SUPPLEMENTARY INFORMATION

UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony

Sara Hegazi,^{1,2} Arthur H. Cheng,^{1,2} Joshua J. Krupp,¹ Takafumi Tasaki,^{3,4} Jiashu Liu,^{1,2}

Daniel A. Szulc,^{5,6} Harrod H. Ling,^{1,2#}Julian Rios Garcia,^{1,2} Shavanie Seecharran,^{1,2}

Tayebeh Basiri,⁷ Mehdi Amiri,⁷ Zobia Anwar,^{1,2} Safa Ahmad,¹ Kamar Nayal,^{1,2}

Nahum Sonenberg,⁷ Bao-hua Liu,^{1,2} Hai-Ling Margaret Cheng,^{5,6,8}

Joel D. Levine,^{1,2,9*} Hai-Ying Mary Cheng^{1,2*}

¹ Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada

² Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada

³ Division of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan

⁴ Department of Medical Zoology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan

⁵ Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada

⁶ Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada

⁷ Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada

⁸ The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

⁹ Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2

*Correspondence should be directed to haiving.cheng@utoronto.ca and joel.levine@utoronto.ca

#deceased

Supplementary Figure 1. Effects of *Ubr4* **ablation or knockdown on clock gene expression.** a qRT-PCR analyses of clock gene expression in the SCN at CT 9. Values represent mean \pm SEM. n = 3 samples per group. Two-tailed unpaired t-test conducted for each gene. **p* = 0.0189 vs. control. **b** Western blot of lysates from Neuro-2a cells that had been transfected with V5-PER2 along with either negative control (NC) siRNA or *Ubr4* siRNA. Antibodies against V5 (top) and actin (bottom) were used. Source data are provided as a Source Data file.

Supplementary Figure 2. Poe knockdown in D. melanogaster clock neurons impairs behavioral rhythms. a, e Representative actograms of individual tim>Dcr2; poe^{RNAi} flies and controls (a), or individual Pdf>Dcr2; poeRNAi flies and controls (e), under 12:12 LD and DD conditions. **b**, **f** Averaged actograms of *tim>Dcr2*; *poe*^{*RNAi*} flies and controls (**b**), or *Pdf>Dcr2*; poe^{RNAi} flies and controls (f), under 12:12 LD conditions. c Mean relative activity counts during the hours preceding lights-on (left), and quantification of morning anticipation index (right) of *tim>Dcr2; poe*^{*RNAi*} flies and controls under LD conditions. +>*poe*^{*RNAi*}: n = 13, *tim>Dcr2:* n = 25, *tim>Dcr2; poe*^{*RNAi*}: n = 28. $^{\#}p$ <0.0001 by one-sample t-test compared to the value of 0.5; values greater than 0.5 indicate anticipatory behavior. **p = 0.0041, ***p<0.0001 vs. controls; one-way ANOVA with Bonferroni's post hoc. d Mean relative activity counts during the hours preceding lights-off (left), and quantification of evening anticipation index (right) of tim>Dcr2; poe^{RNAi} flies and controls under LD conditions. +>poe^{RNAi}: n = 13, tim>Dcr2: n = 26, tim>Dcr2; poe^{RNAi}: n = 28. p < 0.0001 by one-sample t-test compared to the value of 0.5; values greater than 0.5 indicate anticipatory behavior. ***p<0.0001 as indicated; Kruskal-Wallis with a Dunn's post hoc. (Note: SEM of the mean evening anticipation index of $+>poe^{RNAi}$ flies = 0.0003). **q** Mean relative activity counts during the hours preceding lights-on (left), and guantification of morning anticipation index (right) of *Pdf>Dcr2*; *poe*^{*RNAi*} flies and controls under LD conditions. +>*poe*^{*RNAi*}: n = 22, *Pdf>Dcr2*: n = 27, *Pdf>Dcr2*; *poe*^{*RNAi*}: n = 88. p<0.0001 by one-sample t-test compared to the value of 0.5; values greater than 0.5 indicate anticipatory behavior. Kruskal-Wallis with a Dunn's post hoc was used for between group testing. h Mean relative activity counts during the hours preceding lightsoff (left), and quantification of evening anticipation index (right) of Pdf>Dcr2; poeRNAi flies and controls under LD conditions. +>poe^{RNAi}: n = 26, Pdf>Dcr2: n = 28, Pdf>Dcr2; poe^{RNAi}: n = 90. p < 0.0001 by one-sample t-test compared to the value of 0.5; values greater than 0.5 indicate anticipatory behavior. ***p<0.0001 as indicated; Kruskal-Wallis with a Dunn's post hoc. Values represent mean ± SEM. 'n' represents number of flies. For all actograms, white and gray regions represent the light and dark periods, respectively. Source data are provided as a Source Data file.

