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Supplemental Figures 
 
Figure S1. Models representing potential causal relations among annotations. (a) All 

annotations 𝒚𝒚𝑖𝑖𝑖𝑖 (e.g., conservation measures, epigenetic measures) are treated as 

consequences of a single latent dichotomous variable of function 𝒄𝒄𝑖𝑖. Annotations are 

assumed to be independent conditional on 𝒄𝒄𝑖𝑖, as proposed in GenoCanyon. (b) All 

annotations 𝒚𝒚𝑖𝑖𝑖𝑖 are treated as consequences of 𝒄𝒄𝑖𝑖. Annotations may be correlated 

conditional on 𝒄𝒄𝑖𝑖. (c) There are multiple, possibly related, latent dichotomous variables of 

function 𝑐𝑐𝑖𝑖1, … , 𝑐𝑐𝑖𝑖𝑖𝑖. For each functional status 𝑐𝑐𝑖𝑖𝑖𝑖, a subset of annotations 𝑦𝑦𝑖𝑖𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗 

are observed as consequences. Annotations measuring the same 𝑐𝑐𝑖𝑖𝑖𝑖 may be correlated 

conditional on 𝑐𝑐𝑖𝑖𝑖𝑖, as proposed in MACIE. 
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Figure S2. ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between ClinVar pathogenic and benign missense variants. 
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Figure S3. ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between ClinVar pathogenic and benign non-coding variants. 
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Figure S4. ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between loss-of-function (LOF) non-synonymous coding 

variants within 13 exons that encode functionally critical domains of BRCA1 (putative 

functional class) based on saturation genome editing (SGE) data and ClinVar benign 

non-synonymous coding variants (putative non-functional class). 
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Figure S5. LocusZoom plot1 for GWAS associations of TC at the APOE locus. The lipids 

GWAS summary statistics were from the European Network for Genetic and Genomic 

Epidemiology (ENGAGE) Consortium (n = 62,166). The MACIE-protein and MACIE-

conserved scores for rs7412 are 0.96 and 0.97, respectively. The MACIE-conserved and 

MACIE-regulatory scores for rs1065853 are < 0.01 and > 0.99, respectively. TC, total 

cholesterol. 
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Figure S6. LocusZoom plot1 for GWAS associations of HDL-C at the CETP locus. The 

lipids GWAS summary statistics were from the European Network for Genetic and 

Genomic Epidemiology (ENGAGE) Consortium (n = 60,812). The MACIE-conserved and 

MACIE-regulatory scores for rs17231506 are both < 0.01. For both rs72786786 and 

rs12720926, the MACIE-conserved and MACIE-regulatory scores are < 0.01 and > 0.99, 

respectively. HDL-C, high-density lipoprotein cholesterol. 
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Figure S7. LocusZoom plot1 for GWAS associations of TG at the APOC3 locus. The 

lipids GWAS summary statistics were from the European Network for Genetic and 

Genomic Epidemiology (ENGAGE) Consortium (n = 60,027). The MACIE-conserved and 

MACIE-regulatory scores for rs964184 are both < 0.01. The MACIE-conserved and 

MACIE-regulatory scores for rs2075290 are < 0.01 and 0.88, respectively. TG, 

triglycerides. 
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Figure S8. Heritability enrichment for 2 lipid traits from the ENGAGE Consortium, LDL-C 

and HDL-C, using 8 integrative annotations, fitCons, CADD, LINSIGHT, FATHMM-XF, 

EIGEN, DANN, GenoCanyon, and MACIE-anyclass. Asterisks indicate significant 

enrichment at FDR = 0.05 across all 16 trait-annotation pairs). LDL-C, low density 

lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol. 
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Supplemental Material and Methods 
 
The MACIE Generalized Linear Mixed Model (GLMM) 
Suppose there are 𝑁𝑁 genetic variants in total and we are interested in 𝑀𝑀 latent 

annotation classes, each containing 𝐿𝐿𝑖𝑖 annotation scores. For genetic variant 𝑖𝑖 and 

annotation class 𝑗𝑗, we denote the set of 𝐿𝐿𝑖𝑖 annotations as 𝒚𝒚𝑖𝑖𝑖𝑖 = �𝑦𝑦𝑖𝑖𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗�
𝑇𝑇
, such 

that each variant is described by 𝐿𝐿 = ∑ 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖=1  annotations in total. We want to estimate for 

each variant 𝑖𝑖 the vector of binary functional statuses 𝒄𝒄𝑖𝑖 = (𝑐𝑐𝑖𝑖1, … 𝑐𝑐𝑖𝑖𝑖𝑖), where 𝑐𝑐𝑖𝑖𝑖𝑖 is the 

unobserved latent functional status for class 𝑗𝑗. Conditional on 𝑐𝑐𝑖𝑖𝑖𝑖 and a random effect 

variable 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖, we assume that the elements of 𝒚𝒚𝑖𝑖𝑖𝑖 are independent observations, each 

generated from a one-parameter exponential family with canonical parameterization. 

