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ARTICLE

A functional genomics approach in Tanzanian
population identifies distinct genetic regulators of
cytokine production compared to European population

Collins K. Boahen,1,2 Godfrey S. Temba,2,3 Vesla I. Kullaya,3,4 Vasiliki Matzaraki,1,2 Leo A.B. Joosten,1,2

Gibson Kibiki,4,5 Blandina T. Mmbaga,4 Andre van der Ven,2,3 Quirijn de Mast,2 Mihai G. Netea,1,2,6

and Vinod Kumar1,2,7,8,*
Summary
Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines

play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in

different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in

European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify

genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine

and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another

cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-

analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 inde-

pendent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with

IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the Euro-

pean cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regu-

lating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians.

Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our

data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the

importance of initiatives to include diverse populations into genomics research.
Introduction

Cytokines are key regulators of immune response to

invading pathogens.1 Variations in cytokine responses

determine susceptibility to infectious diseases as well as

autoimmune and inflammatory diseases.2 Cytokine re-

sponses elicited by different microbial stimuli are known

to be highly heterogeneous across individuals and popula-

tions.3 Thus, identifying the major factors that determine

cytokine responses to microbial and other environmental

triggers has the potential to refine our understanding of im-

mune system variation and understand the source of the

variability in disease susceptibility between individuals.

The Human Functional Genomics Project (HFGP) was

established in 2013 with the aim of identifying genetic as

well as non-genetic host factors that determine interindi-

vidual variability in immune responses. In cohorts of

healthy individuals of Western European ancestry, these

functional genomics studies have demonstrated the signif-

icant role of genetic as well as environmental and non-ge-

netic (such as age, sex, and seasonality) factors for the
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interindividual differences in cytokine production capac-

ity upon stimulation.4–6 Undoubtedly, these studies have

broadened our knowledge on the major factors that

contribute to cytokine response variability. For example,

SNPs at the TLR10-TLR1-TLR6 (MIM: 606270, 601194,

605403) locus showed the strongest effect on production

of multiple cytokines.

Prior to this, Wurfel et al. (2008), through candidate gene

approach study in individuals recruited from Seattle metro-

politan area, had reported a genetic variant, rs5743551,

within theTLR1 locus tobe strongly associatedwith induced

cytokine production and sepsis outcome.7 Similarly, a previ-

ous work on individuals of Caucasian origin demonstrated

that variations in the TLR10-TLR1-TLR6 locus drives the

most interindividual variation in TLR2-mediated cytokine

responses.8 In the same genomic region, previous work on

transcriptional response of primary monocytes to viral and

bacterial stimuli reported European-specific strong trans-

eQTL (expression quantitative trait locus) effect.9 Given

that eQTLs effects are context or tissuedependent, this study

also focused on self-reported Africans residing in Belgium
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only.Arguably, thegenetic architectureofpolymorphisms in

the TLR10-TLR1-TLR6 region might have differential effect

on various human phenotypes and also varies substantially

among populations. Therefore, further exploration of this

genomic region by leveraging different molecular pheno-

types and individuals from other ethnicities is warranted to

draw general conclusions.

Africa is the continent where modern humans evolved

and from where they later migrated all around the world.

Africa is also extremely diverse culturally, ethnically, and

genetically. Burgeoning evidence in the scientific literature

shows that Africans have themost genetic variation among

all other populations.10,11 Despite this genetic richness, Af-

rican populations are poorly represented in genetic and

functional genomic research, especially compared to indi-

viduals of European ancestry.12,13 In the context of induced

cytokines responses for example, to the best of our knowl-

edge, only the Hi-Host Phenome Project (H2P2) has incor-

porated individuals of African ancestry in a study that

aimed to identify human genetic variation in pathogen-

induced cellular traits. However, this study was conducted

in lymphoblast cell lines and also not in Tanzanians.14

The Tanzanian population, among the sub-Saharan African

regions, has high prevalence of infectious diseases15 with

diverse patterns of causative agents compared to high-in-

come countries.16 Exposure to different environmental

conditions including infectious or microorganisms may

affect certain genetic markers through positive selection17

with differential effect on modern human populations.18

Therefore, the primary aim of this study was to investi-

gate genetic variants modulating ex vivomicrobial-induced

cytokine responses in healthy adults of East African

ancestry. The other important aim was to assess whether

distinct genetic variants and pathways contribute to inter-

population heterogeneity to cytokine responses upon

stimulation.

To achieve these aims, we extended the HFGP to include

a population of Sub-Saharan Africa: we performed a func-

tional genomics study in healthy adult individuals in the

Kilimanjaro region in Northern Tanzania.19 Here, we not

only identify significant genetic loci that affect cytokine

production in Tanzanian individuals, but we also show

considerable differences in the genetic basis for cytokine

production between the East Africans from Tanzania and

Western European individuals. Finally, we provide evi-

dence for ancestry-associated differences in inflammatory

pathways that regulate cytokine production in response

to infection.
Subjects and methods

Study design and participants
Data from the 300 Tanzania functional genomics (FG) (300TZFG)

were used in this study. Details of this cohort have been described

recently.19 In summary, the 300TZFG cohort consists of appar-

ently healthy Tanzanian individuals, aged between 18 and 65

years, living in the Kilimanjaro region in Northern Tanzania. All
472 The American Journal of Human Genetics 109, 471–485, March
participants had a negative rapid diagnostic test for malaria and

HIV. Exclusion criteria were pregnancy, any acute or chronic dis-

ease, use of antibiotics or anti-malaria medication in the 3 months

before sampling, tuberculosis in the past year, a blood pressure %

90/60 mmHg or R 140/90 mmHg, or a random blood glucose >

8.0 mmol/L. In this study, a total of 323 and 307 participants

had genotype and cytokine data, respectively. After quality control

procedures, matched genotype data (SNPs dosages) and cytokine

data were available for 271 individuals, consisting of 137 males

and 134 females. A general overview of the study samples at

various quality control steps are depicted in Figure S1. The general

500FG cohort of individuals of Western European origin consists

of 237 males and 296 females with age range of 18 to 75 years.