a Whole brain

CT2

f

Supplementary Figure 3. Effects of PDF-specific *poe* knockdown on cell viability, neuronal morphology, and dPER expression in fly clock neurons. a Representative photomicrographs of RNA *in situ* hybridization showing *Pdf* (green) and *poe* (magenta) mRNA expression in the whole fly brain. Scale bar, 60 µm. **b**, **c** Percentage of *Pdf>Dcr2; poe^{RNAi}* flies and controls containing either 3 or 4 s-LN_vs (**b**) or I-LN_vs (**c**) per hemisphere. n = 35 flies per genotype. Chi-square test. **d**, **e** Quantification of fluorescence intensity of *Pdf* ISH signal in the s-LN_vs (**d**) or I-LN_vs (**e**) of *Pdf>Dcr2; poe^{RNAi}* flies and controls at ZT 8. +>poe^{RNAi}: n = 4, *Pdf>Dcr2:* n = 6 (**d**) or 7 (**e**), *Pdf>Dcr2; poe^{RNAi}*: n = 6 (**d**) or 8 (**e**). ****p* = 0.0007 as indicated; one-way ANOVA with Bonferroni's post hoc. **f** Representative photomicrographs of CD2-HRP expression at CT 2 and CT 14 on DD3 in the whole brain of *Pdf>Dcr2; CD2-HRP* and *Pdf>Dcr2; poe^{RNAi}, CD2-HRP* flies. Scale bar, 100 µm. **g** Representative photomicrographs of dPER (magenta) and PDF (green) immunofluorescence in the s-LN_vs (left) and I-LN_vs (right) of *Pdf>Dcr2; poe^{RNAi}* flies and controls at CT 5 and CT 20 on DD3. Scale bar, 10 µm. Values represent percent (**b**, **c**) or mean ± SEM (**d**, **e**). 'n' represents number of flies. A.U., arbitrary units. Source data are provided as a Source Data file.

Supplementary Figure 4. Effects of *tim*-specific poe knockdown on dPER expression and cell viability in fly clock neurons. a Representative photomicrographs of dPER (magenta) and PDF (green) immunofluorescence in the s-LN_vs (top) and I-LN_vs (bottom) of *tim>Dcr2; poe*^{RNAi} flies and controls across the circadian cycle on DD3. Scale bar, 10 µm. b Quantification of dPER-IR intensity in the s-LN_vs of *tim>Dcr2; poe*^{RNAi} flies and controls. For each fly, a mean intensity value was calculated by taking the average of all s-LN_vs that were present in one hemisphere. In ascending order of CT: n = 9, 9, 8, 7, 9, 10, 10, 9 for +>poe^{RNAi}; n = 7, 8, 10, 9, 9, 10, 9, 11 for Pdf>Dcr2; n = 6, 6, 8, 8, 6, 8, 8, 7 for Pdf>Dcr2; poe^{RNAi}. ***p<0.0001 vs. controls; two-way ANOVA with Bonferroni's post hoc. c Quantification of dPER-IR intensity in the I-LN_vs of tim>Dcr2; poe^{RNAi} flies and controls, as described above in (**b**). In ascending order of CT: n = 9, 8, 8, 8, 9, 10, 10, 10for +>poe^{RNAi}; n = 7, 9, 9, 9, 9, 9, 9, 9, 10 for *Pdf>Dcr2*; n = 6, 5, 9, 8, 6, 7, 9, 9 for *Pdf>Dcr2*; poe^{RNAi}. CT2: ***p* = 0.0055, CT5: **p* = 0.0299, CT8: ****p* = 0.0003, CT11: **p* = 0.0268, CT14: **p* = 0.0429 vs. +>poe^{RNAi}; two-way ANOVA with Bonferroni's post hoc. d, e Percentage of tim>Dcr2; poe^{RNAi} flies and controls containing either 1, 2, 3, or 4 s-LN_vs (d) or I-LN_vs (e) per hemisphere. +>poe^{RNAi}: n = 64, Pdf > Dcr2: n = 64 (d) or 61 (e), Pdf > Dcr2; poe^{RNAi} : n = 64(d) or 62 (e). ***p<0.0001 vs. controls; two-sided chi-square test. Values represent mean ± SEM (b, c) or percent (d, e). 'n' represents number of flies. A.U., arbitrary units. Source data are provided as a Source Data file.

Supplementary Figure 5. UBR4 depletion impairs cargo transport along the secretory pathway. a Western blot of UBR4 from UBR4 WT and KO HEK293T cell lysates. Asterisk denotes the full-length UBR4 polypeptide. **b** Representative photomicrographs showing UBR4 immunofluorescence (red) in UBR4 WT and KO HEK293T cells. DAPI, blue. c Representative photomicrographs of transfected UBR4 WT and KO HEK293T cells showing immunofluorescence of NPY-GFP (green) and the TGN marker, p230 (magenta). Profile plots (right) show NPY-GFP and p230 fluorescence intensity (F.I.) along the reference axis (white line, merged panel). d Area of cis-Golgi. WT: n = 53, UBR4 KO: n = 57. *p = 0.0141; two-tailed Mann-Whitney U test. e Area of TGN. WT: n = 49, UBR4 KO: n = 53. *p = 0.0133; two-tailed Mann-Whitney U test. f Representative photomicrographs showing the trafficking of GPI-GFP (green) in UBR4 WT and KO HEK293T cells using the RUSH assay. Cells were fixed at the indicated time points postbiotin and CHX addition, and immunostained for GPI-GFP and GM130 (magenta). Images for t=90' and t=120' are presented at higher magnification to show the preponderance of large GPI-GFP⁺ vesicles that appeared in the cytoplasm of UBR4 KO cells at these time points. g Ratio of GPI-GFP abundance in the Golgi relative to the rest of the cell at specified time points post-biotin addition in the RUSH experiment. In ascending order of time post-biotin addition (t): n = 20, 20, 26, 40, 15, 24, 14 for WT; n = 20, 25, 29, 31, 17, 41, 27 for UBR4 KO. t = 60min: *p = 0.0308, t = 90min: *p = 0.0409, ***p<0.0001 vs. WT; two-way ANOVA with Bonferroni's post hoc. h Percentage of cells with GPI-GFP localization in the Golgi of UBR4 WT and KO HEK293T cells at specified time points post-biotin addition in the RUSH experiment. ***p<0.0001 vs. WT; twotailed chi-square test. i Western blot of UBR4 from UBR4 WT and KO HEK293T cell lysates transfected with the plasmids: empty vector (pcDNA), UBR4 (FL), UBR4 (Ala), or UBR4 (Del). Asterisk denotes the full-length UBR4 polypeptide. j Relative NPY-GFP secretion from UBR4 WT and KO HEK293T cells assayed via ELISA. n = 4 per genotype. **p = 0.0074; two-tailed unpaired t-test. Values represent mean ± SEM (d, e, g, j) or percent (h). 'n' represents number of cells (d, e, g) or samples (j). Scale bar, 5 µm. Source data are provided as a Source Data file.

