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General Information

Chemicals were purchased from commercial sources and used without purification. If not stated
otherwise, all reactions were carried out in flame-dried glassware under a nitrogen atmosphere
using standard Schlenk techniques. Solutions and reagents were added with nitrogen-flushed
disposable syringes/needles. For NMR experiments, solvents were added using glass syringes and
stainless steel needles (stored at 80 °C). Analytical thin layer chromatography (TLC) was
performed on silica gel 60 G/UV2s4 aluminium sheets from Merck (0.25 mm). Flash column
chromatography was performed on silica gel Davisil LC60A (Merck type 9385, 230-400 mesh) or
Reveleris X2 Flash Chromatography system (MPLC) using the indicated solvents. NMR spectra
were recorded on a Varian Mercury Plus (1H: 400 MHz, 13C: 100 MHz), a Varian Unity Plus (H:
500 MHz, 13C: 125 MHz) or a Bruker Innova (tH: 600 MHz, 13C: 151 MHz). Chemical shifts are in
parts per million (ppm) relative to TMS. For the calibration of the chemical shift, the residual
solvent resonance was used as the internal standard. Data are as follows: chemical shift (6in ppm),
multiplicity (br = broad, s = singlet, d = doublet, t = triplet, p = pentet, m = multiplet), coupling
constants (J in Hz), integration. High resolution mass spectra (HRMS) were recorded on an LTQ
Orbitrap XL. Ion mobility (IM) measurements were performed using a custom drift-tube
instrumentation hosted in the Fritz Haber Institute of the Max Planck Society (Berlin, Germany).
CD spectra were measured on a Jasco J-815 CD spectrometer. SAXS measurements were
performed at the Multipurpose X-ray Instrument for Nanostructure Analysis (MINA) instrument
at the University of Groningen. Illuminations were carried out using a UV lamp from Vilber
Lourmat (6W, Air = 365 nm).

The following compounds were prepared according to literature procedures: 1,12-dodecanediol
mono(4-methylbenzenesulfonate) S11, 12-azidododecyl 4-methylbenzenesulfonate S42, 5,6-
dihydroxy-2,7-dimethyl-indane-1-one S63 and  N,N-diethyl-3-methoxy-2-((2-methoxy-
phenyl)thio)benzamide S94.

The following compounds were prepared according to modified literature procedures: S25, S7-
$83,510-S1634.

Spectra of all compounds described in the synthesis section can be found in the spectra appendix
at the end of the Supplementary Information.

The absolute measurement error for NMR spectroscopic measurements involving molecular
machine *n was estimated to be +3%. The average relative standard deviation of the fit over all
individual experiments amounts to < 0.7%. This confirms the proposed kinetic models and the
related mechanisms for each individual experiment. The values given in the main manuscript are
an average over at least two individual experiments. The relative standard deviation between
these individual experiments was estimated to be *10% for quantum yields; #15% for
intramolecular rate constants; +15% for experimental Gibbs free energies at 25 °C; +35% for
intermolecular rate constants. For further information see also Supplementary Data Set 1.



Synthesis

Synthesis of side-arms
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Scheme 1 | Synthesis of side-arms. Synthesis of aldehyde linker S3 (top) and azide linker S5 (bottom).

4-((12-hydroxydodecyl)oxy)benzaldehyde (S2)5

0
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S2
C19H3003

Mw = 306.45 g/mol

In a flame-dried 3-necked flask equipped with a stirring bar and a reflux condenser, K,CO3 (1.74 g,
12.6 mmol, 3.00 eq.) and 4-hydroxybenzaldehyde (1.03 g, 8.42 mmol, 2.00 eq.) were suspended
in dry MeCN (21 mL). Alkyl tosylate S1 (1.50 g, 4.21 mmol, 1.00 eq.) was added and the mixture
was heated to 90 °C for 6 h. Subsequently, the mixture was cooled to room temperature and all
volatiles were removed under reduced pressure. To the residue, H,0O (20 mL) and ethyl acetate
(20 mL) were added. The phases were separated and the aqueous layer was extracted with ethyl
acetate (3x10 mL) and the combined organic layers were dried over MgS0O.. All volatiles were
removed under reduced pressure. The title compound S2 was obtained as an off-white solid
(1.20 g, 3.92 mmol, 93%) and was used without further purification.