Ethics approval and consent to participate
The 300TZFG study was approved by the Ethical Committees of

the Kilimanjaro Christian Medical University College (CREC)

(no. 2443) and the National Institute for Medical Research

(NIMR/HQ/R.8a/Vol. IX/2290 and NIMR/HQ/R.8a/Vol.IX/3318)

in Tanzania. Written informed consent was obtained from all sub-

jects. The 500FG cohort study was approved by the Ethical Com-

mittee of the Radboud University Medical Centre Nijmegen, the

Netherlands (NL42561.091.12, 2012/550). Informed consent

was provided by all the participants.

Whole blood stimulation experiments
As previously described,19 ex vivo cytokine stimulation experi-

ments were performed at the biotechnology laboratory facility

available at Kilimanjaro Clinical Research Institute in Moshi,

Tanzania. Whole blood was stimulated with ten stimuli (see Table

S16 from Temba et al.19 for details) including bacterial and fungal

pathogens as well as TLR3 and TLR4 agonists. 100 mL of heparin

bloodwas added to a 48-wells culture plate and subsequently stim-

ulated with 400 mL of stimulus for 48 h at 37�C and 5%

CO2. Stimuli were prepared in RPMI culturemedium (Dutchmodi-

fied, Invitrogen) supplemented with 50 mg/mL gentamicin, 2 mM

Glutamax, and 1 mM pyruvate. Supernatants were collected and

stored at �80�C until used for ELISA. To minimize variation be-

tween measurements, we measured all samples by using kits of

the same lot number.

Cytokine measurements
Concentrations of cytokines interleukin (IL)-6, IL-1b, interferon

(IFN)-g, tumor necrosis factor (TNF)-a, and IL-10 were measured

in the stored supernatants via ELISA according to the instructions

(given (IL)-6, IL-1b, IL-10, and TNF- a: R&D Systems; IFN-g: San-

guin). We excluded IL-10 cytokine responses to S. aureus,

C. albicans, and PolyIC, as over 75% of the individuals had values

below the detection limit, resulting in 47 cytokine-stimulation

combinations used in this analysis.

Quality control of cytokine data
Preprocessing of cytokine data was performed before statistical

analysis. Raw cytokine concentrations were first log2-transformed

followed by normalization for approximation of standard

Gaussian distribution (Figure S2A). Inverse-ranked normalization

was performed with the ‘‘rntransform’’ function implemented in

the GenABEL R package.20 To examine the presence of outliers,

we performed unsupervised hierarchical clustering analysis by us-

ing Pearson’s correlation as a measure of similarity. All the samples

in the dataset clustered uniformly (Figure S2B).
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SNP genotyping, quality control, and imputation
DNA was extracted from whole blood with the DNeasy kit. Gen-

otyping was performed with the Global Screening Array (GSA)

SNP chip. We used default settings of Opticall 0.7021 to perform

genotype calling. Quality control filters prior to imputation

include excluding variants with call rate exceeding 0.1, low mi-

nor allele frequencies (MAFs < 0.001), and SNPs deviating from

Hardy-Weinberg equilibrium (HWE) with a p value < 1 3 10�4.

Next, we excluded 15 samples that were potential genetic out-

liers through identification by using multi-dimensional scaling

plots. A total of 409,261 variants and 308 samples passed the

quality control procedures. Strand alignment to a reference

panel, 1000 Genomes reference panel dataset, was performed

via Genotype harmonizer.22 To improve genome coverage, we

performed genotype imputation for all autosomal chromosomes

by using the Minimac4 software through the publicly available

Michigan Imputation Server.23 The Human Reference Con-

sortium (HCR r.1.1 2016) was used as a reference panel and

the dataset was phased with Eagle v2.3. Variants with imputa-

tion quality score (R2) < 0.3 were excluded from further anal-

ysis. Genotyping and imputation generated a total of

5,271,779 variants from 308 individuals. We further excluded

samples because of extreme heterozygosity rates and cryptic

relatedness. No sample was removed as a result of incorrect or

ambiguous sex information when compared with self-reported

sex in the phenotype data. We used a multidimensional scaling

approach to examine potential population structure by merging

our data with the 1000 Genomes Project data. All individuals in

our data clustered homogeneously with individuals of African

origin included in the 1000 Genomes dataset (Figure S2C). How-

ever, by excluding non-Africans, the Tanzanian data clustered

differently from the Africans in the 1000 Genomes Project

data (Figure S2D). We considered SNPs with MAFs R 5% and

not deviating from HWE with p value > 1 3 10�6, yielding a

final dataset of 5,269,992 SNPs that were subsequently used

for cytokine QTL analysis.
Cytokine quantitative trait loci (cQTLs) mapping
The cQTL analysis was performed with a linear model imple-

mented in the Matrix-eQTL R package.24 We adjusted the linear

model for age, sex, and residency (rural and urban samples) on

the inverse ranked normalized cytokine concentrations. We

considered the conventional genome-wide significance threshold

for statistical significance of p value % 5 3 10�8 to account for

multiple testing.

For genome-wide QTL mapping, multiple SNPs are tested

throughout the genome and based on linkage disequilibrium

(LD) between SNPs, a particular locus might contain multiple

cytokine-associated genetic variants. Therefore, we performed LD

clumping with the greedy algorithm (SNPs in LD are removed in

ascending order of p values) implemented in PLINK25 to identify

independent associations. Here, our imputed genotype data were

used as a reference dataset for estimating LD, clumps around

lead SNPs were formed with a default window size of 250 kb,

and r2 threshold greater than 0.1 was applied.
Meta-analysis
We conducted a meta-analysis by using a weighted sum fixed-effect

model approach as implemented in METAL software program.26

Meta-analysis was performed by integrating summary statistics of

cytokine QTL association results from this study and the 500FG
The Ameri
study. To explain briefly, the 500FG is a population-based cohort

made up of healthy adult volunteers of Western European origin

from the Human Functional Genomics Projects. This cohort con-

sists of 237 males and 296 females with age range of 18 to 75 years.