Supplementary Figure 6. Overexpression of Coronin 7 rescues the retention of NPY-GFP in the Golgi of UBR4 KO cells. a Representative photomicrographs of NPY-GFP (green) immunofluorescence in UBR4 WT and KO HEK293T cells transfected with either pcDNA empty vector or Flag-CRN7 (blue). p230, magenta. Profile plots (right) show NPY-GFP and p230 fluorescence intensity (F.I.) along the reference axis (white line, merged panel). Scale bar, 10 µm. b gRT-PCR analysis of relative CRN7 mRNA expression in untransfected UBR4 WT and KO HEK293T cells. GAPDH was used as the normalization control. n = 6 samples per group; twotailed unpaired t-test. c, d Western blot of endogenous CRN7 following treatment of UBR4 WT and KO HEK293T cells with vehicle (DMSO, 0µM MG132) or MG132 at the indicated concentrations for 6 hours (top) or 18 hours (bottom) (c), or with MG132 (10µM), Bafilomycin A1 (500nM), and/or E64d plus Pepstatin A (10µg/mL each) for the indicated duration (d). e Polysome profiles of untransfected UBR4 WT and KO HEK293T cells. Positions of the 40S, 60S, and 80S ribosome peaks and polysomes are indicated. A.U., arbitrary units. f gRT-PCR analysis showing levels of GAPDH and CRN7 mRNA extracted from polysome fractions of UBR4 WT and KO HEK293T cells. n = 3 samples per group. *p = 0.0233, **p = 0.0063 vs. WT; two-way ANOVA. All values represent mean ± SEM. Source data are provided as a Source Data file.

d	Ubr4 cKO								
	CRN7-mCherry								
ΓD	demonstratively definitional analysis of the second								
ChrA ^{6/2}	anne, i a da managamana anali , a Admantana Adali , a Administra anali (14), a Administra (14), a anali , a Administra (14), a Administra (14), a Ad								

Supplementary Figure 7. The effects of *Ubr4* ablation on VIP trafficking in SCN neuronal cultures and SCN-targeted overexpression of Crn7 on circadian behavior. a Western blot of UBR4 and CRN7 from Ubr4^{fl/fl} SCN neuronal cultures that had been transduced with the indicated AAV1 vectors. Asterisk denotes the full-length UBR4 polypeptide. Similar results were obtained from 2 independent experiments. **b** Representative photomicrographs showing endogenous VIP (magenta) expression in Ubr4^{#/#} SCN neuronal cultures that had been transduced with AAVs expressing either GFP (AAV1-hSyn-eGFP (GFP)) or Cre-recombinase (AAV1-hSyn-Cre-eGFP (CRE)). Cells were co-immunostained for MAP2 (cyan), GFP (green), and GM130 (gray). Scale bar, 10 µm. Similar results were obtained from 3 independent experiments. c Representative photomicrographs of mCherry immunoreactivity (red) in the SCN of Ubr4 cKO mice following SCN injections of either AAV1-CMV-mCherry (mCherry) or AAV1-CMV-m-Coronin7-2A-mCherry (CRN7-mCherry). DAPI, blue. Scale bar, 100 µm. mCherry: n = 9 mice, CRN7-mCherry: n = 8 mice. d A representative double-plotted actogram showing wheel-running activity of an "entrained" Ubr4 cKO mouse under the chronic jetlag (ChrA6/2) paradigm. This animal had received a bilateral injection of AAV1-CMV-m-Coronin7-2A-mCherry (CRN7-mCherry) into the SCN.

