1 Toy Network and *E. coli* Tandem Mass Spectrometry inst-MFA

2 **Examples**

3

4 Toy Network Model

TOY NETWORK

Reaction Name	Reaction Description	Flux LB	Flux UB
v0	\rightarrow Axt (abc)	1.0	1.0
v1	Axt (abc) \rightarrow A (abc)	0.0	1000.0
v2	A (abc) \rightarrow C (a) + D (bc)	0.0	1000.0
v3	C (a) + D (bc) \rightarrow B (abc)	0.0	1000.0
v4	A (abc) \rightarrow E (ab) + F (c)	0.0	1000.0
v5	$E (ab) + F (c) \rightarrow B (abc)$	0.0	1000.0
v6.f	A (abc) \rightarrow B (abc)	0.0	1000.0
v6.b	B (abc) \rightarrow A (abc)	0.0	1000.0
v7	B (abc) \rightarrow	0.0	1000.0

5

6 Toy Network Results

7 Simulated measurements that were fit to the model are listed in **S1 Data**. All pool sizes were constrained

8 by a lower bound of 0.0001 and an upper bound of 10.0 when fitting the model. The time domain was

9 discretized by assigning time nodes at values of 0.0, 1.0, 2.0, 4.0, 8.0, and 20.0. The 5th-order Radau IIA

10 collocation method was used.

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	Predicted Exchange
v0	1.000		1.000	
v1	1.000		1.000	
v2	0.700		0.695	
v3	0.700		0.695	
v4	0.100		0.100	
v5	0.100		0.100	
v6	0.200	0.800	0.205	0.775
v7	1.000		1.000	

Metabolite Name	Actual Pool Size	Predicted Pool Size
A	1.000	1.003
В	0.200	0.188
С	5.000	5.010
D	0.100	0.108
E	0.500	0.502
F	0.001	0.003

16 *E. coli* Model

17 The following *E. coli* metabolic flux analysis (MFA) network was adapted from that presented by Young et

al. [1]. For fitting the model, the pool size of each metabolite was given a lower bound of 0.001 and an

- 19 upper bound of 10.0. Confidence intervals were estimated by performing Monte Carlo simulations using
- 20 the measurement means and standard deviations.
- 21

Reaction Name	Reaction Description	Flux LB	Flux UB
gl-in:	\rightarrow Glc (abcdef)	1.0	1.0
gl-1:	Glc (abcdef) \rightarrow G6P (abcdef)	0.0	1000.0
gl-2:	G6P (abcdef) \rightarrow F6P (abcdef)	0.0	1000.0
gl-3.f:	F6P (abcdef) \rightarrow FBP (abcdef)	0.0	1000.0
gl-3.b:	FBP (abcdef) \rightarrow F6P (abcdef)	0.0	1000.0
gl-4.f:	FBP (abcdef) \rightarrow DHAP (cba) + GAP (def)	0.0	1000.0
gl-4.b:	DHAP (cba) + GAP (def) \rightarrow FBP (abcdef)	0.0	1000.0
gl-5.f:	DHAP (abc) \rightarrow GAP (abc)	0.0	1000.0
gl-5.b:	GAP (abc) \rightarrow DHAP (abc)	0.0	1000.0
gl-6.f:	$GAP (abc) \rightarrow BPG (abc)$	0.0	1000.0
gl-6.b:	BPG (abc) \rightarrow GAP (abc)	0.0	1000.0
gl-7.f:	BPG (abc) \rightarrow 3PG (abc)	0.0	1000.0
gl-7.b:	$3PG (abc) \rightarrow BPG (abc)$	0.0	1000.0
gl-8.f:	$3PG (abc) \rightarrow PEP (abc)$	0.0	1000.0
gl-8.b:	PEP (abc) \rightarrow 3PG (abc)	0.0	1000.0
gl-9	PEP (abc) \rightarrow Pyr (abc)	0.0	1000.0