Previously, researchers from our group used this cohort to perform

cytokine QTL analyses on pro-inflammatory cytokine responses af-

ter bacteria, fungal, and viral stimulations.6 The meta-analysis was

restricted to only cytokine-stimulation pairs common in both

studies. We calculated heterogeneity statistics based on the chi-

square test for all SNPs to estimate heterogeneity of effect sizes in

both cohorts. In general, associations with meta p value % 5 3

10�8 were considered genome-wide significant.

Pathway enrichment analysis
The potential biological significance of cQTL was assessed via

over-representation analysis (ORA), which performs a hypergeo-

metric test to identify causal pathways. WebGestalt, a freely

available online tool and one of the most widely used gene set

enrichment analysis tools, was used. We determined statistically

significant pathways after correcting for multiple testing (false

discovery rate p < 0.05) by using the Benjamini-Hochberg

method.

Haplotype and LD block analysis
We extracted common genetic markers that passed quality con-

trol after imputation between the 500FG and 300TZFG cohorts

to determine haplotype blocks separately in both cohorts by us-

ing PLINK (v1.09) software. Default parameters such as pairwise

LD calculation based on SNPs within 200 kb window were

applied. For each block that was identified per chromosome, we

analyzed the number of haplotypes and median haplotype block

length between the two populations and carried out Wilcoxon

signed-rank non-parametric test to assess statistical significance.

Pairwise LD measured as R2 for genetic markers within genomic

regions were estimated and visualized with the R package LDheat-

map.27

Genetic differentiation or divergence analysis
Interpopulation genetic differentiation analysis was conducted be-

tween the two populations with the fixation index (Fst) metric as

implemented in PLINK (v1.09) software. Average Fst values were

calculated with a step size of 10 kb. The analysis was performed

on common SNPs remaining after quality control in each cohort.

We used empirical approach by selecting Fst values exceeding 99th

percentile per SNP to determine significance.

Statistical analyses
All statistical analyses were performed in R: a free software envi-

ronment for statistical computing and graphics.28 We used

Fligner-Killeen non-parametric test for homogeneity of group var-

iances and robust to dataset with outliers to compared cell culture

medium with stimulated cytokine levels. Quality control, prepro-

cessing analysis of genetic data, and LD clumping procedures

around any lead SNPs analysis to determine independent loci

were performedwith the free, open-source whole-genome analysis

toolset PLINK 1.70.25 The cytokines association with imputed

genome-wide data analyses were performed with a linear model

as implemented in the Matrix-eQTL R package.24 The meta-ana-

lyses on cQTL summary statistic (p values) were performed with

the fixed effects sample-size-weighted analysis method imple-

mented in the METAL software.26
can Journal of Human Genetics 109, 471–485, March 3, 2022 473



Figure 1. Schematic diagram of study
design and bioinformatics analyses
We utilized samples of a cohort of healthy
Tanzanian adults. In vitro stimulation of
their blood was performed with ten
different stimuli, including bacterial,
fungal, and TLR3 and TLR4 agonists fol-
lowed by measuring five different cyto-
kines in the supernatant. Three (indicated
by red ovals) out of the resulting 50 cyto-
kine-stimulation pairs were excluded
from downstream analysis after quality
control. Genotyping was performed using
global screening arrays (GSAs) SNP chip.
We performed genome-wide SNP cytokine
quantitative trait loci (cQTL) mapping by
correlating cytokine abundances and
imputed genotype data and subsequently
performed pathway enrichment analyses.
Finally, we compared the results with
another cohort of Western European
ancestry individuals by using three
different approaches: direct overlap of ge-
netic variants, meta-analysis, and func-
tional enrichment analysis.
Results

Significant increase in cytokine abundance and

interindividual variations upon stimulation

To investigate the contribution of common genetic varia-

tions on human induced cytokine responses, we restricted

downstream analyses to the 47 cytokine-stimulation combi-

nations passing quality control procedures. Details of these

cytokine-stimulationpairs are illustrated in the general over-

view of the study design and bioinformatics analysis repre-

sented in Figure 1. First, we compared the abundance

of cytokines from unstimulated state (cell culture medium)

and stimulated conditions to establish their potential rela-

tionship. Compared to the spontaneous release of cytokines

from cells in culture medium and as expected, we observed

higher production of cytokines upon stimulation with mi-

crobial ligands (Figure 2A). On average, stimulation-induced
474 The American Journal of Human Genetics 109, 471–485, March 3, 2022
with S. enteritidis produced the most

abundant cytokine response, whereas

the least abundance was observed in

C. burnetii-stimulated cells. Also, we

observed that there is variation

in cytokine abundances per stimula-

tion and this is not because of

the presence of multiple outliers as de-

picted in (Figure2A).Boxplots support-

ing this observation are presented in

(Figure S3A). Moreover, we observed a

high level of interindividual variations

in cytokine concentrations of samples

after stimulation (Figure 2B). To test

whether there is a statistically signifi-

cant difference in the interindividual

variation in the production of cyto-

kines upon stimulation compared to
unstimulated state, we applied the Fligner-Killeen test for

group comparison. We observed more significant increase

in interindividual variations in stimulated conditions than

in unstimulated states (p value < 2 3 10�16). Computing

paired Wilcoxon tests resulted to the same level

of significance (Figure S3B). Interestingly, this interindi-

vidual variation was highest for IFN-g production under

most stimulations, suggesting the major role of host factors

(genetic and non-genetic) in determining IFN-g production

capacity.