Parameter	Photoperiod	Control		Ubr4 cKO		P-value
		Mean ± SEM	Ν	Mean ± SEM	N	
Daily wheel	LD	5299.28 ± 659.67	11	3482.43 ± 451.81	13	0.0638
revolutions	DD	5626.60 ± 733.64	11	4411.69 ± 503.81	12	0.2777
	^a LL-5 Lux	4163.71 ± 715.99	11	1620.03 ± 247.36	11	<0.0001***
	^a LL-10 Lux	2672.46 ± 357.56	10	1107.13 ± 120.09	11	0.0062**
	^a LL-20 Lux	2747.47 ± 448.92	11	825.48 ± 97.62	11	0.0026**
	^a LL-40 Lux	2602.1 ± 539.25	11	613.76 ± 131.19	11	0.0017**
	^a LL-80 Lux	2092.22 ± 438.71	11	522.15 ± 141.11	11	0.0227*
	LL-120 Lux	1366.16 ± 299.79	8	437.37 ± 110.57	8	0.0692
	^a ChrA ^{6/2} jetlag	5441.09 ± 276.32	8	2553.16 ± 178.61	11	<0.0001***
	^a DD- post ChrA ^{6/2} jetlag	6196.26 ± 170.09	7	2258.24 ± 248.53	11	<0.0001***
Amplitude (χ^2	LD	893.71 ± 60.30	11	740.61 ± 32.59	11	0.3410
Amplitude)	DD	1129.73 ± 98.42	11	1078.33 ± 87.77	13	>0.9999
	LL-5 Lux	1210.83 ± 153.65	11	948.11 ± 86.00	11	>0.9999
	LL-10 Lux	1181.53 ± 178.09	11	1230.57 ± 194.78	11	>0.9999
	LL-20 Lux	1073.24 ± 129.64	10	881.09 ± 111.22	10	>0.9999
	^a LL-40 Lux	1173.55 ± 139.60	10	675.27 ± 67.12	11	0.0277*
	^a LL-80 Lux	1522.62 ± 195.44	11	650.75 ± 75.89	11	0.0001***
	LL-120 Lux	953.87 ± 138.46	8	677.29 ± 80.02	8	0.6914
	ChrA ^{6/2} jetlag	21 hr component 1884.50 ± 258.93	9/9	21 hr component 1757.50 ± 189.78	13/13	0.6896
		>24 hr component 783.70 ± 71.58	5/9	>24 hr component NA	0/13	NA
	^a DD- post ChrA ^{6/2} jetlag	2017.07 ± 110.67	8	1234.37 ± 126.97	12	0.0004***
FFT Amplitude	LD	1.48 x10 ⁻² ± 1.41 x10 ⁻³	11	1.45 x10 ⁻² ± 1.20 x10 ⁻³	12	>0.9999
	DD	0.0124 ± 1.49x10 ⁻³	11	0.0136 ± 1.17 x10 ⁻³	13	0.9824
	LL-5 Lux	7.00x10 ⁻³ ± 1.00x10 ⁻³	11	5.00 x10 ⁻³ ± 6.00 x10 ⁻⁴	11	0.5081
	LL-10 Lux	6.00x10 ⁻³ ± 1.00x10 ⁻³	11	5.00 x10 ⁻³ ± 5.00 x10 ⁻⁴	11	0.9097
	LL-20 Lux	6.00x10 ⁻³ ± 1.00x10 ⁻³	11	4.00x10 ⁻³ ± 4.00 x10 ⁻⁴	11	0.3880
	^a LL-40 Lux	6.00x10 ⁻³ ± 1.00x10 ⁻³	11	3.00x10 ⁻³ ± 3.00 x10 ⁻⁴	11	0.0076**
	LL-80 Lux	3.00x10 ⁻³ ± 4.67x10 ⁻⁴	10	2.00x10 ⁻³ ± 3.00 x10 ⁻⁴	11	0.2066
	LL-120 Lux	5.00x10 ⁻³ ± 1.00x10 ⁻³	8	3.00x10 ⁻³ ± 5.00 x10 ⁻⁴	8	0.0764
	ChrA ^{6/2} jetlag	4.26 x10 ⁻³ ± 3.78x10 ⁻⁴	9	4.41x10 ⁻³ ± 2.28x10 ⁻⁴	12	>0.9999
	^a DD- post ChrA ^{6/2} jetlag	7.75 x10 ⁻³ ± 7.07 x10 ⁻⁴	8	6.25x10 ⁻³ ± 4.15x10 ⁻⁴	11	0.0327*
^b Period length (hr)	DD	23.63 ± 0.06	11	23.60 ± 0.04	13	0.6652
	LL-5 Lux	24.85 ± 0.16	11	24.29 ± 0.07	11	0.1160
	^a LL-10 Lux	25.38 ± 0.20	10	24.37 ± 0.09	11	0.0003***
	^a LL-20 Lux	25.43 ± 0.20	10	24.67 ± 0.15	9	0.0048**
	^a LL-40 Lux	25.71 ± 0.22	11	24.63 ± 0.19	10	< 0.0001***
	LL-80 Lux	25.8 ± 0.22	11	25.4 ± 0.24	7	>0.9999

Supplementary Table 1. Wheel-running behavioral parameters in control and *Ubr4* cKO mice.

Period length (hr) (cont'd)	LL-120 Lux	26.23 ± 0.11	7	25.5 ± 0.19	6	0.8516
	DD- post ChrA ^{6/2} jetlag	23.50 ± 0.09	8	23.61± 0.03	12	0.2118
Phase angle	LD	0.35 ± 0.09	10	0.34 ± 0.1	12	0.9493

^a**p*<0.05, **<0.01, ****p*<0.001 by linear mixed effects modelling.

^b excludes all arrhythmic animals in LL.

Supplementary Table 2. Summary of fly locomotor activity parameters using the *tim*-GAL4 driver.