1H-NMR (400 MHz, CDCl3): 6 = 1.21-1.38 (m, 14H), 1.46 (p,] = 7.0, 6.3 Hz, 2H), 1.51-1.62 (m, 2H),
1.74-1.86 (m, 2H), 3.63 (t,/ = 6.6 Hz, 2H), 4.03 (t,] = 6.5 Hz, 2H), 6.95-7.02 (m, 2H), 7.78-7.86 (m,
2H), 9.87 (s, 1H) ppm. The signal for OH could not be detected.

13C-NMR (101 MHz, CDCl3): 6 = 25.9, 26.1, 29.2, 29.5, 29.6, 29.7, 29.7, 29.7, 32.9, 63.2, 68.3, 68.6,
114.9,129.9,132.1, 164.4, 191.0 ppm.

HRMS-ESI (ESI+): m/z calculated for C19H3103* ([M+H]*): 307.2268, found 307.2270.

The analytical data is in accordance with the literature.



12-(4-formylphenoxy)dodecyl 4-methylbenzenesulfonate (S3)
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C26H3605S
Mw = 460.63 g/mol

In a flame-dried Schlenk-tube, 4-toluenesulfonyl chloride (560 mg, 2.94 mmol, 1.50 eq.), EtzN
(0.55 mL, 3.9 mmol, 2.0 eq.) and alcohol S2 (600 mg, 1.96 mmol, 1.00 eq.) were dissolved in
CH:Cl; (9.8 mL). 4-(Dimethylamino)pyridine (24 mg, 0.20 mmol, 0.10 eq.) was added as a solid
and the mixture was stirred for 14 h at room temperature. Subsequently, H,0 (10 mL) was added
and the phases were separated. The aqueous layer was extracted with CH2Cl; (2x8 mL) and the
combined organic layers were dried over MgSO,4. All volatiles were removed under reduced
pressure. The crude product was purified by MPLC (SiOz; n-pentane/CH;Cl; gradient 60:40 —
0:100). The title compound S3 was obtained as a colorless solid (0.74 g, 1.6 mmol, 82%).

1H-NMR (400 MHz, CDCl3): 6 =1.17-1.40 (m, 14H), 1.40-1.51 (m, 2H), 1.57-1.68 (m, 2H), 1.80 (p,
J =6.7 Hz, 2H), 2.44 (s, 3H), 4.02 (dt,J = 7.9, 6.5 Hz, 4H), 6.94-7.02 (m, 2H), 7.33 (d, ] = 8.0 Hz, 2H),
7.75-7.86 (m, 4H), 9.87 (s, 1H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = 21.8, 25.5, 26.1, 29.0, 29.0, 29.2, 29.4, 29.5, 29.6, 29.6, 29.6, 68.5,
70.8,114.9,128.0,129.9,129.9,132.1, 133.4, 144.7, 164.4, 190.9 ppm.

HRMS-ESI (ESI+): m/z calculated for C26H3705S+ ([M+H]*): 461.2356, found 461.2359.

4-((12-azidododecyl)oxy)phenol (S5)
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C1gH29N30;
Mw = 319.45 g/mol

In a flame-dried 3-necked flask equipped with a stirring bar and a reflux condenser, K,CO3
(804 mg, 5.82 mmol, 3.00 eq.) and hydroquinone (2.14 g, 19.4 mmol, 10.0 eq.) were suspended in
dry MeCN (9.7 mL). S4 (740 mg, 1.94 mmol, 1.00 eq.) was added and the mixture was heated to
90 °C for 16 h. Subsequently, the mixture was cooled to room temperature and all volatiles were
removed under reduced pressure. Then, H20 (15 mL) and ethyl acetate (15 mL) were added to
the residue. The phases were separated and the aqueous layer was extracted with ethyl acetate
(3x8 mL). The combined organic layers were dried over MgS04 and all volatiles were removed
under reduced pressure. The crude product was purified by MPLC (SiO2; n-pentane/CH:Cl;
gradient 70:30 — 0:100). The title compound S5 was obtained as an off-white solid (380 mg,
1.19 mmol, 61%).