Induced cytokine responses are clustered in cytokine-

dependent manner

The architectures of cytokine response in a population

can be dependent on the type of cytokine or the micro-

bial ligands used for the stimulation. Thus, to mine



Figure 2. General overview of cytokine responses architecture and summary of genome-wide significant cQTL results
(A) Boxplot comparing cytokine production capacity of unstimulated state (cell culture medium) and ten different stimuli. Profiles of all
cytokines (IFN-g, TNF-a, IL-1b, IL-10, and IL-6) were merged per stimuli to compare with unstimulated state.
(B) Dot plot depicting interindividual variability in cytokine response upon stimulation. While the x axis denotes cytokine concentra-
tions after log2 transformation, the y axis represents the total 47 cytokine-stimulation combinations used in the current study. The dot
plots have been arranged in ascending order of median values per stimuli.
(C) Dendrogram visualization of unsupervised hierarchical clustering of cytokine-stimulation pairs based on cytokine abundances. The
‘‘Euclidean’’ method in the ‘‘hclust’’ function was used for computing distances.
(D) Regional association plot at the TBC1D22A locus (top SNP rs12169244) associated with IL-1b upon Salmonella enteritidis stimulation.
Other SNPs flanking a genomic widow of 400 kb are color-coded according to their linkage disequilibrium (r2) with the top SNP (purple
color). The horizontal axis indicates chromosomal positions (NCBI human genome build 37) and the vertical axes represent �log10 p
values and recombination rates (cM/Mb) estimated from 1000G (African population) version 3.3.
(E) Heatmap showing the association between the genome-wide significant SNPwith all cytokine-stimulation pairs (on the vertical axis).
SNP-cytokine associations with p values greater than 5 3 10�2 were considered statistically non-significant (ns).
(F) Boxplot showing distribution of cytokine concentrations (pg/mL) stratified by genotypes of the top SNP (rs12169244).
patterns underlying induced cytokine responses, we per-

formed unsupervised hierarchical clustering on the cyto-

kine stimulation combinations. In general, we observed

distinct correlations at cytokine level irrespective of

pathogens (Figure 2C). Interestingly, all cytokines,

including anti-inflammatory cytokine IL-10, showed a
The Ameri
very strong cytokine-dependent clustering except for

PolyIC stimulation. Many of these stimuli are known

to activate TLR-signaling to affect cytokine production.

Why PolyIC-induced cytokine production is dependent

on the pathogen compared to other stimuli needs to be

investigated further.
can Journal of Human Genetics 109, 471–485, March 3, 2022 475



Table 1. Summary of top six independent SNP-cytokine loci

Loci SNPs Chr Base pair Cytokines Stimulation p value Causal genes

1 rs12169244 22 47,558,596 IL-1b S. enteritidis 1.74 3 10�8 TBC1D22Aa

2 rs9563018 13 51,656,046 IL-1b M. tuberculosis 7.81 3 10�8 LINC0037,a GUCY1B2b

3 rs4474665 16 17,498,563 IFN-g S. enteritidis 7.99 3 10�8 XYLT1a

4 rs74115411 1 153,331,776 IL-6 S. aureus 8.90 3 10�8 S100A9a

5 rs11829172 12 98,579,287 IL-1b S. aureus 9.63 3 10�8 MIR4303a

6 rs10483241 12 48,630,139 IFN-g C. albicans 9.71 3 10�8 MIR4303a

aThe gene in closest proximity to the cytokine QTL SNPs.
bExpression of this gene shows association with cytokine QTL SNP in whole blood.
Identification of genome-wide genetic variants

affecting induced cytokine responses

Next, to identify genetic variants significantly associated

with cytokine production, we mapped cQTLs at

genome-wide scale. We identified one genome-wide sig-

nificant locus on the basis of the stringent p value

threshold of 5 3 10�8, while 80 other loci showed strong

suggestive independent associations (p value > 5 3 10�8

to 1 3 10�6) after adjusting for covariates (Table S1).

The genome-wide significant hit was SNP rs12169244

on chromosome 22, correlating with IL-1b production

upon S. enteritidis stimulation (Figure 2D). SNP

rs12169244 is an intronic variant mapping near

TBC1D22A (MIM: 616879) gene (TBC1 domain family

member 22A), which acts as a GTPase-activating protein

for Rab family protein(s). Interestingly, the genome-

wide significant SNP also showed nominal association

with 18 other cytokine-stimulation pairs, thus suggesting

a pleiotropic effect (Figure 2E). At this locus, relative to in-

dividuals carrying the AA genotypes, we observed

elevated cytokine production in individuals with GG ge-

notypes (Figure 2F). Quantile-quantile (QQ) plot of the as-

sociation results at this locus is presented in Figure S2E.

The genomic inflation factor or lambda(l) was observed

to be 1.01, suggesting no evidence of systematic bias in

the analysis. We report more detailed information of the

top six independent associations in Table 1.

Functional enrichment analysis of cQTLs identified in

Tanzania cohort

Based on the observation that cytokine-stimulation pairs

clustered in a cytokine-dependent manner (Figure 2C),

we hypothesized that there are common pathways

affecting cytokine production, irrespective of the pathogen

that induces the stimulation. Therefore, to identify these

pathways, we first prioritized suggestive independent

cQTLs (p value < 1 3 10�5) for each of the five cytokines

(IL-6, IL-1b, TNF-a, IFN-g, and IL-10) and extracted gene

sets mapping near these genetic variants by using a win-

dow size of 250 kb upstream and downstream of each

SNP. Henceforth, we refer to these groups as TNF-a-based,

IL-6-based, IFN-g-based, IL-1b-based, and IL-10-based

pathways. As expected, we found significant enrichment
476 The American Journal of Human Genetics 109, 471–485, March
of the genes at IFN-g-based cQTLs for various diseases

(Figure 3A), and regulation of interferon signaling

(Figure 3B), suggesting that cis-genes around IFN-g cQTLs

determine IFN-g production by mainly regulating path-

ogen recognition receptors such as TLRs and DDX58/

IFIH1-mediated signaling. Moreover, we observed signifi-

cantly enriched pathways; for example, estrogen signaling

pathway influences the TNF-a-based category (Figures 3C

and 3D). Estrogen is known to regulate cytokine

gene expressions in different cell types through estrogen

receptor-mediated pathways.29 Bar chart plots showing

enrichment results of IL-6-, IL-1b-, IL-10-based pathways,

with less significant enriched pathways, are presented in

Figures S4A–S4F.