That is, for 𝑗𝑗 = 1, … ,𝑀𝑀 and 𝑘𝑘 = 1, … , 𝐿𝐿𝑖𝑖, 

 𝑓𝑓𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖� = exp ��𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖𝜂𝜂𝑖𝑖𝑗𝑗𝑖𝑖−𝑑𝑑𝑗𝑗𝑖𝑖�𝜂𝜂𝑖𝑖𝑗𝑗𝑖𝑖��
𝜙𝜙𝑗𝑗𝑖𝑖

+ ℎ𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜙𝜙𝑖𝑖𝑖𝑖�� ,  (1) 

with 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑑𝑑𝑖𝑖𝑖𝑖′ �𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖�, 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = Var�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑑𝑑𝑖𝑖𝑖𝑖′′ �𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖�𝜙𝜙𝑖𝑖𝑖𝑖 , 

where 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖� is a linear function of the functional status 𝑐𝑐𝑖𝑖𝑖𝑖 and random effect 

variable 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 such that 

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖𝛽𝛽1𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 

for 𝒙𝒙𝑖𝑖𝑖𝑖 = �1, 𝑐𝑐𝑖𝑖𝑖𝑖�
𝑇𝑇 and 𝜷𝜷𝑖𝑖𝑖𝑖 = �𝛽𝛽0𝑖𝑖𝑖𝑖 ,𝛽𝛽1𝑖𝑖𝑖𝑖�

𝑇𝑇. Additional correlations between elements of 

𝒚𝒚𝑖𝑖𝑖𝑖 are allowed by assuming that 

𝒃𝒃𝑖𝑖𝑖𝑖 = �
𝑏𝑏𝑖𝑖𝑖𝑖1
⋮

𝑏𝑏𝑖𝑖𝑖𝑖𝐿𝐿𝑗𝑗
�  ~𝑖𝑖𝑖𝑖𝑑𝑑 𝑀𝑀𝑉𝑉𝑁𝑁�𝟎𝟎,𝚺𝚺𝑖𝑖(𝜽𝜽)�. 

The marginal distribution of 𝒚𝒚𝑖𝑖 = (𝒚𝒚𝑖𝑖1𝑇𝑇 , … ,𝒚𝒚𝑖𝑖𝑖𝑖𝑇𝑇 )𝑇𝑇 can be obtained by integrating over the 

distribution of 𝒄𝒄𝑖𝑖 and 𝒃𝒃𝑖𝑖 = (𝒃𝒃𝑖𝑖1𝑇𝑇 , … ,𝒃𝒃𝑖𝑖𝑖𝑖𝑇𝑇 )𝑇𝑇, 

 𝑓𝑓(𝒚𝒚𝑖𝑖) = ∑ �∏ ∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖,𝜽𝜽�d𝒃𝒃𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1 �𝑝𝑝(𝑐𝑐𝑖𝑖1, … , 𝑐𝑐𝑖𝑖𝑖𝑖).1,…,1

𝑐𝑐𝑖𝑖1=0,…,𝑐𝑐𝑖𝑖𝑖𝑖=0   (2)              

Our primary focus concerns estimation of 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖), the posterior probability of 𝒄𝒄𝑖𝑖 

conditional on the observed data 𝒚𝒚𝑖𝑖. Because of the conditional independence of 𝒚𝒚𝑖𝑖 

given 𝒄𝒄𝑖𝑖 and 𝒃𝒃𝑖𝑖 (the collections of 𝒚𝒚𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖, and 𝒃𝒃𝑖𝑖𝑖𝑖 for 𝑗𝑗 = 1, … ,𝑀𝑀, respectively), an 
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Expectation-Maximization (EM) algorithm provides a natural approach.2 However, the 

integration in Equation (2) cannot be evaluated in closed form whenever 𝒚𝒚𝑖𝑖𝑖𝑖 conditional 

on 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝒃𝒃𝑖𝑖𝑖𝑖 is not normally distributed (e.g. 𝒚𝒚𝑖𝑖𝑖𝑖 has dichotomous components). Thus, 

challenges arise in computing 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖) = 𝑓𝑓(𝒚𝒚𝑖𝑖|𝒄𝒄𝑖𝑖)𝑝𝑝(𝒄𝒄𝑖𝑖)/𝑓𝑓(𝒚𝒚𝑖𝑖). Approximations are used 

when applying the EM algorithm to obtain parameter estimates for non-normally 

distributed annotations. 

 

Given the fitted model parameters and the full set of annotation scores for a new genetic 

variant 𝑖𝑖′, the MACIE score of variant 𝑖𝑖′ is defined as the (predicted) posterior probability 

vector �̂�𝑝(𝒄𝒄𝑖𝑖′ = 𝒛𝒛|𝒚𝒚𝑖𝑖′), 𝒛𝒛 ∈ {0,1}𝑖𝑖. It can be calculated by performing one additional 

iteration of the EM algorithm. 
 