Parameter	Photoperiod	+>poe ^{RNAi}		tim>Dcr2		tim> Dcr2; poe ^{RNAi}		P-value
		Mean ± SEM	Ν	Mean ± SEM	Ν	Mean ± SEM	Ν	
Daily locomotor	LD	435.8 ± 30.33	15	1005 ± 50.72	31	828.4 ± 42.69	31	^b <0.0001***
activity counts								°0.0152*
	DD	378.4 ± 28.24	14	1047 ± 58.05	32	501.1 ± 25.78	30	^b 0.2914
								^c <0.0001***
FFT power	LD	0.12 ± 7.46x10 ⁻³	15	0.11 ± 9.32 x10 ⁻³	32	0.07 ± 4.22x10 ⁻³	30	^b <0.0001***
								°0.0004***
	DD	0.04 ± 5.3x10 ⁻³	14	0.05 ± 5.3x10 ⁻³	31	0.01 ± 7.20x10 ⁻⁴	31	^{bc} <0.0001***
^a Period length (h)	DD	23.90 ± 0.03	14	24.17 ± 0.057	29	NA	NA	NA

^a excludes all arrhythmic flies.

^b indicates p-value relative to +>poe^{RNAi} control.

^c indicates p-value relative to *tim>Dcr2* control.

*p<0.05, ***p<0.001 by one-way ANOVA with Bonferroni's post hoc test (LD activity), or Kruskal-Wallis with Dunn's post hoc test (DD activity, FFT power).

Parameter	Photo- period	+>poe ^{RNAi}		Pdf>Dcr2		Pdf> Dcr2; poe ^{RNAi}		P-value
		Mean ± SEM	Ν	Mean ± SEM	Ν	Mean ± SEM	Ν	
^e Daily locomotor	LD	361.40 ± 15.55	31	712.2 ± 30.26	30	477 ± 15.74	62	^b 0.0002*** ^c <0.0001***
activity counts	DD	254.4 ± 14.13	30	591.6 ± 40.68	30	555.5 ± 16.36	104	^b <0.0001*** ^c 0.8915
FFT power	eLD	0.08 ± 5.95x10 ⁻³	31	0.11 ± 7.18x10 ⁻³	30	0.08 ± 3.56x10 ⁻³	108	^b >0.9999 ^c 0.0133*
	DD	All: $0.032 \pm 7.54 \times 10^{-3}$	32	0.023 ± 1.82x10 ⁻³	29	$0.012 \pm 6.92 \times 10^{-4}$	108	^{bce} <0.0001***
		Early: 0.034 ± 2.28x10 ⁻³	30	0.030 ± 2.11x10 ⁻³	28	0.035 ± 2.07x10 ⁻³	104	^{bd} >0.9999 ^{cd} 0.5289,
		Late: 0.028 ± 1.89x10 ⁻³	30	0.027 ± 2.64x10 ⁻³	28	0.011 ± 7.59x10 ⁻⁴	104	^{bcd} <0.0001***
^a Period length (h)	DD	23.77 ± 0.03	29	24.28 ± 0.03	25	Unstable period	14	NA

Supplementary Table 3. Summary of fly locomotor activity parameters using the *Pdf*-GAL4 driver.

^a excludes all arrhythmic flies.

^b indicates p-value relative to +>poe^{RNAi} control.

^c indicates p-value relative to *Pdf>Dcr2* control.

^d**p*<0.05, ^{***}*p*<0.001 by linear mixed effects modelling with Bonferroni's post hoc test.

e *p<0.05, ***p<0.001 by one-way ANOVA with Bonferroni's post hoc test (Activity, FFT power - LD) or Kruskal-Wallis with Dunn's post hoc test (FFT power - DD All).