Limited overlap between cQTLs identified in European

and African samples

We next assessed the presence of any systematic differ-

ences between cQTLs identified via two population-based

datasets of African (300TZFG) and European (500FG) indi-

viduals. To estimate the degree of shared genetic variants

between these two populations, we directly compared

the four cytokines (IFN-g, TNF-a, IL-1b, and IL-6) and three

stimulations (LPS, Candida albicans, and Staphylococcus

aureus) that were common to both cohorts (Figure 4A).

Across all the 12 cytokine-stimulation pairs considered,

we found only 1.6% to 1.9% of SNPs overlapping between

both populations with nominal association threshold (p

value < 5 3 10�2). For example, a Venn diagram depicting

this observation for S. aureus-cytokines pairs is shown in

Figure 4B, while results for LPS- and C. albicans-cytokines

are represented in Figure 4C. In addition, no evidence of

variant sharing was detected by restricting the analysis to

variants showing suggestive association with cytokines (p

value < 5 3 10�6), indicating that the identified genetic

variants with strong cQTL effect are mostly population-

specific variants.

Meta-analysis revealed shared genetic locus related to

cytokine response in African and European cohorts

We further sought to identify cQTLs that show effect on

cytokines in the same allelic direction in both populations

by meta-analyzing summary statistics of each marker
3, 2022



Figure 3. Bar graphs summarizing IFN-g- and TNF-a-based pathway enrichment results
(A and B) Top 15 enriched KEGG (A) and reactome (B) pathways for gene sets curated from SNPs associated with IFN-g.
(C and D) Top 10 enriched KEGG (C) and reactome (D) pathways for gene sets curated from SNPs associated with TNF-a. Darker blue bars
represent statistically significant pathways and lighter blue bars represent non-significant pathways after multiple testing. We set the
false discovery rate (FDR)-adjusted p value to 0.05 as significance level.
across the two cohorts. To accomplish this, we extracted

the common markers showing nominally significant asso-

ciation (p values < 5 3 10�2) in each independent study.

Interestingly, among all the 12 cytokine-stimulation pairs

analyzed separately, we identified one genome-wide signif-

icant locus at chromosome 5, the lead SNP rs60372900

correlating with TNF-a levels after S. aureus stimulation.

This intronic variant is mapped near a protein-coding

gene ZNF354A. Remarkably, data from 1000 Genomes

Project Phase 3 shows nearly equal minor allele fre-

quencies of 21% and 22% in Europeans and Africans,

respectively, of rs60372900. (Figure 4E). This observation

underscores the regulatory potential of this variant on

induced cytokine levels in both populations. Meta-analysis

performed by integrating the African and the European
The Ameri
data also identified several suggestive (p value < 1 3 10�5)

associations (Figure 4D). Summary statistics of meta-anal-

ysis results are presented in Table 2.

Population-specific cQTLs converge on distinct

pathways to regulate cytokine levels

As we observed a few overlaps of cQTLs between the Afri-

can and the European cohorts (Figures 4B and 4C), we

tested whether these cQTLs affect cytokine production ca-

pacity through distinct pathways. We first identified inde-

pendent suggestive associated cQTLs (p value < 1 3 10�5)

for all cytokine-stimulation pairs separately for each popu-

lation, and then we extracted genes around these cQTLs

and performed overrepresentation analysis as described

in the subjects and methods section. Intriguingly, we
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Figure 4. Comparison of cQTLs between Tanzanian (TZFG) and Western European dataset (500FG)
(A) Illustration of cytokine-stimulation combinations common in both African and European datasets (indicated by red circles). Cells
with ‘‘x’’ labels denote cytokine-stimulation pairs excluded from downstream analysis, as more than 75% of samples had values below
the detection limit of the assay.
(B) Venn diagrams illustrating S. aureus induced cytokine QTLs overlapping between individuals of African (TZFG) and European
(500FG) ancestry.
(C) Pie chart showing the degree of LPS- and C. albicans-induced cytokine QTLs overlapping between individuals of African (TZFG) and
European (500FG) ancestry.
(D) Manhattan plot of SNP-cytokines association test results indicating shared cQTL locus between individuals of African and European
ancestry. The red horizontal dashed line represents the genome-wide significant threshold (p value< 13 10�8) and the blue dashed line
denotes the suggestive evidence of association threshold. Nominally significant (p value < 5 3 10�2) cQTLs are plotted.
(E) Bar graphs representation of significantly enriched KEGG pathways after FDR correction.
(F) Bar graphs representation of significantly enriched reactome pathways after FDR correction. The colors of the bars associated with
each pathway correspond to cytokine-stimulation pairs as shown by the color legend. Pathway analysis was performed withWebGestalt
tool with subsequent visualization with R statistical software.
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Table 2. Summary of top loci identified by meta-analysis of TZFG and 500FG dataset

Loci SNPs Chr Base pair Cytokines Stimulation
Z
score Meta p value TZFG p value

500FG
p value

Allelic
direction Causal genes

1 rs60372900 5 178,220,798 TNF-a S. aureus 5.47 4.50 3 10�8 6.56 3 10�3 1.24 3 10�6 þþ AACSP1a

2 rs1919482 8 19,754,718 IL-6 C. albicans 5.353 8.69 3 10�8 2.31 3 10�5 5.78 3 10�4 þþ LPL,a,b INT,b

CSGALNCb

3 rs1602850 12 86,657,959 IL-1b S. aureus 5.281 1.29 3 10�7 1.13 3 10�4 2.54 3 10�4 þþ MGAT4Ca

4 rs1588730 4 89,955,623 IFN-g C. albicans 5.26 1.44 3 10�7 2.70 3 10�5 8.05 3 10�4 þþ FAM13A,a,b TIGD2b

5 rs6002586 22 42,441,412 IL-1b C. albicans 5.18 2.22 3 10�7 9.63 3 10�4 6.57 3 10�5 þþ WBP2NL,a SMDT1,b

CYP2D6,b MEI1,b

NAGA,b PHETA2b

6 rs6801434 3 100,809,977 IL-6 S. aureus 5.108 3.25 3 10�7 2.22 3 10�4 3.51 3 10�4 þþ ABI3BP,a TFGb