1H-NMR (400 MHz, CDCls): § = 1.21-1.40 (m, 14H), 1.40-1.47 (m, 2H), 1.60 (p, ] = 7.0 Hz, 2H),
1.69-1.81 (m, 2H), 3.26 (t, ] = 7.0 Hz, 2H), 3.89 (t,] = 6.6 Hz, 2H), 4.36 (br s, 1H), 6.70-6.82 (m, 4H)

13C-NMR (101 MHz, CDCl3): 6 = 26.2, 26.8, 29.0, 29.3, 29.5, 29.5, 29.6, 29.6, 29.6, 29.7, 51.6, 68.9,
115.8,116.1,149.5, 153.4 ppm.



HRMS-ESI (ESI-): m/z for C1gH2sN302- [(M-H)-]: calc. 318.2187, found 318.2187.

Synthesis of the motor core
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Scheme 2 | Synthesis of the motor core.

Diethyl 2,2'-((2,7-dimethyl-1-0x0-2,3-dihydro-1H-indene-5,6-diyl)bis(oxy))(2R,2'R)-
dipropionate (S7)3
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Ca1H2807
Mw = 392.45 g/mol

Under a nitrogen atmosphere, ketone S6 (9.00 g, 0.05 mol, 1.00 eq.), PPh3 (65.9 g, 0.25 mol, 5 eq.),
and (S)-lactic ester (28.7 mL, 0.25 mol, 5.00 eq.) were dissolved in dry THF (180 mL) and DIAD
(50.8 g, 0.25 mol, 5.00 eq.) in dry THF (180 mL) was slowly added at 0 °C. The reaction mixture
was stirred at room temperature for 16 h. Subsequently, all volatiles were removed under reduced
pressure and 400 mL n-pentane/Et;0 (7:3) were added. Then, the mixture was sonicated and the
precipitate removed by filtration. The filtrate was purified by MPLC (SiO2; n-pentane/ethyl acetate
gradient 95:05 — 85:15) and the title compound S7 was obtained as a colorless oil (6.00 g, 16.0
mmol, 32%).

1H-NMR (300 MHz, CDCl3): § =1.18-1.28 (m, 9H), 1.55-1.71 (m, 6H), 2.45-2.70 (m, 5H), 3.18 (ddd,
J=16.7,7.6, 2.8 Hz, 1H), 4.06-4.29 (m, 4H), 4.77-4.91 (m, 2H), 6.54 (s, 1H) ppm.

The analytical data is in accordance with the literature.



(4,5-bis((tert-butyldimethylsilyl)oxy)-9H-thioxanthen-9-ylidene)hydrazine (S8)3
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C21H2506S
Mw = 408.51 g/mol

Under a nitrogen atmosphere, indanone S7 (350 mg, 0.892 mmol, 1.0 eq.) was dissolved in dry
toluene (13 mL) and P4S10 (3.96 g, 17.8 mmol, 10.0 eq.) was added at 25 °C. After stirring at 80 °C
for 2 h, the reaction mixture was quickly purified by flash column chromatography (SiOz; first n-
pentane, then ethyl acetate) under inert atmosphere. TLC (SiO2; n-pentane/ethyl acetate 8:2)
indicates full conversion of the starting material. Removal of the solvent yields product S8 as a
purple oil, which was directly used in the next reaction without further purification to avoid
decomposition.

4,5-dimethoxy-9H-thioxanthen-9-one (S10)3
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S10
C15H1203S
Mw = 272.32 g/mol

In a flame-dried 3-necked flask, a freshly made LDA solution (1.0 L, 0.50 M, 5.0 eq.) in dry THF was
prepared at -78 °C and stirred at room temperature for 30 min. After cooling to 0 °C with an ice
bath, a solution of amide S9 (33.7 g, 98.0 mmol, 1.00 eq.) in dry THF (450 mL) was added
dropwise to the LDA solution. After completion of the addition, the mixture was stirred at room
temperature for 1 h. After full conversion was observed by TLC (n-pentane:ethyl acetate = 7:3),
aq. NH4Cl-solution (1M, 500 mL) was slowly added. The phases were separated and the aqueous
layer was extracted with CH,Cl; (2x500 mL). The combined organic layers were dried over MgS0O4
and all volatiles were removed under reduced pressure. The crude product was purified first by
trituration in n-pentane/ethyl acetate and then recrystallization from ethyl acetate to afford title
compound S10 as a yellow powder (16.9 g, 62.0 mmol, 63%).