Supplementary Table 4. Details of Experimental Reagents and Resources.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies (and the dilution it was used at)		
Rabbit anti-UBR4 (1:1000)	Abcam	Cat# ab86738; RRID:
Rabbit anti-Actin (1:15K)	Sigma	Cat# A2066: RRID: AB 476693
Rabbit anti-Arginine Vasopressin (AVP) (1:30K)	Sigma	Cat# AB1565: RRID: AB 90782
Rabbit anti-Vasoactive Intestinal Peptide (VIP)	ImmunoStar	Cat# 20077: RRID: AB 572270
(1:1000 and 1:10K)		· _
Rabbit anti-PERIOD2 (1:30K)	Gift from D. Weaver	N/A
Rabbit anti-Coronin 7 (1:10K and 1:20K)	Abcam	Cat# ab117446; RRID:
		AB_10902520
Guinea Pig anti-Cre-Recombinase (1:1000)	Synaptic Systems	Cat# 257004; RRID:AB_2782969
Rabbit anti-FLAG (1:2000)	Abcam	Cat# ab1162; RRID: AB_298215
Mouse anti-GM130 (1:2000)	BD Biosciences	Cat# 610822; RRID: AB_398141
Mouse anti-P230 (1:2000)	BD Biosciences	Cat# 611280; RRID: AB_398808
Chicken anti-MAP2 (1:1000)	Abcam	Cat# ab5392; RRID: AB_2138153
Goat anti-Green Fluorescent Protein (GFP) (1:5000)	Eusera	Cat# EU3
Mouse anti-V5 (1:2000)	Abcam	Cat# ab27671; RRID: AB_471093
Rat anti-mCherry (1:5000)	Thermo Fisher Scientific	Cat# M11217; RRID:AB_2536611
Goat anti-Rabbit IgG Secondary Antibody, HRP conjugate (1:100K)	Thermo Fisher Scientific	Cat# 31460; RRID: AB_228341
Biotinylated goat anti-Rabbit IgG (1:300)	Vector Laboratories	Cat# BA-1000; RRID: AB 2313606
Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 (1:1000)	Thermo Fisher Scientific	Cat# A32814; RRID: AB_2762838
Donkey anti-Rabbit IgG (H+L) Highly Cross-	Thermo Fisher	Cat# A-21207; RRID: AB_141637
Adsorbed Secondary Antibody, Alexa Fluor 594 (1:1000)	Scientific	
Donkey anti-Rabbit IgG (H+L) Highly Cross-	Thermo Fisher	Cat# A-21206, RRID:AB_2535792
(1:100)	Scientific	
Donkey anti-Mouse IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Eluor 594	Thermo Fisher	Cat# A-21203; RRID: AB_2535789
(1:1000)	Colonano	
Donkey anti-Mouse IgG (H+L) Highly Cross-	Thermo Fisher	Cat# A-31571, RRID: AB_162542
Adsorbed Secondary Antibody, Alexa Fluor 647 (1:1000)	Scientific	
Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed	Thermo Fisher	Cat# A-21209, RRID: AB_2535795
Secondary Antibody, Alexa Fluor 594 (1:1000)	Scientific	
DyLight 405 AffiniPure Donkey Anti-Chicken IgY	Jackson	Cat# 703-475-155, RRID:
(IgG) (H+L) (1:1000)	ImmunoResearch Labs	AB_2340373
DyLight 405 AffiniPure Donkey Anti-Guinea Pig IgG	Jackson	Cat# 706-475-148; RRID:
(H+L) (1:1000)	ImmunoResearch	AB_2340470
Dulight 405 AffiniBurg Donkoy Anti Babbit IgC	Labs	Cat# 711 475 152: PPID:
	ImmunoResearch	AB 2340616
	Labs	

Alexa Fluor 594 AffiniPure Donkey Anti-Guinea Pig IgG (H+L) (1:1000)	Jackson ImmunoResearch Labs	Cat# 706-585-148; RRID: AB_2340474
Rabbit anti-Pigment Dispersing Factor (PDF) (1:20K)	Gift from M. Nitabach	N/A
Guinea Pig anti-dPERIOD (GP73) (1:1000)	Gift from I. Edery	N/A
Bacterial and Virus Strains		
One shot TOP10 Chemically Competent E.coli	Thermo Fisher	Cat# C404010
CellLight [™] Golgi-REP, BacMam 2.0	Thermo Fisher	Cat# C10593
	Scientific	Cal# C10333
AAV1-CMV-m-CORO7-2A-mCherry	Vector Biolabs	Cat# AAV-255958
AAV1-CMV-mCherry	Vector Biolabs	Cat# 7103
AAV1-hSyn-mVIP-WPRE	Vector Biolabs	Cat# AAV-276014
pENN.AAV.hSyn.HI.eGFP-Cre.WPRE.SV40 (AAV1)	Addgene (J.M. Wilson)	Addgene viral prep #105540-AAV1
pAAV.hSyn.eGFP.WPRE.bGH (AAV1)	Addgene (J.M. Wilson)	Addgene viral prep # 105539- AAV1
pENN.AAV.hSyn.Cre.WPRE.hGH (AAV1)	Addgene (J.M. Wilson)	Addgene viral prep # 105553- AAV1
Chemicals, Peptides, and Recombinant Proteins		
Protease Inhibitor Cocktail	Sigma-Aldrich	Cat# SRE0055
4-20% Mini-PROTEAN TGX Precast Gels (10/12 wells)	BioRad	Cat# 4561095
Polyvinylidene difluoride (PVDF) membranes	Millipore	Cat# IPVH00010
SuperSignal West Femto Maximum Sensitivity	Thermo Fisher Scientific	Cat# 34095
VECTASTAIN ABC-HRP kit	Vector Laboratories	Cat# PK-4000
DAB Peroxidase (HRP) Substrate Kit (with nickel)	Vector Laboratories	Cat# SK-4100
3,3'-diaminobenzidine		
Permount Mounting Media	Thermo Fisher Scientific	Cat# SP15-500
VECTASHIELD Antifade Mounting Medium	Vector Laboratories	Cat# H-1000
iTaq Universal SYBR Green Supermix	BioRad	Cat# 1725124
SsoFast EvaGreen Supermix	BioRad	Cat# 1725201
Fetal Bovine Serum (FBS), Premium	Wisent	Cat# 098150
Penicillin-Streptomycin (10,000 U/mL)	Thermo Fisher Scientific	Cat# 15140-122
0.25% Trypsin/EDTA	Wisent	Cat# 325-043-EL
Poly-D-lysine	Sigma	Cat# P6403
Lipofectamine 3000 Transfection Reagent	Thermo Fisher Scientific	Cat# L3000015
D-Biotin	Bio Basic	Cat# BB0078
Cycloheximide	Sigma	Cat# C7698
MG-132	Sigma	Cat# 474787
Bafilomycin A1	Cayman Chemical	Cat# 11038-500
E64d	Selleck Chemicals	Cat# S7393
Pepstatin A	Tocris Bioscience	Cat# 1190/10
Sodium pyruvate (100mM)	Thermo Fisher Scientific	Cat# 11360070

