in (S1.23). 153 

 
1

0.0484

( ) 0.0484

0.0000

g x  (S1.23) 154 

In the example, only the first two constraints are violated, and the constraint violation is small. To correct 155 
the constraint violation, pseudo-Newton iterations are performed until the constraint violation is satisfied 156 
within a tolerance [4]. The pseudo-Newton iterations are of the form shown in (S1.24). 157 

 
1

1
( ) ( ) ( ) ( )T T

i i i i i i
J J J gy y y y y y  (S1.24) 158 

The pseudo-Newton iterations are repeated until the constraints ( )g x  are satisfied to within a tolerance. 159 

After performing the pseudo-Newton iterations, the new point, 
1
x , is found. For the example, this point is 160 

shown in (S1.25) along with the objective function 
1
( )f x . 161 



6 
 

 
1 1

0.2371

0.3191

0 , ( ) 52.80

0.6872

0.5562

fx x  (S1.25) 162 

 163 

Step 8: Repeat all steps with the new point 164 

After the new point is calculated, repeat all steps until the stopping criterion is met in Step 5. The results 165 
of this example are shown in Table S1.1. The problem is depicted graphically in Fig S1.1. 166 

  167 



7 
 

Table S1.1. The results of the first fifteen iterations of the GRG algorithm are shown for the example 168 
problem. The algorithm was operated with  held constant at 0.001. The iterations converge quickly to the 169 
optimum of the constrained problem. Iterations 9-15 continue to improve the objective function, however 170 
the value was rounded to three decimal places. The magnitude of the reduced gradient approaches zero 171 
as the iterations progress, and the algorithm is stopped when this value is within a user-defined tolerance.  172 

 173 

  174 

Iteration x ( )f x  r  

0 0.0000 0.5000 0.0000 1.0000 0.0000
T

 98.00 220.0 

1 0.2371 0.3191 0.0000 0.6872 0.5562
T

 52.80 167.2 

2 0.3999 0.2600 0.0000 0.4961 0.6599
T

 27.93 136.8 

3 0.5289 0.2508 0.0000 0.3384 0.7798
T

 12.46 100.2 

4 0.6238 0.2653 0.0000 0.2107 0.8891
T

 4.761 59.67 

5 0.6814 0.2829 0.0000 0.1259 0.9643
T

 2.222 27.46 

6 0.7084 0.2934 0.0000 0.0838 1.0018
T

 1.713 10.05 

7 0.7183 0.2977 0.0000 0.0678 1.0160
T

 1.647 3.205 

8 0.7215 0.2991 0.0000 0.0627 1.0206
T

 1.640 0.9662 

9 0.7225 0.2995 0.0000 0.0611 1.0220
T

 1.639 0.2857 

10 0.7228 0.2996 0.0000 0.0606 1.0224
T

 1.639 0.0840 

11 0.7229 0.2997 0.0000 0.0605 1.0225
T

 1.639 0.0247 

12 0.7229 0.2997 0.0000 0.0605 1.0226
T

 1.639 0.0072 

13 0.7229 0.2997 0.0000 0.0605 1.0226
T

 1.639 0.0021 

14 0.7229 0.2997 0.0000 0.0605 1.0226
T

 1.639 0.0006 

15 0.7229 0.2997 0.0000 0.0605 1.0226
T

 1.639 0.0002 



8 
 

 175 

Fig S1.1. The contours of the objective function are shown for the example problem. The first two 176 

constraints, 
1
( )g x  and 

2
( )g x , are represented in two-dimensional space. In this representation, 2

3
x  and 

4
x  177 

can be thought of as slack variables for the two constraints, 
1
( )g x  and 

2
( )g x , respectively. Because 0x , 178 

the feasible region (shaded in blue) for 
1
x  and 

2
x  is bounded below by 

1
( )g x  and above by 

2
( )g x  in this two-179 

dimensional space. The third constraint, 
3
( )g x  is not plotted because it does not constrain the feasible 180 

space. The variable 
5
x  may be arbitrarily increased to satisfy 

3
( )g x  for any values of 

1
x  and 

2
x . The first six 181 

iterations of the GRG algorithm are plotted for the example problem. The points progress along the 182 

boundary of 
1
( )g x and approach the minimum of the objective function as closely as possible without 183 

violating the constraints. In this case, the optimum of the objective function lies outside the feasible region 184 
of the constraints, therefore the optimal solution of the constrained problem is not the same as the 185 
optimum of the unconstrained problem. 186 

 187 

 188 

 .  .  .  .  .  .  .  .  .  .  . 

  
 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 
  

 

 
 

 
 

 
  

 
 
 

 
 
 
 

1
( )g x

2
( )g x



9 
 

References 189 

1.  Abadie J, Carpentier J. Generalization of the Wolfe Reduced Gradient Method to the Case of 190 
Nonlinear Constraints. Optimization. Academic Press; 1969.  191 

2.  Drud A. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Math 192 
Program. 1985;31: 153–191. doi:10/bhwtmp 193 

3.  Drud AS. CONOPT—A Large-Scale GRG Code. ORSA J Comput. 1994;6: 207–216. doi:10/cww2m7 194 

4.  Arora J. Introduction to Optimum Design, 4th ed. London, UK: Academic Press; 2017.  195 

5.  Nocedal J, Wright S. Numerical Optimization. Springer Science+Business Media, LLC; 2006.  196 

 197 