1H-NMR (400 MHz, DMSO-ds): 6 = 4.03 (s, 6H), 7.44 (dd, /= 8.0, 1.2 Hz, 2H), 7.55 (t,/ = 8.0 Hz, 2H),
8.06 (dd,/=8.1, 1.2 Hz, 2H) ppm.

13C-NMR (101 MHz, DMSO-de): 6 = 56.7, 113.3, 120.5, 126.2, 126.7, 129.0, 154.5, 178.9 ppm.
HRMS-ESI (ESI+): m/z calculated for C15H1303S ([M+H]+): 273.0580, found 273.0584.

The analytical data is in accordance with the literature.



4,5-bis((tert-butyldimethylsilyl) oxy)-9H-thioxanthen-9-one (S12)3
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C25H3603SSi;
Mw = 472.79 g/mol

Cleavage of methyl ethers:

In a flame-dried 3-necked flask, thioxanthon $10 (16.8 g, 62.0 mmol, 1.00 eq.) was dissolved in
boiling CHCl; (550 mL). The homogeneous solution was cooled to 0 °C with an ice bath and BBr3
(29.2 mL, 308 mmol, 5.00 eq.) was added slowly. After the addition was complete, the mixture
was stirred overnight and allowed to slowly warm to room temperature. Next, the mixture was
cooled to 0 °C with an ice bath and MeOH (100 mL) was added slowly. After stirring for 3 h, all
volatiles were removed under reduced pressure. The residue was suspended in MeOH (100 mL),
which was evaporated again. Next, the crude solid was washed on a glass frit with H.0 (ca.
100 mL). Dissolving in acetone (400 mL) and drying over MgSO4 delivered S11 which was used
without further purification.

TBS-protection:

In a flame-dried 3-necked-flask crude bisphenol S11, imidazole (12.6 g, 185 mmol, 3.00 eq.) and
4-(dimethylamino)pyridine (0.76 g, 6.2 mmol, 0.100 eq.), were dissolved in dry THF (250 mL). A
solution of TBSCI (27.9 g, 185 mmol, 3.00 eq.) in dry THF (150 mL) was added and the mixture
was stirred at room temperature for 16 h. Subsequently, the reaction mixture was filtered over a
pad of silica gel and washed with CH2Cl; (ca. 100 mL). The crude product was purified by
recrystallization from EtOH and title compound S12 was obtained as yellow needles (22 g,
47 mmol, 75% over two steps).

1H-NMR (400 MHz, CDCls): & = 0.35 (s, 12H), 1.11 (s, 18H), 7.10 (dd, ] = 7.9, 1.3 Hz, 2H), 7.35 (t, ]
= 8.0 Hz, 2H), 8.26 (dd, ] = 8.1, 1.3 Hz, 2H) ppm.

13C-NMR (101 MHz, CDCl3): 6 = -4.0, 18.6, 26.0, 102.5, 119.8, 122.2, 125.8, 130.5, 130.7, 151.5,
180.8 ppm.

HRMS-ESI (ESI+): m/z calculated for C25H3703SSiz* ([M+H]*): 473.1996, found 473.1999.

The analytical data is in accordance with the literature.



(4,5-bis((tert-butyldimethylsilyl)oxy)-9H-thioxanthen-9-ylidene)hydrazine (S13)3
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Cy5H3gN20,SSi,
Mw = 486.82 g/mol

Thioketone formation:

Under a nitrogen atmosphere in a flame-dried 3-necked flask equipped with a stirring bar and a
reflux condenser, thioxanthone S12 (2.0 g, 4.0 mmol, 1.0 eq.) was dissolved in dry toluene
(20 mL). Lawesson’s reagent (5.1 g, 13 mmol, 3.0 eq.) was added and the mixture was heated to
80 °C for 2 h. Subsequently, the mixture was cooled to room temperature and the crude product
was purified by flash column chromatography (n-pentane/ethyl acetate = 4:1) and the thioketone
was immediately converted further.

Hydrazone formation:

In a round-bottom flask, the thioketone was dissolved in THF (15 mL) and stirred at room
temperature. Next, hydrazine (2.1 mL, 4.2 mmol, 10 eq.) was added and the mixture was stirred
at room temperature for 2 h. During this time, the color of the reaction mixture changed from
green to almost colorless. Then, all volatiles were removed under reduced pressure and the crude
product was purified by MPLC (SiOz; n-pentane/ethyl acetate gradient 100:0 — 80:20). The title
compound S13 (2.0 g, 4.0 mmol, 99%) was obtained as a slightly yellow oil which solidified upon
standing.