GLYCOLYSIS

PENTOSE PHOSPHATE PATHWAY

Reaction Name	Reaction Description	Flux LB	Flux UB
pp-1:	G6P (abcdef) \rightarrow 6PG (abcdef)	0.0	1000.0
pp-2:	6PG (abcdef) \rightarrow Ru5P (bcdef) + CO2 (a)	0.0	1000.0
pp-3.f:	Ru5P (abcde) \rightarrow R5P (abcde)	0.0	1000.0
pp-3.b:	R5P (abcde) \rightarrow Ru5P (abcde)	0.0	1000.0
pp-4.f:	Ru5P (abcde) \rightarrow X5P (abcde)	0.0	1000.0
pp-4.b:	X5P (abcde) \rightarrow Ru5P (abcde)	0.0	1000.0
pp-5.f:	R5P (cdefg) + X5P (abhij) \rightarrow S7P (abcdefg) + GAP (hij)	0.0	1000.0
pp-5.b:	S7P (abcdefg) + GAP (hij) → R5P (cdefg) + X5P (abhij)	0.0	1000.0
pp-6.f:	GAP (def) + S7P (abcghij) \rightarrow F6P (abcdef) + E4P (ghij)	0.0	1000.0
pp-6.b:	F6P (abcdef) + E4P (ghij) \rightarrow GAP (def) + S7P (abcghij)	0.0	1000.0
pp-7.f:	X5P (abcde) + E4P (fghi) → GAP (cde) + F6P (abfghi)	0.0	1000.0
pp-7.b:	GAP (cde) + F6P (abfghi) → X5P (abcde) + E4P (fghi)	0.0	1000.0

ENTNER-DOUDOROFF PATHWAY

Reaction Name	Reaction Description	Flux LB	Flux UB
ed-1:	6PG (abcdef) \rightarrow KDPG (abcdef)	0.0	1000.0

ed-2:	KDPG (abcdef) \rightarrow GAP (def) + Pyr (abc)	0.0	1000.0

Reaction Name	Reaction Description	Flux LB	Flux UB
pd:	Pyr (abc) \rightarrow CO2 (a) + AcCoA (bc)	0.0	1000.0
tc-1:	OAA (abcd) + AcCoA (pq) \rightarrow Cit (dcbqpa)	0.0	1000.0
tc-2:	Cit (abcdef) \rightarrow iCit (abcdef)	0.0	1000.0
tc-3:	iCit (abcdef) \rightarrow aKG (abcde) + CO2 (f)	0.0	1000.0
tc-4:	aKG (abcde) \rightarrow CO2 (a) + SucCoA (bcde)	0.0	1000.0
tc-5:	SucCoA (abcd) \rightarrow 0.5 Suc (abcd) + 0.5 Suc (dcba)	0.0	1000.0
tc-6.f:	Suc (abcd) \rightarrow 0.5 Fum (abcd) + 0.5 Fum (dcba)	0.0	1000.0
tc-6.b:	Fum (abcd) \rightarrow 0.5 Suc (abcd) + 0.5 Suc (dcba)	0.0	1000.0
tc-7.f:	Fum (abcd) \rightarrow Mal (abcd)	0.0	1000.0
tc-7.b:	Mal (abcd) \rightarrow 0.5 Fum (abcd) + 0.5 Fum (dcba)	0.0	1000.0
tc-8.f:	Mal (abcd) \rightarrow OAA (abcd)	0.0	1000.0
tc-8.b:	$OAA (abcd) \rightarrow Mal (abcd)$	0.0	1000.0

TCA CYCLE

ANAPLEROTIC/CATAPLEROTIC REACTIONS

Reaction Name	Reaction Description	Flux LB	Flux UB
me:	Mal (abcd) \rightarrow Pyr (abc) + CO2 (d)	0.0	1000.0
an.f:	PEP (abc) + CO2 (d) \rightarrow OAA (abcd)	0.0	1000.0
an.b:	$OAA (abcd) \rightarrow PEP (abc) + CO2 (d)$	0.0	1000.0