Derivation of the EM Algorithm Used in MACIE GLMM 
In the following, we let 𝟏𝟏𝑚𝑚 be the vector of length 𝑚𝑚 where each element takes the value 

1, and let 𝐉𝐉𝑚𝑚 be the 𝑚𝑚 × 𝑚𝑚 matrix of ones, i.e. 𝐉𝐉𝑚𝑚 = 𝟏𝟏𝑚𝑚 × 𝟏𝟏𝑚𝑚𝑇𝑇 . Let 𝐈𝐈𝑚𝑚 be the 𝑚𝑚 × 𝑚𝑚 

identity matrix. Subscripts are dropped whenever the dimensions of the vector or matrix 

are clear. Our derivations follow those of Sammel et al.,3 who considered a general class 

of latent variable models that allow for linear effects of covariates on multiple outcomes. 

 
Maximization Step 
If 𝒄𝒄𝑖𝑖 and 𝒃𝒃𝑖𝑖𝑖𝑖 were directly observable, one can maximize the complete data log-likelihood, 

log𝑓𝑓(𝒚𝒚, 𝒄𝒄,𝒃𝒃) = ���� log𝑓𝑓𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖;𝜷𝜷𝑖𝑖𝑖𝑖 ,𝜙𝜙𝑖𝑖𝑖𝑖�

𝐿𝐿𝑗𝑗

𝑖𝑖=1

𝑖𝑖

𝑖𝑖=1

+ � log𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖;𝜽𝜽�
𝑖𝑖

𝑖𝑖=1

+ log𝑝𝑝(𝒄𝒄𝑖𝑖;𝜸𝜸)�
𝑁𝑁

𝑖𝑖=1

 

(3) 

to estimate the unknown parameters 𝜻𝜻 = (𝜷𝜷,𝝓𝝓,𝜸𝜸,𝜽𝜽), where 𝜸𝜸 corresponds to the vector 

of length 2𝑖𝑖 that holds the probability of each possible realization of 𝒄𝒄𝑖𝑖 . However, since 

𝒄𝒄𝑖𝑖 and 𝒃𝒃𝑖𝑖𝑖𝑖 are unobservable, the EM algorithm can be applied by instead solving the 

expected score functions, where the expectation is taken with respect to 

𝑓𝑓(𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖) = 𝑓𝑓(𝒃𝒃𝑖𝑖|𝒄𝒄𝑖𝑖 ,𝒚𝒚𝑖𝑖)𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖) = �𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖|𝒚𝒚𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖�
𝑖𝑖

𝑖𝑖=1

∙ 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖), 

which is the posterior distribution of the missing data conditional on the observed data.4 

If we let 𝑆𝑆𝑖𝑖(𝜻𝜻) denote the complete data score function 𝜕𝜕 log𝑓𝑓(𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖) /𝜕𝜕𝜻𝜻 of Equation 
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(3) for the 𝑖𝑖th variant, then each variant’s contribution to the expected score function for 

𝜸𝜸 is given by 

 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝛾𝛾𝑧𝑧1,…,𝑧𝑧𝑖𝑖� = 𝑝𝑝(𝑐𝑐𝑖𝑖1=𝑧𝑧1,…,𝑐𝑐𝑖𝑖𝑖𝑖=𝑧𝑧𝑖𝑖|𝒚𝒚𝑖𝑖)
𝛾𝛾𝑧𝑧1,…,𝑧𝑧𝑖𝑖

  (4) 

for all (𝑧𝑧1, … 𝑧𝑧𝑖𝑖) ∈ {0,1}𝑖𝑖. Therefore, based on Equation (4), the M-step update for 𝜸𝜸 in 

moving from iteration 𝑟𝑟 to 𝑟𝑟 + 1 is 

 𝛾𝛾�𝑧𝑧1,…,𝑧𝑧𝑖𝑖
(𝑟𝑟+1) = ∑ 𝑝𝑝�(𝑟𝑟)(𝑐𝑐𝑖𝑖1=𝑧𝑧1,…,𝑐𝑐𝑖𝑖𝑖𝑖=𝑧𝑧𝑖𝑖|𝒚𝒚𝑖𝑖)𝑁𝑁

𝑖𝑖=1
𝑁𝑁

.  (5) 

For 𝜻𝜻𝑖𝑖𝑖𝑖, the subset of parameters corresponding to only the 𝑗𝑗𝑘𝑘th outcome, the 

contribution to the expected score equation for variant 𝑖𝑖 is 

 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜻𝜻𝑖𝑖𝑖𝑖� = ∑ �∫𝑆𝑆𝑖𝑖�𝜻𝜻𝑖𝑖𝑖𝑖�𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖 , 𝒄𝒄𝑖𝑖)d𝒃𝒃𝑖𝑖�𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖).𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖   (6)  

Depending on the form of the score function associated with the complete data log-

likelihood 𝑆𝑆�𝜻𝜻𝑖𝑖𝑖𝑖� = ∑ 𝑆𝑆𝑖𝑖�𝜻𝜻𝑖𝑖𝑖𝑖�𝑁𝑁
𝑖𝑖=1 , the solution to 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆�𝜻𝜻𝑖𝑖𝑖𝑖� = 𝟎𝟎 may or may not be 

available in closed form. In the absence of a closed form solution, we update the 

estimates 𝜻𝜻𝑖𝑖𝑖𝑖 through a one-step Fisher scoring algorithm. The usual method of 

estimation for this model is iteratively reweighed least squares,5 where the weight 

function is updated at every iteration. 