7 rs16829318 3 158,418,720 TNF-a C. albicans 5.032 4.87 3 10�7 4.08 3 10�4 3.12 3 10�4 þþ RARRES1,a LXN,b

GFM1,b MLF1,b

RSRC1b

8 rs2949663 1 167,391,498 TNF-a LPS �4.935 8.00 3 10�7 6.17 3 10�4 3.55 3 10�4 – POU2F1,a CD247,b

AL359962.1b

9 rs3755369 2 70,942,964 IFN-g LPS 4.84 1.30 3 10�6 1.30 3 10�3 2.93 3 10�4 þþ ADD2,a,b CLEC4Fb

10 rs6864825 5 173,659,256 IFN-g S. aureus �4.794 1.64 3 10�6 1.40 3 10�4 2.16 3 10�3 – HMP19a

11 rs11122458 1 230,308,855 IL-6 LPS 4.768 1.86 3 10�6 2.51 3 10�3 2.25 3 10�4 þþ GALNT2a

12 rs2485164 9 1,706,565 IL-1b LPS 4.761 1.93 3 10�6 1.00 3 10�3 5.48 3 10�4 þþ SMARCA2a

aThe gene in closest proximity to the cytokine QTL SNPs.
bExpression of this gene shows association with cytokine QTL SNP in whole blood.
observed significant enrichment of genes for different

pathways in different populations (Figure 4F). For

example, in the Tanzanian cohort, the top-ranked KEGG

pathways were mostly related to human viral infectious

diseases such as hepatitis C, measles, influenza A, and hu-

man cytomegalovirus infection. Notably, these pathways

were distinct for both populations. In support of this

finding, using Reactome database, we found enrichment

for regulation of type I interferon signaling pathways

(Figure 4G). In contrast, we observedmoderate enrichment

for IL-1 signaling pathway and olfactory signaling pathway

in the European cohort.

Exploring the Toll-like receptor (TLR) locus in the

Tanzania cohort

TLRs are pathogen recognition receptors throughwhich our

innate immune system ‘‘senses’’ foreign antigens and acti-

vates host protective inflammatory responses.30 It has

already been shown that the TLR10-TLR1-TLR6 locus is un-

der strong positive selection in European populations.31

Our previous cQTL mapping study in the European popula-

tion identified 17 independent loci, and among them, the

SNPs at the TLR10-TLR1-TLR6 locus on chromosome 4

showed the strongest association (p ¼ 3.9 3 10�25) with

cytokine production.6 Notably, a SNP, rs28393318, was

strongly associated with PolyIC-induced IL-1b production

and another SNP, rs6834581, was associated with both

PolyIC-induced IL-6 and C. burnettii-induced IL-1b levels.

Given the availability of these cytokine-stimulation pairs

in this study cohort, we attempted to interrogate the trans-

ferability of the TLR10-TLR1-TLR6 locus findings in the
The Ameri
context of cytokine responses to an African population.

Mapping cQTLs revealed that, while these polymorphisms

(rs6834581 and rs28393318) significantly affect cytokines

(IL-6 and IL-1b) in European samples, we found no associa-

tion (p value > 0.05) in the African cohort (Figures 5A–5C).

Testing the effect of these SNPs on other cytokine-stimula-

tion pairs also showed no association (Figure 5D). Interest-

ingly, the lead cQTL SNPs (with smallest p values) at these

loci in the African cohort are not in LD with the lead

SNPs in the European cohort (see Figures S5A–S5C for

regional association plots and Figures S5D–S5F for heatmaps

depicting the lack of correlation).

In addition, through publicly available eQTL database

searches, there was no evidence of the lead cQTL SNPs

from the African cohort showing effect on expression

levels of TLR10-TLR1-TLR6 genes (data not shown).

Furthermore, we observed varying LD patterns between

the populations in this genomic region. While we

observed some isolated markers in smaller LD blocks in

the Tanzanians (Figure 5E), areas of stronger LD corre-

sponding to uniform haplotype blocks were seen in the Eu-

ropeans (Figure 5F). This observation points to the role of

different haplotypes at this locus in the African population

than in the European population contributing to the cyto-

kine regulation in response to pathogens.

Haplotype block lengths varied between the African and

European cohorts

To get some insights into the substantial lack of cQTLs

shared between both populations, we tested whether

average length of haplotype blocks vary significantly
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Figure 5. Regional association plots and heatmaps of variants in the Toll-like receptor (TLR) locus
(A–C) Regional association plots of SNPs flanking genomic window of 400 kb around SNPs rs28393318 and rs6834581 associated with
IL-6 and IL-1b concentrations at the TLR10-TLR1-TLR6 locus. These polymorphisms reached the genome-wide significant threshold (red
lines) but showed non-significant association in the Tanzania cohort.
(D) Heatmap showing the association between SNPs (rs28393318 and rs6834581) with all cytokine-stimulation pairs (on the vertical
axis). SNP-cytokine associations with p values greater than 5 3 10�2 were considered non-significant (ns).
(E and F) Linkage disequilibrium (LD) patterns of genetic variants in the TLR locus for the Tanzanians (E) and Europeans (F). Red color
depicts areas of strong LD and yellow represents sections of weak LD. The black lines show the location of each marker in this genomic
region.
between two populations. Across the entire autosomes, we

observed significantly higher median haplotype block

length in the 500FG samples contrary to the observed

haplotype block length in the Tanzanians (Figure 6A).

Also, compared to the 500FG samples, we observed higher

number of blocks in the Tanzanians. Details of the results

supporting Figure 6A are depicted in Table S2. These obser-

vations indicate differential genetic architecture underly-

ing both populations, which could partly explain the

limited concordance we observed with cQTLs between

two populations.
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Limited evidence for cQTLs in Tanzanians to be under

positive selection

To test whether some of cQTLs identified in the Tanzanians

are under positive selection, we first computed genome-

wide Fst values for each SNP to uncover differential markers

or signals of positive selection between both populations.