ACETATE SYNTHESIS

Reaction Name	Reaction Description	Flux LB	Flux UB
ac:	AcCoA (ab) \rightarrow Ac (ab)	0.0	1000.0

GLYOXYLATE SHUNT

Reaction Name	Reaction Description	Flux LB	Flux UB
gx-1:	iCit (abcdef) \rightarrow Gox (ab) + 0.5 Suc (fcde) + 0.5 Suc (edcf)	0.0	1000.0
gx-2:	$Gox (ab) + AcCoA (cd) \rightarrow Mal (abdc)$	0.0	1000.0

ENTRY/EXIT FLUXES

Reaction Name	Reaction Description	Flux LB	Flux UB
co2-in.f:	\rightarrow CO2 (a)	0.0	1000.0
co2-in.b:	$CO2 (a) \rightarrow$	0.0	1000.0
ac-out:	Ac (ab) \rightarrow	0.0	1000.0

AMINO ACID SYNTHESIS

Reaction Name	Reaction Description	Flux LB	Flux UB
glusyn:	aKG (abcde) \rightarrow Glu (abcde)	0.0	1000.0
glnsyn:	$Glu (abcde) \rightarrow Gln (abcde)$	0.0	1000.0
prosyn:	Glu (abcde) \rightarrow Pro (abcde)	0.0	1000.0
argsyn:	Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) +	0.0	1000.0
	AcCoA (pq) \rightarrow Arg (abcdef) + aKG (ghijk) + Fum		
	(Imno) + Ac (pq)		
aspsyn:	OAA (abcd) + Glu (efghi) \rightarrow Asp (abcd) + aKG (efghi)	0.0	1000.0
asnsyn:	Asp (abcd) \rightarrow Asn (abcd)	0.0	1000.0

alasyn:	Pyr (abc) + Glu (defgh) \rightarrow Ala (abc) + aKG (defgh)	0.0	1000.0
sersyn:	3PG (abc) + Glu (defgh) \rightarrow Ser (abc) + aKG (defgh)	0.0	1000.0
glysyn.f:	Ser (abc) \rightarrow Gly (ab) + MEETHF (c)	0.0	1000.0
glysyn.b:	Gly (ab) + MEETHF (c) \rightarrow Ser (abc)	0.0	1000.0
glydeg.f:	Gly (ab) \rightarrow CO2 (a) + MEETHF (b)	0.0	1000.0
glydeg.b:	CO2 (a) + MEETHF (b) \rightarrow Gly (ab)	0.0	1000.0
thrdeg:	Thr (abcd) \rightarrow Gly (ab) + AcCoA (cd)	0.0	1000.0
cyssyn:	Ser (abc) + AcCoA (de) \rightarrow Cys (abc) + Ac (de)	0.0	1000.0
lldapsyn:	Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) \rightarrow LLDAP (abcdgfe) + aKG (hijkl) + Suc (mnop)	0.0	1000.0
lyssyn:	LLDAP (abcdefg) \rightarrow Lys (abcdef) + CO2 (g)	0.0	1000.0
thrsyn:	Asp (abcd) \rightarrow Thr (abcd)	0.0	1000.0
metsyn:	Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) \rightarrow Met (abcde) + Pyr (fgh) + Suc (ijkl)	0.0	1000.0
valsyn:	Pyr (abc) + Pyr (def) + Glu (ghijk) \rightarrow Val (abcef) + CO2 (d) + aKG (ghijk)	0.0	1000.0
leusynl:	Pyr (cde) + Pyr (fgh) + Glu (ijklm) \rightarrow Leu1 (dghe) + CO2 (c) + CO2 (f) + aKG (ijklm)	0.0	1000.0
leusynll:	AcCoA (ab) + Leu1 (dghe) \rightarrow Leu (abdghe)	0.0	1000.0
ilesyn:	Thr (abcd) + Pyr (efg) + Glu (hijkl) \rightarrow lle (abfcdg) + CO2 (e) + aKG (hijkl)	0.0	1000.0
phesynl:	PEP (def) + E4P (ghij) + Glu (klmno) \rightarrow Phe1 (efghij) + CO2 (d) + aKG (klmno)	0.0	1000.0
phesynll:	PEP (abc) + Phe1 (efghij) \rightarrow Phe (abcefghij)	0.0	1000.0
tyrsynl:	PEP (def) + E4P (ghij) + Glu (klmno) \rightarrow Tyr1 (efghij) + CO2 (d) + aKG (klmno)	0.0	1000.0
tyrsynll:	PEP (abc) + Tyr1 (efghij) → Tyr (abcefghij)	0.0	1000.0
trpsynl:	R5P (defgh) + E4P (Imno) + PEP (pqr) + GIn (stuvw) \rightarrow Trp1 (edImno) + GAP (fgh) + Pyr (pqr) + GIu (stuvw)	0.0	1000.0
trpsynll:	PEP (ijk) + Trp1 (edlmno) \rightarrow Trp2 (edklmnoj) + CO2 (i)	0.0	1000.0
trpsynIII:	Ser (abc) + Trp2 (edklmnoj) \rightarrow Trp (abcedklmnoj)	0.0	1000.0
hissyn:	R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) → His (edcbaf) + aKG (ghijk) + Fum (lmno)	0.0	1000.0