 
Expectation Step 
Given the current estimates of the parameters, 𝜻𝜻 = (𝜷𝜷,𝝓𝝓,𝜸𝜸,𝜽𝜽), the E-step is complicated 

by the need to compute expectations with respect to the posterior distributions 

𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖) and 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖) of the missing data, conditional on the observed data. Only for 

normal outcomes will the posterior distributions have closed form solutions. In our 

setting, there are generally no closed form expressions for 𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖) and 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖). As 

an alternative to analytical solutions, we first write the expectation of functions of the 

data 𝑔𝑔(𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖) = 𝑔𝑔(𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖 ,𝒃𝒃𝑖𝑖) by, 

 𝐸𝐸𝒄𝒄,𝒃𝒃𝑔𝑔(𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖) = ∑ (∫𝑔𝑔(𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖 ,𝒃𝒃𝑖𝑖)𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖)d𝒃𝒃𝑖𝑖)𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖)𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖 ,  (7) 

and further rewrite the posterior distributions as 

𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖) = �
𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�

∫ 𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖

𝑖𝑖

𝑖𝑖=1

, 

𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖) =
∏ �∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖�𝑖𝑖
𝑖𝑖=1 ∙ 𝑝𝑝(𝒄𝒄𝑖𝑖)

∑ ∏ �∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖�𝑖𝑖
𝑖𝑖=1 ∙ 𝑝𝑝(𝒄𝒄)𝒄𝒄∈{0,1}𝑖𝑖

. 
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By substituting into Equation (7), we obtain 

 𝐸𝐸𝒄𝒄,𝒃𝒃𝑔𝑔(𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖) =
∑ �∫𝑔𝑔(𝒚𝒚𝑖𝑖,𝒄𝒄𝑖𝑖,𝒃𝒃𝑖𝑖)∏ 𝑓𝑓�𝒚𝒚𝑖𝑖𝑗𝑗|𝑐𝑐𝑖𝑖𝑗𝑗,𝒃𝒃𝑖𝑖𝑗𝑗�𝑓𝑓�𝒃𝒃𝑖𝑖𝑗𝑗�𝑖𝑖

𝑗𝑗=1 d𝒃𝒃𝑖𝑖�∙𝑝𝑝(𝒄𝒄𝑖𝑖)𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖

∑ ∏ �∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑗𝑗|𝑐𝑐𝑖𝑖𝑗𝑗,𝒃𝒃𝑖𝑖𝑗𝑗�𝑓𝑓�𝒃𝒃𝑖𝑖𝑗𝑗�d𝒃𝒃𝑖𝑖𝑗𝑗�𝑖𝑖
𝑗𝑗=1 ∙𝑝𝑝(𝒄𝒄𝑖𝑖)𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖

.  (8) 

 

If 𝑔𝑔(𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖 ,𝒃𝒃𝑖𝑖) = 𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖′ , 𝒄𝒄𝑖𝑖𝑖𝑖′ ,𝒃𝒃𝑖𝑖𝑖𝑖′� for some 𝑗𝑗′ ∈ {1, … ,𝑀𝑀}, then the integral in the 

numerator of Equation (8) is equivalent to 

 ∏ �∫𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖′ , 𝒄𝒄𝑖𝑖𝑖𝑖′ ,𝒃𝒃𝑖𝑖𝑖𝑖′�
1�𝑖𝑖=𝑖𝑖′�𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖�𝑖𝑖

𝑖𝑖=1   (9) 

where 1(𝑗𝑗 = 𝑗𝑗′) is equal to 1 if 𝑗𝑗 = 𝑗𝑗′ and 0 otherwise. In this case, a practical approach 

for approximation is to use multivariate Gauss-Hermite quadrature. To approximate 

Equation (9), we select 𝑇𝑇 fixed abscissae {𝑧𝑧𝑡𝑡}𝑡𝑡=1𝑇𝑇  and corresponding weights {𝑤𝑤𝑡𝑡}𝑡𝑡=1𝑇𝑇  for 

a quadrature whose integration kernel is given by the density of a standard normal 

distribution.6 Given the spectral decomposition of 𝚺𝚺𝑖𝑖 = 𝐒𝐒𝑖𝑖𝚲𝚲𝑖𝑖𝐒𝐒𝑖𝑖𝑇𝑇, let 𝜎𝜎𝑖𝑖𝑡𝑡 = �𝜎𝜎𝑖𝑖𝑡𝑡(1), … ,𝜎𝜎𝑖𝑖𝑡𝑡�𝐿𝐿𝑖𝑖�� 

be an ordered set of 𝐿𝐿𝑖𝑖 integers obtained by sampling with replacement from {1, … ,𝑇𝑇}, 