The genome-wide Fst averaged 0.10. The top 1% Fst values,

corresponding to a threshold of 0.535, were identified as

markers (n ¼ 37,867) showing significant differentiation

(Figure 6B).We then testedhowmanyof thenominally asso-

ciated cQTLs (p < 0.05) were also showing a very high Fst
3, 2022



Figure 6. Haplotype analysis and candidate markers under positive selection
(A) Boxplot of median haplotype blocks length (y axis) per chromosome (x axis) for the Tanzanians (yellow) and Europeans (steel blue).
The asterisks (*) show the degree of significance difference between both populations based on Wilcoxon signed-rank non-parametric
test.
(B) Manhattan Fst plot of SNPs (in grays) across the genome. The red horizontal line represents the 99th percentile, threshold of
significance.
(C) Bar plot of the distribution of significant genetic markers across different p value categories, ranging from nominal to suggestive
associations.
value. We found less than 0.75% of the cQTLs (p < 0.05)

showed >0.535 of Fst value, indicating the possibility that

only a few cQTLs were under positive selection (Table S3).

Interestingly, there were five strongly associated cQTLs (p

< 10�6) with high Fst value, while themajority of the cQTLs
The Ameri
were nominal associations (Figure 6C). Although this obser-

vation suggests lack of strong enrichment of cQTLs to be un-

der natural selection, some of these loci could be interesting

candidates to understand their function in the context of

evolutionary genetics.
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Discussion

This study identified genetic loci in a Tanzanian popula-

tion that affect cytokine responses of primary immune

cells to diverse pathogenic stimuli. We also show that the

genetic loci that regulate cytokine responses differ between

populations of African ancestry and Western European

ancestry. Notably, there is less than 2% overlap among

cQTLs between the two populations, including lack of as-

sociation at the TLR10-TLR1-TLR6 locus in the Tanzanian

population.

One of the important observations of our study is the

pathogen-independent clustering of cytokine responses.

The pattern with which an individual elicits cytokine

response to pathogens could be either cytokine and/or

stimulus dependent. While previous studies in the Euro-

pean population reported pathogen-dependent cytokine

responses,5,6 we observed the contrary in our Tanzanian

cohort in which certain cytokine-stimulation pairs, partic-

ularly IL-10, clustered at the cytokine level, which suggests

that anti-inflammatory responses are organized to respond

to different pathogens through a specific cytokine

pathway. Unfortunately, IL-10 measurement was not avail-

able from the previous 500FG study for exploration of

whether this pattern is specific to anti-inflammatory cyto-

kines. Nevertheless, it will be interesting to explore further

through future studies whether ancestry could drive the

differences at the patterns of cytokine clusters.

Our study also identified a genome-wide significant lo-

cus exerting a strong effect on cytokine levels in response

to pathogens. The most significant SNP, rs12169244, asso-

ciated with IL-1b levels resides near the cis-region of

TBC1D22A rather than IL1B. In addition, by conducting

a meta-analysis between the 500FG and 300TZFG cohorts,

we found another genome-wide significant cQTL for TNF-

a with the top SNP, rs60372900, residing near ZNF354A

(MIM: 602444). We made a similar observation in our pre-

vious studies using European-based cohorts,5,6 where all

the significant cQTLs were located in trans, suggesting

the significant role of trans-regulatory pathways in modu-

lating cytokine responses upon stimulations. We were un-

able to establish any correlation between these top SNPs

and potential causal genes by using available eQTL data-

sets. Thus, it is difficult to speculate the mechanistic role

of any cis-genes, and we therefore emphasize the need

for relevant eQTL datasets from the African population.

Comparative analysis of genetic variants associated with

cytokine response upon stimulation revealed that most of

the genetic variants exert their effect on cytokines response

in a population-specific manner, as a very limited percent-

age (1.6% to 1.9%) of shared effect was observed. This result

may not come as a surprise considering the distinct genetic

architecture that is known to exist between populations on

different continents, most likely due to different infectious

pressure.32 These findings highlight the potential role of

common variants to the remarkable interpopulation diver-
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sity in immune responses and susceptibility to infectious

diseases.33,34 In this context, by performing simulation an-

alyses, studies have shown that the accuracy of

Fst estimation directly depends on the number of genetic

polymorphisms,35 suggesting the intrinsic role of genetic

markers on population differentiation estimates. Although

our Fst analysis provided some indication for genetic differ-

entiation between the two populations, including a large

number of samples and whole-genome sequence data to

represent the true population diversity, particularly from

the African population, will help in accurately estimating

the genetic differentiation. Evidently, non-genetic factors

such as gut microbiome,36 seasonality,4 age and sex,37,38

and urban or rural living also contribute to interindividual

differences in immune responses. This observation again

highlights the fact that host genetics is shaped by strong se-

lective pressure from environmental factors, mainly

pathogens.

Several lines of evidence have demonstrated that TLRs

have undergone different selection pressures across popu-

lations and have identified the TLR10-TLR1-TLR6 locus as

a target of positive selection in contemporary European

populations.39,40 Indeed, it has been hypothesized that

this locus may have been selected by the severe ancient

and medieval plague epidemics in Europe, as this locus

modulates the immune response to Yersinia pestis.41 Our

analysis evaluating LD patterns in this locus is consistent

with these previous findings. We observed much longer

blocks of LD in the Europeans as compared to the Africans,

a typical characteristic of a region undergoing natural se-

lection.42 Another typical example is TLR6, and variants

in this gene have been shown to exhibit differential allele

frequencies between European populations and other pop-

ulations.43 Interestingly, the variation in the TLR10-TLR1-

TLR6 locus has been reported to be strongly influenced in

Europeans by introgression from Neanderthals, thus

showing the impact that archaic humans had on immune

responses of modern human populations.40 As practically

no introgression of Neanderthals and Denisovans is found

in African populations, it becomes less surprising the lack

of impact of variation in this locus on the immune

response of African populations. Our observation of lack

of impact of the TLR10-TLR1-TLR6 locus on cytokine re-

sponses in the African population strengthens the possi-

bility that this locus has putatively undergone adaptive

evolution exclusively in Europe.