ONE CARBON METABOLISM

Reaction Name	Reaction Description	Flux LB	Flux UB						
methfsyn:	MEETHF (a) \rightarrow METHF (a)	0.0	1000.0						
fthfsyn:	MEETHF (a) \rightarrow FTHF (a)	0.0	1000.0						
BIOMASS SYNTHESIS									
Reaction Name	Flux LB	Flux UB							

Biomass:	0.488 Ala (abc) + 0.281 Arg (abcdef) + 0.229 Asn (abcd) + 0.229 Asp (abcd) + 0.087 Cys (abc) + 0.250 Glu (abcde) + 0.250 Gln (abcde) + 0.582 Gly (ab) + 0.090 His (abcdef) + 0.276 lle (abcdef) + 0.428 Leu (abcdef) + 0.326 Lys (abcdef) + 0.146 Met (abcde) + 0.176 Phe (abcdefghi) + 0.210 Pro (abcde) + 0.205 Ser (abc) + 0.241 Thr (abcd) + 0.054 Trp (abcdefghijk) + 0.131 Tyr (abcdefghi) + 0.402 Val (abcde) + 0.205 G6P (abcdef) + 0.071 F6P (abcdef) + 0.754 R5P (abcde) + 0.129 GAP (abc) + 0.619 3PG (abc) + 0.051 PEP (abc) + 0.083 Pyr (abc) + 2.510 AcCoA (ab) + 0.087 aKG (abcde) + 0.340 OAA (abcd)	0.015
	+ 0.443 MEETHF (a) \rightarrow	

0.015

23 **Results**

24 The *E. coli* model was fit to simulated liquid chromatography-tandem mass spectrometry (LC-MS/MS)

25 data with random noise added to the measurements to simulate experimental error. This data is listed in

26 **S1 Data**. The simulated LC-MS/MS data includes the parent and daughter ions described by Rühl et al

- 27 [2].
- All pool sizes were constrained by a lower bound of 0.001 and an upper bound of 10.0 when fitting the
- 29 model. The time domain was discretized by assigning time nodes at values of 0.0, 0.015, 0.045, 0.150,
- 30 0.400, 1.100, and 3.100. The 3rd-order Radau IIA collocation method was used initially to identify the
- 31 optimum, followed by the 9th-order Radau IIA method for refining the solution.
- 32