𝒛𝒛𝑖𝑖𝑡𝑡 = �𝑧𝑧𝜎𝜎𝑗𝑗𝑗𝑗(1), … , 𝑧𝑧𝜎𝜎𝑗𝑗𝑗𝑗�𝐿𝐿𝑗𝑗��
𝑇𝑇
 the corresponding set of abscissae, and 𝒃𝒃𝑖𝑖𝑡𝑡 = 𝐒𝐒𝑖𝑖𝚲𝚲𝑖𝑖

1/2𝒛𝒛𝑖𝑖𝑡𝑡. Then 

each term in the product of Equation (9) 

�𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖′ , 𝒄𝒄𝑖𝑖𝑖𝑖′ ,𝒃𝒃𝑖𝑖𝑖𝑖′�
1�𝑖𝑖=𝑖𝑖′�𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖 

can be approximated as 

���𝑤𝑤𝜎𝜎𝑗𝑗𝑗𝑗(𝑖𝑖)

𝐿𝐿𝑗𝑗

𝑖𝑖=1

�𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖′ , 𝒄𝒄𝑖𝑖𝑖𝑖′ ,𝒃𝒃𝑖𝑖′𝑡𝑡�
1�𝑖𝑖=𝑖𝑖′�𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑡𝑡�,

𝜎𝜎𝑗𝑗𝑗𝑗

 

where the sum is over all the possible ordered sets 𝜎𝜎𝑖𝑖𝑡𝑡. For some ordered sets 𝜎𝜎𝑖𝑖𝑡𝑡 the 

weights ∏ 𝑤𝑤𝜎𝜎𝑗𝑗𝑗𝑗(𝑖𝑖)
𝐿𝐿𝑗𝑗
𝑖𝑖=1  are very small and thus contribute little to the sum. We may choose 

to remove these quantities by pruning a specified fraction of the smallest weights. 

 
MACIE: EM Algorithm for Mixed Binary and Normal Annotations 

The general formulation of Equation (1) allows different link functions 𝑔𝑔𝑖𝑖𝑖𝑖(⋅) for different 

annotations, as well as different covariance structures 𝚺𝚺𝑖𝑖(𝜽𝜽) to accommodate for 

correlations between the annotations (Figure S1c). In this section, we derive specific 

theoretical results for the EM algorithm when annotations are either conditionally 

bernoulli or normal random variables, i.e. all link functions 𝑔𝑔𝑖𝑖𝑖𝑖(⋅) are either the identity or 
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logistic link. We also introduce restrictions on the covariance matrices 𝚺𝚺𝑖𝑖(𝜽𝜽) that allow 

for accurate approximations while greatly reducing the algorithm’s computational cost. 

We call this algorithm MACIE for Multi-dimensional Annotation Class Integrative 

Estimation. 

 

Suppose that conditionally on 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝒃𝒃𝑖𝑖𝑖𝑖, the first 𝐿𝐿𝑖𝑖
(1) of the 𝐿𝐿𝑖𝑖 outcomes 𝒚𝒚𝑖𝑖𝑖𝑖 follow a 

bernoulli distribution and the remaining 𝐿𝐿𝑖𝑖
(2) = 𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖

(1) outcomes follow a normal 

distribution. That is, for 𝑘𝑘 = 1,2, … , 𝐿𝐿𝑖𝑖
(1), 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 has distribution 

𝑓𝑓𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖� = exp�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 − log�1 + exp�𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖��� 

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = exp�𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖� /�1 + exp�𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖�� and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�1 − 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�. Then for 𝑘𝑘 = 𝐿𝐿𝑖𝑖
(1) +

1, 𝐿𝐿𝑖𝑖
(1) + 2, … , 𝐿𝐿𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 has the distribution 

𝑓𝑓𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖� = exp

⎣
⎢
⎢
⎢
⎡�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 −

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖2
2 �

𝜙𝜙𝑖𝑖𝑖𝑖
−

1
2 �
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖2

𝜙𝜙𝑖𝑖𝑖𝑖
+ log�2𝜋𝜋𝜙𝜙𝑖𝑖𝑖𝑖��

⎦
⎥
⎥
⎥
⎤

, 

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖. 