In the same line of comparison of molecular phenotypes

across diverse ancestries, a study systematically assessing

allelic variants in cytokine genes showed that African

American women were more likely to harbor allelic vari-

ants known to upregulate pro-inflammatory cytokines

compared to women of European ancestry.44 Also, on the

basis of genotype-expression data, 9.3% of genes expressed

in macrophages exhibit ancestry-related variances in the

regulatory response to infection, and African ancestry typi-

cally predicts stronger inflammation than European

ancestry.9 Our pathway enrichment analyses based on
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genes mapped to cQTLs also showed similar results: con-

trary to European samples, cQTL genes from the Tanzanian

cohort were significantly enriched in the interferon

pathway. This is interesting because, using the blood tran-

scriptional data from the same cohort, we recently

observed significant upregulation of interferon genes

among urban residents of Tanzania.19 In line with this,

Manry et al. (2011) have also shown significant differences

in the number of polymorphisms within the population

between the genes encoding the various IFNs and their re-

ceptors, in which the highest levels of nucleotide diversity

within interferon genes were observed in African popula-

tions.45 Interestingly, Quach et al. (2016) have shown

that virus-specific eQTLs in Europeans are mostly popula-

tion specific and Neanderthals introduced regulatory

variants into European genomes.33 Given the lack of

Neanderthal variants in African genomes and the possibil-

ity that people in Tanzania are much more exposed to

Mycobacterium tuberculosis46 than the people living in the

Netherlands, it is tempting to speculate that the natural se-

lection had independently led to an increased interferon

response in populations of Africa and is partly driven by

host genetic variations. Whether this enhanced interferon

response in the Tanzanian population influences risk for

COVID-19 remains to be tested.

We also acknowledge some limitations with our study.

First, using only 300 samples in our discovery cohort, we

are unable to recruit a sufficiently large independent cohort

of Tanzanian volunteers for replication analysis. Second,

contrary to the Tanzania cohort, immune cell counts data

used for correcting cytokines abundance prior to cQTLmap-

ping were only available for the European cohort (500FG).

Therefore, it is possible that some of the cQTLs are false pos-

itive associations and further validation is required. Third, a

number of recent studies have identified the inability of the

currently available SNP arrays to capture or assign non-Eu-

ropean variants and haplotypes accurately.47,48 We there-

fore reasoned that some critical variants in the Tanzanians

might bemissed, especially untagged variants with different

frequencies and rare variants. Therefore, whole-genome

sequence data from diverse populations are very much

needed to capture population-specific and rare variants to

study their impact of immune function.

Nevertheless, this study offers unique contribution to

studies comprehensively investigating the genetics of cyto-

kines response variability in non-European ancestry, most

importantly leveraging a large variety of pathogens for

inducing cytokine responses. Follow-up studies in larger

cohorts are required to validate our findings and also to

discover more genetic variants with less strong effects.

Conclusions

Our study shows that at both SNPs and immunological

pathway levels, the cytokine production capacity upon

diverse stimulations is modulated in a population-specific

manner. We also demonstrate that the TLR1-TLR6-TLR10

locus significantly affects cytokine production capacity
The Ameri
only in individuals of European descent. Given the dissim-

ilarity of genetic determinants regulating induced cytokine

responses in both populations, we argue for the inclusion

of under-represented populations in genomics research to

make new discoveries in health and disease disparities

seen among individuals and populations.
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Figure S1. Schematic overview of Tanzania study cohort quality control.  
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Figure S2. Quality control of genetic and cytokine data. 

(A) Density plots depicting the distributions of S. enteritidis induced-IL-1β 

concentrations. The density plot is faceted as follows: raw (RAW), Log2 transformed 

(Log2), and inverse-ranked normalization of IL-1β distributions respectively. (B) 

Dendrogram visualization of unsupervised hierarchical clustering of individuals used 

for cQTL mapping. The “Euclidean” method in the “hclust” function was used for 



computing distances. (C) Multi-dimensional scaling (MDS) plot of populations in the 

1000 Genome project against individuals in Tanzania cohort. The first two MDS 

components (C1 and C2) are plotted against each other. Individuals representing 

various continental groups are color coded as shown in the color legend. The color 

legend populations in the 1000 Genome project are: AFR (Africans), AMR (American), 

EAS (East Asians), EUR (Europeans), and SAS (South Asians). Clustering of 

populations revealed genetically homogenous cluster of Tanzania cohort individuals 

with African ancestry individuals in the 1000 Genome project data. (D) MDS plot with 

Tanzanian data projected on only Africans (dominated by west Africans) in the 1000G 

data. (E) Quantile-Quantile (QQ) plot depicting association results of IL-1β after S. 

enteritidis stimulation. Lambda (λ) value indicates lack of inflation of the test statistics.  



 
Figure S3: Interindividual variability of cytokine profiles upon stimulation. (A) 

Boxplots indicating strong variation of IFNγ responses compared to other cytokines 

in most stimulations. (B) Boxplot of Wilcoxon test depicting the level of significant 

differences of cytokines response upon stimulation compared to unstimulated 

conditions (Medium).  



 

Figure S4. Bar chart representation of IL-6, IL-1β- and IL-10-based pathways. 

(A , B and C) Top 10 enriched KEGG pathways for IL-6, IL-1β  and IL-10 respectively. 

(D , E and F) Top 10 enriched Reactome pathways for IL-6, IL-1β and IL-10  

respectively. Darker blue bars represent statistically significant pathways and lighter 

blue bars represent non-significant pathways after multiple testing. We set the false 

discovery rate (FDR)-adjusted P-value to 0.05 as significance level. 



 

Figure S5. Different haplotypes regulate cytokine production between Africans and 

Europeans. 

(A, B and C) Regional association plots of SNPs flanking genomic window of 400kb 

around top SNPs: rs79353221, rs2616267 and rs11941222 associated with IL-6 and 

IL-1β concentrations at TLR10-TLR1-TLR6 locus. None of these variants are in 

linkage disequilibrium with the top variants identified in this locus in the European 



population. (D, E and F) Heatmaps showing lack of correlation between lead SNPs in 

the African and the European dataset at the TLR10-TLR1-TLR6 locus. 
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