GLYCOLYSIS										
Reaction	Actual Flux	Actual	Predicted		Predicted					
Name		Exchange	Flux	SD	Exchange	SD				
gl-in:	1.000		1.000	0.000						
gl-1:	1.000		1.000	0.000						
gl-2:	0.737		0.735	0.029						
gl-3:	0.875	0.018	0.872	0.034	0.030	0.012				
gl-4:	0.875	79.945	0.872	0.034	49.635	352.884				
gl-5:	0.875	398.604	0.872	0.034	999.128	456.952				
gl-6:	1.851	387.675	1.847	0.034	998.153	303.376				
gl-7:	1.851	177.631	1.847	0.034	0.000	290.339				
gl-8:	1.825	16.921	1.827	0.034	998.173	479.101				
gl-9:	1.652		1.667	0.043						

PENTOSE PHOSPHATE PATHWAY

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD
pp-1:	0.260		0.262	0.029		
pp-2:	0.226		0.222	0.010		
pp-3:	0.086	3.213	0.085	0.003	3.285	1.189
pp-4:	0.140	1.316	0.137	0.007	1.324	0.107
pp-5:	0.072	0.393	0.071	0.003	0.386	0.020
pp-6:	0.072	0.000	0.071	0.003	0.001	0.001
pp-7:	0.067	0.000	0.066	0.003	0.000	0.002

ED PATHWAY										
Reaction	Actual Flux	Actual	Predicted		Predicted					
Name		Exchange	Flux	SD	Exchange	SD				
ed-1:	0.035		0.040	0.037						
ed-2:	0.035		0.040	0.037						

Reaction	Actual Flux	Actual	Predicted		Predicted	
Name		Exchange	FIUX	SD	Exchange	SD
pd:	1.785		1.778	0.007		
tc-1:	0.096		0.089	0.011		
tc-2:	0.096		0.089	0.011		
tc-3:	0.077		0.072	0.010		
tc-4:	0.060		0.056	0.010		

tc-5:	0.053		0.049	0.010		
tc-6:	0.080	646.735	0.073	0.011	20.146	493.971
tc-7:	0.086	0.419	0.078	0.011	0.424	0.092
tc-8:	-0.033	1000.000	-0.016	0.014	111.089	475.008

ANAPLEROTIC/CATAPLEROTIC REACTIONS

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD
me:	0.138		0.111	0.018		
an:	0.161	0.000	0.148	0.020	0.000	0.010

ACETATE SYNTHESIS										
Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD		Predicted Exchange	SD			
ac:	1.618		1.631		0.009					

GLYOXYLATE CYCLE

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD
gx-1:	0.019		0.017	0.003		
gx-2:	0.019		0.017	0.003		

EXCHANGE FLUXES

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD	
co2-in:	-2.154	0.524	-2.126	0.018	0.585		0.095
ac-out:	1.625		1.639	0.009			

Reaction Predicted Predicted **Actual Flux** Actual SD SD Name Exchange Flux Exchange 0.098 0.103 glusyn: 0.007 glnsyn: 0.010 0.010 0.000 0.003 0.003 prosyn: 0.000 0.004 0.004 argsyn: 0.000 aspsyn: 0.027 0.038 0.013 0.003 0.003 asnsyn: 0.000 alasyn: 0.007 0.007 0.000 0.017 0.012 sersyn: 0.007 0.009 0.005 0.004 glysyn: 0.007 999.996 280.146 glydeg: 0.001 0.000 0.006 338.953 0.007 999.994 thrdeg: 0.000 0.011 0.013 cyssyn: 0.003 0.003 0.000 0.005 0.005 Ildapsyn: 0.000 lyssyn: 0.005 0.005 0.000 800.0 0.018 thrsyn: 0.013 0.002 0.002 metsyn: 0.000 0.006 0.006 valsyn: 0.000 0.006 0.006 leusynl: 0.000 0.006 leusynll: 0.006 0.000