 

If 𝚺𝚺𝑖𝑖(𝜽𝜽) is left unstructured, then the EM algorithm will need to estimate 𝐿𝐿𝑖𝑖�𝐿𝐿𝑖𝑖 + 1�/2 

parameters for the covariance matrix of class 𝑗𝑗. An even greater computational 

challenge is that the multivariate Gauss-Hermite quadrature will require 𝑇𝑇𝐿𝐿𝑗𝑗 fixed 

abscissas. Thus, to reduce the number of model parameters and to make the algorithm 

computationally feasible, we assume that 𝒃𝒃𝑖𝑖𝑖𝑖 = 𝚲𝚲𝑖𝑖𝒇𝒇𝑖𝑖𝑖𝑖 where 𝒇𝒇𝑖𝑖𝑖𝑖 is an unobserved vector 

of length 𝑃𝑃𝑖𝑖 < 𝐿𝐿𝑖𝑖 that follows 𝑀𝑀𝑉𝑉𝑁𝑁(𝟎𝟎, 𝐈𝐈). Then for the E-step, 

�𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖′ , 𝒄𝒄𝑖𝑖𝑖𝑖′ ,𝒃𝒃𝑖𝑖𝑖𝑖′�
1�𝑖𝑖=𝑖𝑖′�𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖

= �𝑔𝑔�𝒚𝒚𝑖𝑖𝑖𝑖, 𝒄𝒄𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�
1�𝑖𝑖=𝑖𝑖′�𝑓𝑓�𝒚𝒚𝑖𝑖𝑖𝑖|𝑐𝑐𝑖𝑖𝑖𝑖 ,𝒃𝒃𝑖𝑖𝑖𝑖�𝑓𝑓�𝒇𝒇𝑖𝑖𝑖𝑖�d𝒇𝒇𝑖𝑖𝑖𝑖, 

so that integration is over a 𝑃𝑃𝑖𝑖-dimensional space as opposed to an 𝐿𝐿𝑖𝑖-dimensional 

space. The assumption 𝒃𝒃𝑖𝑖𝑖𝑖 = 𝚲𝚲𝑖𝑖𝒇𝒇𝑖𝑖𝑖𝑖 forms the basis of factor analysis models7 and is 

appropriate when the relationship between 𝐿𝐿𝑖𝑖 manifest variables is thought to be 

primarily a result of the relationship between 𝑃𝑃𝑖𝑖 underlying variables. For functional 

annotations, the underlying variables are likely to correspond to different approaches 
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measuring the same element. As in factor analysis, the larger the factor loading 𝜆𝜆𝑖𝑖𝑖𝑖𝑝𝑝, the 

more the 𝑗𝑗𝑘𝑘th annotation is said to “load” on the 𝑝𝑝th factor. 

 

For the 𝐿𝐿𝑖𝑖1 binary outcomes, substituting the appropriate quantities into Equation (6) 

leads to the following expected score functions for variant 𝑖𝑖 on outcome 𝑗𝑗𝑘𝑘: 

 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = ∑ �∫𝒙𝒙𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖� ⋅ 𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖|𝒚𝒚𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖�𝑝𝑝�𝑐𝑐𝑖𝑖𝑖𝑖|𝒚𝒚𝑖𝑖�1
𝑐𝑐𝑖𝑖𝑗𝑗=0 ,  (10) 

𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝚲𝚲𝑖𝑖𝑖𝑖� = � ��𝒇𝒇𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖� ⋅ 𝑓𝑓�𝒃𝒃𝑖𝑖𝑖𝑖|𝒚𝒚𝑖𝑖𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖�d𝒃𝒃𝑖𝑖𝑖𝑖� 𝑝𝑝�𝑐𝑐𝑖𝑖𝑖𝑖|𝒚𝒚𝑖𝑖�
1

𝑐𝑐𝑖𝑖𝑗𝑗=0

, 

where 𝚲𝚲𝑖𝑖𝑖𝑖 is the 𝑘𝑘th column vector of 𝚲𝚲𝑖𝑖𝑇𝑇. 

 

To update estimates for 𝜷𝜷𝑖𝑖𝑖𝑖 using a one-step Fisher scoring algorithm, we consider a 

Taylor series expansion of the expected score function (Equation (10)) about the true 

parameter 𝜷𝜷𝑖𝑖𝑖𝑖, 

𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷�𝑖𝑖𝑖𝑖� ≈ 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� + �
𝜕𝜕

𝜕𝜕𝜷𝜷𝑖𝑖𝑖𝑖𝑇𝑇
𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖�� �𝜷𝜷�𝑖𝑖𝑖𝑖 − 𝜷𝜷𝑖𝑖𝑖𝑖�. 

Since 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆�𝜷𝜷�𝑖𝑖𝑖𝑖� = ∑ 𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷�𝑖𝑖𝑖𝑖�𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎, and assuming regularity conditions that allow 

the interchange of differentiation and integration, we have 

𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆�𝜷𝜷𝑖𝑖𝑖𝑖� ≈ ��𝐼𝐼𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

� �𝜷𝜷�𝑖𝑖𝑖𝑖 − 𝜷𝜷𝑖𝑖𝑖𝑖�, 

where 𝐼𝐼𝑖𝑖 is the 𝑖𝑖th variant’s contribution to the observed data Fisher information 

associated with the 𝑗𝑗𝑘𝑘th outcome: 

𝐼𝐼𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = −
𝜕𝜕

𝜕𝜕𝜷𝜷𝑖𝑖𝑖𝑖𝑇𝑇
𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = − � ��

𝜕𝜕
𝜕𝜕𝜷𝜷𝑖𝑖𝑖𝑖𝑇𝑇

𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖�𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖)d𝒃𝒃𝑖𝑖�𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖)
𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖

. 