HEPES (1M)	Thermo Fisher Scientific	Cat#15630080					
L-Glutamine	Thermo Fisher Scientific	Cat# 25030081					
B-27 supplement	Thermo Fisher Scientific	Cat# 17504044					
Critical Commercial Assays							
RNAscope Multiplex Fluorescent Reagent Kit v2	Advanced Cell	Cat# 323100					
	Diagnostics						
RNeasy Micro Kit	QIAGEN	Cat# 74004					
Presto Endotoxin Free Mini Plasmid Kit	Geneaid	Cat# PEH100					
PureYield Plasmid Midiprep System	Promega	Cat# A2492					
iScript cDNA synthesis kit	BioRad	Cat# 1708890					
GFP ELISA kit	Abcam	Cat# ab171581					
mCherry ELISA kit	Abcam	Cat# ab221829					
ProteoExtract kit	MilliporeSigma	Cat# 5391801KIT					
Deposited Data							
MS proteomics data	PRIDE repository	Project accession: PXD020630					
Experimental Models: Cell Lines		-					
Human: WT HEK293T cells	Gift from S.Tripathi 1	N/A					
Human: UBR4 KO HEK293T cells	Gift from S.Tripathi ¹	N/A					
Experimental Models: Organisms/Strains							
Mouse: C57BL6/J	The Jackson	JAX: 000664					
	Laboratory	0,00,00004					
Mouse: Slc32a1 ^{tm2(cre)Lowl} (Vgat-ires-Cre)	The Jackson	JAX: 016962					
	Laboratory ²						
Mouse: <i>Ubr4</i> ^{tm1.2Nkt} (<i>p600</i> ^{flox/flox})	The Jackson	JAX: 024844					
	Laboratory ³						
D.melanogaster: w ¹¹¹⁸	Bloomington	RRID: BDSC_5905					
D.melanogaster: UAS-Dicer2; tim-GAL4	Gift from O. Shafer	N/A					
D. melanogaster: Pdf-GAL4	Gift from P. Taghert	N/A					
D. melanogaster: elav [C155]; UAS-Dicer2	Bloomington	RRID: BDSC_25750					
D. melanogaster: UAS-Dicer2	Bloomington	RRID: BDSC_24651					
D. melanogaster: UAS-poe RNAi; P{KK101471}VIE-	Vienna Drosophila	VDRC: 108296; Flybase ID:					
260B	Resource Center	FBgn0011230					
D molonogostor UAS CD2 HPP		NI/A					
Oligenueleetidee	011. Lee	N/A					
	IDT						
qPCR primers, See Supplementary Table 5		N/A					
NPY cloning primers, See Supplementary Table 5		N/A					
ON-TARGET plus Mouse Ubr4 siRNA, SMARTpool	Horizon Discovery	Cat# L-050850-00-0005					
	Horizon Discovery	Cat# D-001810-10-20					
Recombinant DNA	· · · · ·						
NPY-EGFP	Addgene ⁴	Addgene plasmid #74629					
pCAGImC_Empty	Addgene ⁵	Addgene plasmid # 92015					
pmCherry-C1 mCherry-NLS	Addgene ⁶	Addgene plasmid #58476					
Str-KDEL_SBP-EGFP-GPI	Addgene ⁷	Addgene plasmid #65294					
Str-KDEL_SBP-EGFP-NPY	This paper	N/A					

Flag-CORONIN 7	Gift from RH. Chen ⁸	N/A
V5-PER2	Gift from N.	N/A
	Cermakian	
V5-hUbr4-IRES-mCherry	This paper	N/A
V5-hUbr4 (Ala)-IRES-mCherry	This paper	N/A
V5-hUbr4 (Del)-IRES-mCherry	This paper	N/A
Software and Algorithms		
ClockLab Software	Actimetrics	http://www.actimetrics.com/product
		s/clocklab/
ImageJ 1.52a	National Institute of	https://imagej.nih.gov/ij/
	Health, USA	
Metamorph v7.10	Molecular Devices	https://www.moleculardevices.com
		/products/cellular-imaging-
		systems/acquisition-and-analysis-
		software/metamorph-
		microscopy#gref
Zen 2010 Software	ZEISS	https://www.zeiss.com/corporate/in
		t/home.html
MaxQuant v1.6.6.0	See reference ⁹	https://maxquant.org/
Perseus v1.6.6.0	See reference ¹⁰	https://maxquant.org/perseus
DAVID Bioinformatics Resources 6.8	See reference ^{11,12}	https://david.ncifcrf.gov/tools.jsp
DAM system	TriKinetics Inc.	https://trikinetics.com/
MATLAB R2020a	Mathworks, Inc.	https://www.mathworks.com/produ
		<u>cts/matlab.html</u>
Fly toolbox	Levine lab ¹³	N/A
GraphPad Prism v8.3.1	GraphPad Software	https://www.graphpad.com/
Other		
RNAscope probe: Mm-Ubr4	Advanced Cell	Cat# 415971
	Diagnostics	
RNAscope probe: Dm-poe	Advanced Cell	Cat# 583491
	Diagnostics	
RNAscope probe: Dm-Pdf-C3	Advanced Cell	Cat# 457471-C3
	Diagnostics	
Opal 520 reagent	PerkinElmer Inc	Cat# FP1487A
Opal 570 reagent	PerkinElmer Inc	Cat# FP1488A
C-18 ZipTip	Millipore	Cat# ZTC18S960
Acclaim PepMap trap column	Thermo Fisher	Cat# 164946
	Scientific	
EASY-Spray PepMap analytical column	Thermo Fisher	Cat# ES803A
	Scientific	

Supplementary Table 5. Primer and synthesized DNA sequences for qRT-PCR and cloning.