AMINO ACID SYNTHESIS

ilesyn:	0.004	0.004	0.000	
phesynl:	0.003	0.003	0.000	
phesynll:	0.003	0.003	0.000	
tyrsynl:	0.002	0.002	0.000	
tyrsynll:	0.002	0.002	0.000	
trpsynl:	0.001	0.001	0.000	
trpsynll:	0.001	0.001	0.000	
trpsynIII:	0.001	0.001	0.000	
hissyn:	0.001	0.001	0.000	

ONE CARBON METABOLISM

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD
methfsyn:	0.002		0.002	0.000		
fthfsyn:	0.001		0.001	0.000		

BIOMASS SYNTHESIS

Reaction Name	Actual Flux	Actual Exchange	Predicted Flux	SD	Predicted Exchange	SD
Biomass:	0.015		0.015	0.000		

33

Pool Name	Actual Pool Size	Predicted Pool Size	SD
Glc	0.096	2.700	0.212
G6P	0.085	0.035	0.009
F6P	0.061	0.066	0.007
FBP	0.089	0.171	0.059
DHAP	0.012	0.001	0.097
GAP	0.006	0.001	0.034
BPG	0.075	0.001	0.009
3PG	0.032	0.015	0.051
PEP	0.000	0.001	0.026
6PG	0.050	0.087	0.010
Ru5P	0.086	0.001	0.010
R5P	0.076	0.021	0.011
X5P	0.091	0.079	0.009
S7P	0.043	0.089	0.005
E4P	0.065	0.048	0.008
KDPG	0.008	0.033	1.955
Pyr	0.059	0.031	0.012
OAA	0.045	0.022	0.047
AcCoA	0.041	0.087	0.026
Cit	0.057	0.080	0.010
iCit	0.025	0.042	0.006
aKG	0.041	0.024	0.007

SucCoA	0.048	0.066	0.025
Suc	0.029	0.105	0.030
Fum	0.087	0.001	0.020
Mal	0.074	0.079	0.049
CO2	0.034	0.001	0.037
Gox	0.040	10.000	4.673
Ac	0.048	0.086	0.069
Glu	0.082	0.053	0.004
Gln	0.025	0.001	1.468
Asp	0.048	0.045	0.016
Ser	0.014	0.001	1.330
Gly	0.009	0.001	1.307
MEETHF	0.016	10.000	3.896
Thr	0.078	10.000	3.722
LLDAP	0.100	10.000	4.854
METHF	0.090	0.768	0.367
Cys	0.012	0.001	3.956
Leu1	0.030	9.948	0.151
Phe1	0.041	0.491	1.562
Tyr1	0.031	6.652	0.000
Trp1	0.015	8.508	1.397
Trp2	0.009	1.375	1.119
FTHF	0.091	0.001	0.254
Ala	0.000	4.909	0.000
Arg	0.061	0.885	0.664
Asn	0.085	8.010	0.000
His	0.081	1.254	1.396
lle	0.076	0.001	0.045
Leu	0.020	6.674	0.345
Lys	0.005	6.788	0.102
Met	0.034	4.390	0.000
Phe	0.017	8.980	0.414
Pro	0.008	6.372	0.311
Trp	0.078	0.001	0.004
Tyr	0.027	3.202	0.000
Val	0.046	2.173	0.688

Time (min)

37

38

39

Time (min)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0 +

0.5

1.0

0.5

1.0

0.0

0.5

1.0

47

1.0

57 **References**

- Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G. An elementary metabolite unit
 (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng. 2008;99: 686–
 6099. doi:10/crmdfw
- Rühl M, Rupp B, Nöh K, Wiechert W, Sauer U, Zamboni N. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of 13C metabolic flux analysis. Biotechnol Bioeng. 2012;109: 763–771. doi:10/bt7qxt