1H-NMR (400 MHz, CDCl3): & = 0.28 (s, 6H), 0.31 (s, 6H), 1.07 (s, 10H), 1.09 (s, 9H), 5.83 (s, 2H),
6.78 (dd,/ = 7.9, 1.1 Hz, 1H), 6.84 (dd, ] = 8.0, 1.1 Hz, 1H), 7.16 (t,] = 7.9 Hz, 1H), 7.19 (d,] = 8.0 Hz,
1H), 7.43 (dd, ] = 7.8, 1.2 Hz, 1H), 7.63 (dd, ] = 7.9, 1.1 Hz, 1H) ppm.

The analytical data is in accordance with the literature.

(4,5-bis((tert-butyldimethylsilyl) oxy)-9H-thioxanthen-9-ylidene)hydrazine (S14)3
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Mw = 484.81 g/mol

Under an argon atmosphere and exclusion of light, hydrazone $13 (478 mg, 0.981 mmol, 1.0 eq.)
was dissolved in dry THF (13 mL). Then, MnO; (1.55 g, 17.8 mmol, 18 eq.; manganese(IV) oxide
activated, technical grade = 90%, FLUKA Cat. 63548) and Na;SO. (633 mg, 4.46 mmol, 4.5 eq.)
were added at 0 °C. After stirring at 0 °C for 10 min, the reaction mixture was quickly filtered with
a cannula (Whatman technique) under strict exclusion of light and air and the residue was washed
two more times with dry and cold THF (2 mL, 0 °C). The green filtrate was kept at 0 °C and
immediately used for the next reaction.



Diethyl 2,2'-((4",5"-bis((tert-butyldimethylsilyl)oxy)-2,7-dimethyl-2,3-dihydrodispiro-
[indene-1,2'-thiirane-3',9"-thioxanthene]-5,6-diyl)bis(oxy))(2R,2'R)-dipropionate (S15)3

EtO
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S15
C47Hgg08S2Si2
Mw = 881.34 g/mol

Under an argon atmosphere and exclusion of light, thioketone $8 was dissolved in dry THF (2 mL),
cooled to 0 °C, and slowly added to a solution of diazo $14 in dry THF at 0 °C. After three vacuum-
argon cycles, the reaction mixture was allowed to warm up to room temperature while stirring
for 16 h. Purification by MPLC (SiO2; n-pentane/ethyl acetate gradient 100:0 — 90:10) affords
diasteromers (R,R,R)-S15 (254 mg, 0.294 mmol, 33%; elutes at 6% ethyl acetate) and (S,R,R)-S15
(312 mg, 0.361 mmol, 35%; elutes at 7% ethyl acetate) with excellent separation.

(RRR)-S15

1H-NMR (300 MHz, CDCl3): 6 = -0.08 (s, 3H), 0.08 (s, 3H), 0.23 (s, 3H), 0.25 (s, 3H), 091 (d, ] =
6.9 Hz, 3H), 0.96 (s, 9H), 1.04 (s, 9H), 1.07 (s, 1H), 1.22 (t,J = 7.1 Hz, 3H), 1.30 (t, / = 7.1 Hz, 3H),
1.42 (d,J = 6.8 Hz, 3H), 1.52 (d, ] = 6.7 Hz, 3H), 2.02-2.10 (m, 1H), 2.14 (s, 3H), 3.18 (dd, ] = 14.8,
6.4 Hz, 1H), 4.10-4.29 (m, 5H), 4.60 (q,/ = 6.7 Hz, 1H), 6.34 (s, 1H), 6.60 (d, /= 8.0 Hz, 1H), 6.73 (d,
J=7.9Hz, 1H), 7.01 (t,J = 7.9 Hz, 1H), 7.10 (t,/ = 7.9 Hz, 1H), 7.24 (d,J = 7.9 Hz, 1H), 7.39 (d, ] =
8.1 Hz, 1H) ppm.