The expected information is obtained by taking an additional expectation with respect to 

the observed outcomes 𝒚𝒚𝑖𝑖: 

𝐽𝐽𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = −𝐸𝐸𝒚𝒚𝑖𝑖
𝜕𝜕

𝜕𝜕𝜷𝜷𝑖𝑖𝑖𝑖𝑇𝑇
𝐸𝐸𝒄𝒄,𝒃𝒃𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖�. 

Interchanging derivatives and expectations yields 

𝐽𝐽𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = − � ��𝐸𝐸𝒚𝒚𝑖𝑖 �
𝜕𝜕

𝜕𝜕𝜷𝜷𝑖𝑖𝑖𝑖𝑇𝑇
𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖�� 𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖)d𝒃𝒃𝑖𝑖� 𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖)

𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖
. 

For binary outcomes with logistic link, the expected information is 
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 𝐽𝐽𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� = ∑ �∫𝒙𝒙𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�1 − 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝑓𝑓(𝒃𝒃𝑖𝑖|𝒚𝒚𝑖𝑖, 𝒄𝒄𝑖𝑖)d𝒃𝒃𝑖𝑖�𝑝𝑝(𝒄𝒄𝑖𝑖|𝒚𝒚𝑖𝑖)𝒄𝒄𝑖𝑖∈{0,1}𝑖𝑖 . (11) 

Equations (10) and (11) yield the following scoring algorithm at iteration 𝑟𝑟 + 1: 

𝜷𝜷�𝑖𝑖𝑖𝑖
(𝑟𝑟+1) = 𝜷𝜷�𝑖𝑖𝑖𝑖

(𝑟𝑟) + �∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒙𝒙𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖
(𝑟𝑟) �1 − �̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖

(𝑟𝑟)� 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 �𝑁𝑁
𝑖𝑖=1 �

−1
∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒙𝒙𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − �̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖

(𝑟𝑟)��𝑁𝑁
𝑖𝑖=1 .        (12) 

Similarly, 

𝚲𝚲�𝑖𝑖𝑖𝑖
(𝑟𝑟+1) = 𝚲𝚲�𝑖𝑖𝑖𝑖

(𝑟𝑟) + �∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒇𝒇𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖
(𝑟𝑟) �1 − �̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖

(𝑟𝑟)�𝒇𝒇𝑖𝑖𝑖𝑖𝑇𝑇 �𝑁𝑁
𝑖𝑖=1 �

−1
∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒇𝒇𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − �̂�𝜇𝑖𝑖𝑖𝑖𝑖𝑖

(𝑟𝑟)�� .𝑁𝑁
𝑖𝑖=1         (13) 

For the 𝐿𝐿𝑖𝑖
(2) normal outcomes, contributions to the complete data score functions for 

each variant 𝑖𝑖 are 

𝑆𝑆𝑖𝑖�𝜷𝜷𝑖𝑖𝑖𝑖� =
1
𝜙𝜙𝑖𝑖𝑖𝑖

𝒙𝒙𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , 

𝑆𝑆𝑖𝑖�𝚲𝚲𝑖𝑖𝑖𝑖� =
1
𝜙𝜙𝑖𝑖𝑖𝑖

𝒇𝒇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , 

𝑆𝑆𝑖𝑖�𝜙𝜙𝑖𝑖𝑖𝑖� = −
1

2𝜙𝜙𝑖𝑖𝑖𝑖
+

1
2𝜙𝜙𝑖𝑖𝑖𝑖2

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2 , 

where 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷𝑖𝑖𝑖𝑖 − 𝒇𝒇𝑖𝑖𝑖𝑖𝑇𝑇 𝚲𝚲𝑖𝑖𝑖𝑖. It follows that 

 𝜷𝜷�𝑖𝑖𝑖𝑖
(𝑟𝑟+1) = �∑ 𝐸𝐸𝒄𝒄,𝒃𝒃�𝒙𝒙𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 �𝑁𝑁

𝑖𝑖=1 �−1 ∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒙𝒙𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝒇𝒇𝑖𝑖𝑖𝑖𝑇𝑇 𝚲𝚲�𝑖𝑖𝑖𝑖
(𝑟𝑟)��𝑁𝑁

𝑖𝑖=1 ,  (14) 

 𝚲𝚲�𝑖𝑖𝑖𝑖
(𝑟𝑟+1) = �∑ 𝐸𝐸𝒄𝒄,𝒃𝒃�𝒇𝒇𝑖𝑖𝑖𝑖𝒇𝒇𝑖𝑖𝑖𝑖𝑇𝑇 �𝑁𝑁

𝑖𝑖=1 �−1 ∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 �𝒇𝒇𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷�𝑖𝑖𝑖𝑖
(𝑟𝑟)��𝑁𝑁

𝑖𝑖=1 ,  (15) 

 𝜙𝜙�𝑖𝑖𝑖𝑖
(𝑟𝑟+1) = 1

𝑁𝑁
∑ 𝐸𝐸𝒄𝒄,𝒃𝒃 ��̂�𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝑟𝑟)2�𝑁𝑁
𝑖𝑖=1 .  (16) 

Beginning with reasonable initial estimates of the parameters, MACIE proceeds by first 

using the E-step to obtain the desired expectations relative to the posterior distribution. 