Primers				
mPer1 ¹⁴				
Forward: TGGCTCAAGTGGCAA	TGAGTC R	Reverse	GGCTCGAGCTGACTG	TTCACT
mPer2 ¹⁴				
		Poverse	GOTOCACGGGTTGAT	GAAGC
Clock ¹⁵			00100/0000110/01	
Forward: TGTCTCAAGCTGCAAA	ATTTACCA R	Reverse	TTTAGATGCTGCATGG	GCTCCTA
Bmal1 ¹⁵				
Forward: CCGTGCTAAGGATGG	CIGII R	Reverse		
AVD 10				
Forward: GCTGCCAGGAGGAGA	ACTAC R	Reverse		ACTC
Vip ¹⁵				
Forward: CAGTTCCTGGCATTCC	CTGAT R	Reverse	GGTCACCTGCTCCTT	CAAAC
<i>Mouse Gapdh</i> (this paper)				
Converde CATOCOCTTOCOTOT		Dovorac		TOTTOA
Human GAPDH (this paper)		(everse	. CETGETTEACEACET	ICIIGA
Forward: CCATGGGGAAGGTGA	AGGTC R	Reverse	: TGAAGGGGTCATTGA	TGGCA
Human Coronin 7 (this paper)				
Forward: GTGACATTCGAGCAG	GAACC R	Reverse	: CTTGTCCTCTCCTTGC	GCCTT
poe (this paper)				
Forward: CCAGGTCCCAGTGGC	CTTCC R	Poverse		CCAGG
rp49 ¹⁶		(010130	. A000000000000000000000000000000000000	00/00
Forward: ATCGGTTACGGATCG	AACAA R	Reverse	GACAATCTCCTTGCG	СТТСТ
NPY cloning primers (this paper)				
Forward: AGGGCCGGCCATACC		CGGAC		
Reverse: AGCTCGAGTTACCAC	ATTGCAGGGT	CTICA	AG	
Gateway LR Cloning			-	
		ector		Expressed protein
pENIR3ChUBR4	pCAGImC_Er	mpty	pCAGImC_hUbr4	V5-hUbr4-IRES-mCherry
pENTR3C_hUBR4_ubrbox_Ala	pCAGImC_Er	mpty	pCAGImC_hUbr4(Ala)	V5-hUbr4 (Ala)-IRES-mCherry
pENTR3C_hUBR4_ubrbox_Del	pCAGImC_Er	mpty	pCAGImC_hUbr4(Del)	V5-hUbr4 (Del)-IRES-mCherry

Synthesized DNA for construction of pENTR3C_hUBR4_ubrbox_Ala plasmid (this paper)

```
Synthesized DNA for construction of pENTR3C_hUBR4_ubrbox _Del plasmid (this paper)
```

Supplementary References

- 1. Tripathi, S. *et al.* Meta- and Orthogonal Integration of Influenza 'oMICs' Data Defines a Role for UBR4 in Virus Budding. *Cell Host Microbe* **18**, 723–735 (2015).
- 2. Vong, L. *et al.* Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons. *Neuron* **71**, 142–154 (2011).
- 3. Nakaya, T. *et al.* p600 Plays Essential Roles in Fetal Development. *PLoS One* **8**, e66269 (2013).
- 4. Taraska, J. W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S. & Almers, W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 2070–2075 (2003).
- 5. Golden, R. J. *et al.* An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. *Nature* **542**, 197–202 (2017).
- 6. Belin, B. J., Lee, T. & Mullins, R. D. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-¹/₂ that promotes efficient DNA repair. *Elife* **4**, e07735 (2015).
- 7. Boncompain, G. *et al.* Synchronization of secretory protein traffic in populations of cells. *Nat. Methods* **9**, 493–498 (2012).
- 8. Yuan, W. C. *et al.* K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. *Mol. Cell* **54**, 586–600 (2014).
- 9. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.range mass accuracies and proteome-wide protein quantification. *Nat. Biotechnol.* **26**, 1367– 1372 (2008).
- 10. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nature Methods* **13**, 731–740 (2016).
- 11. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* **37**, 1–13 (2009).
- 12. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* **4**, 44–57 (2009).
- 13. Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Signal analysis of behavioral and molecular cycles. *BMC Neurosci.* **3**, 1 (2002).
- 14. Fustin, J.-M. *et al.* Rhythmic Nucleotide Synthesis in the Liver: Temporal Segregation of Metabolites. *Cell Rep.* **1**, 341–349 (2012).
- 15. Parsons, M. J. *et al.* The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an at Motif-Driven Axis. *Cell* **162**, 607–621 (2015).
- 16. Krupp, J. J. *et al.* Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila. *Neuron* **79**, 54–68 (2013).