Given those estimates, MACIE then solves the expected score equations to obtain new 

parameter estimates or one-step updates according to Equations (5), (12)-(16). The 

algorithm proceeds until the relative changes in all estimated parameters are sufficiently 

small (< 10−4) with a maximum of 200 iterations. 

 
Data Analysis Using the MACIE GLMM 
We used the proposed framework to fit the MACIE GLMM models for (1) non-

synonymous coding variants and (2) non-coding and synonymous coding variants 

separately. For non-synonymous coding variants, we considered fitting a two-class 

MACIE model (𝑀𝑀 = 2) where the damaging protein function class included 4 protein 

substitution scores: SIFT, PolyPhenDiv, PolyPhenVar, and Mutation Assessor, with two 
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latent factors of 𝚺𝚺1; and the evolutionary conserved class included 8 conservation 

scores: GERP_NR, GERP_RS, PhyloPri, PhyloPla, PhyloVer, PhastPri, PhastPla, and 

PhastVer, with two latent factors of 𝚺𝚺2 (Table S1). Thus, the MACIE score predicted for 

each non-synonymous coding variant is a vector of length 4, representing the estimated 

joint posterior probabilities of belonging to (0,1) - “not damaging protein functional and 

conserved”; (1,0) - “damaging protein functional and not conserved”; (0,0) - “not 

damaging protein functional and not conserved”; (1,1) - “both damaging protein 

functional and conserved”. The MACIE GLMM regression parameter estimates from the 

training set of non-synonymous coding variants are presented in Table S2. 

 

For non-coding and synonymous coding variants, we considered fitting a two-class 

MACIE model (𝑀𝑀 = 2), where the evolutionary conserved class included the same 8 

conservation scorers as the non-synonymous coding model, with two latent factors of 𝚺𝚺1, 

and the regulatory class included a total of 28 transformed epigenetic scores scores, 

consisting of 3 histone marks and 12 open chromatin marks from the ENCODE Project, 

3 transcription factor binding site scores, GC content, CpG content, 5 chromatin state 

probabilities derived from the 15 state ChromHMM model, a background selection score, 

and 2 physical distance metrics, with three latent factors of 𝚺𝚺2 (Table S1). Detailed 

information on pre-processing steps for the epigenetic scores are given in Table S3. 

Thus, the MACIE score predicted for each non-coding or synonymous coding variant is 

also a vector of length 4, representing the estimated joint posterior probabilities of 

belonging to (0,1) - “not conserved and regulatory functional”; (1,0) - “conserved and not 

regulatory functional”; (0,0) - “not conserved and not regulatory functional”; (1,1) - “both 

conserved and regulatory functional”. The MACIE GLMM regression parameter 

estimates from the training set of non-coding and synonymous coding variants are 

presented in Table S4. 
 
Heritability Enrichment Analysis Using Stratified LD Score Regression 
Following Li et al.,8 we performed a stratified LD score regression (S-LDSC) heritability 

enrichment analysis for the 2 lipid traits from the ENGAGE Consortium,9 LDL-C and 

HDL-C, using 8 functional annotations, namely fitCons, CADD, LINSIGHT, FATHMM-

XF, EIGEN, DANN, GenoCanyon, and MACIE-anyclass. Specifically, we considered the 

common SNVs (MAF > 5%) in the International HapMap Project Phase 3 (HapMap3),10 

as in the previous work.11; 12 For each of the 8 functional annotations, following Li et al., 
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we created a binary functional category by labeling the top 30% SNVs as 1 (meaning 

these SNVs are functional; same as Li et al.8) and evaluated the heritability enrichment 

of the binary annotation using S-LDSC conditional on the set of 52 baseline 

annotations;12 the heritability enrichment is defined as the ratio of the proportion of 

heritability explained by the annotated variants in the functional category and the 

proportion of variants in the functional category.8 The results showed that MACIE-

anyclass, CADD, and DANN showed significant enrichment for both lipid traits; FitCons, 

LINSIGHT, EIGEN, and GenoCanyon showed significant enrichment only for HDL-C; 

while FATHMM-XF showed non-significant enrichment (Figure S8, Table S16). This 

analysis suggests that the MACIE score is informative for prioritizing GWAS trait-

associated variants. 
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