(SRR)-S15

1H-NMR (300 MHz, CDCls): § = -0.12 (s, 3H), 0.06 (s, 3H), 0.23 (s, 3H), 0.25 (s, 3H), 0.94 (s, 9H),
1.05 (s, 9H), 1.14-1.29 (m, 11H), 1.52 (d, ] = 6.8 Hz, 3H), 2.04 (d, ] = 15.0 Hz, 2H), 2.12 (s, 3H), 3.20
(dd,J = 15.0, 6.4 Hz, 1H), 4.05-4.26 (m, 5H), 4.58 (dq, ] = 8.2, 6.8 Hz, 2H), 6.59 (dd, ] = 8.0, 1.2 Hz,
1H), 6.73 (dd, ] = 8.0, 1.3 Hz, 1H), 7.00 (t, ] = 7.8 Hz, 1H), 7.10 (t, ] = 7.9 Hz, 1H), 7.24 (dd, ] = 7.7,
1.2 Hz, 1H), 7.38 (dd, ] = 7.7, 1.3 Hz, 1H) ppm.

The analytical data is in accordance with the literature.



Diethyl 2,2'-((1-(4,5-bis((tert-butyldimethylsilyl)oxy)-9H-thioxanthen-9-ylidene)-2,7-di-
methyl-2,3-dihydro-1H-indene-5,6-diyl)bis(oxy))(2R,2'R)-dipropionate3

EtO
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S16
C47Heg0gSSiy
Mw = 832.39 g/mol

Under an argon atmosphere, episulfide $S15 (210 mg, 0.242 mmol, 1 eq.) and PPh3z (1.27 g,
4.82 mmol, 20 eq.) were dissolved in toluene (3 mL) and the solution was stirred at 120 °C for 3 d.
Purification by MPLC (SiO2; n-pentane/ethyl acetate gradient 100:0 — 90:10) afforded product
$16 as a colorless solid (190 mg, 0.227 mmol, 94%).

(RRR)-S16

1H-NMR (600 MHz, CDCls): § = 0.25 (s, 3H), 0.27 (s, 3H), 0.27 (s, 3H), 0.29 (s, 3H), 0.61 (d, ] =
6.8 Hz, 3H), 0.98 (s, 1H), 1.09 (d, / = 1.9 Hz, 17H), 1.19 (s, 3H), 1.28 (dt,/ = 9.3, 7.1 Hz, 6H), 1.52 (d,
J = 6.8 Hz, 3H), 1.62 (d, ] = 6.8 Hz, 3H), 2.33 (d, ] = 14.8 Hz, 1H), 3.29-3.35 (m, 1H), 4.10 (p,] = 6.7
Hz, 1H), 4.18 (dd, ] = 7.2, 2.3 Hz, 1H), 4.19-4.30 (m, 3H), 4.44 (q, ] = 6.8 Hz, 1H), 4.77 (q,] = 6.7 Hz,
1H), 6.56 (s, 1H), 6.64 (dd, ] = 7.9, 1.2 Hz, 1H), 6.66 (dd, ] = 7.7, 1.2 Hz, 1H), 6.69 (dd, ] = 8.0, 1.1 Hz,
1H), 6.89 (t, ] = 7.8 Hz, 1H), 7.12 (t,] = 7.8 Hz, 1H), 7.29 (dd, ] = 7.7, 1.2 Hz, 1H) ppm.

13C-NMR (151 MHz, CDCl3): 6 = -4.26,-4.18,-3.86, -3.81, 14.28, 14.39, 14.57,18.53, 18.56, 18.66,
18.87, 19.11, 26.07, 38.15, 39.67, 60.83, 61.32, 73.05, 77.61, 108.31, 115.68, 116.49, 120.45,
121.14, 126.23, 126.64, 127.29, 127.73, 128.32, 131.03, 133.61, 138.48, 141.90, 142.47, 144.99,
145.58,150.32,152.36, 152.87,172.32,172.57 ppm.

(SRR)-S16

1H-NMR (600 MHz, CDCls): § = 0.25 (s, 3H), 0.27 (d, ] = 1.5 Hz, 6H), 0.29 (s, 3H), 0.62 (d, ] = 6.8 Hz,
3H), 1.09 (d, ] = 4.4 Hz, 18H), 1.17-1.26 (m, 10H), 1.45 (d, ] = 6.8 Hz, 3H), 1.61 (d, ] = 6.8 Hz, 4H),
2.32 (d,] = 14.8 Hz, 1H), 3.33 (ddd, ] = 14.9, 6.6, 1.2 Hz, 1H), 4.07-4.17 (m, 3H), 4.17-4.29 (m, 2H),
4.75 (qd, ] = 6.7, 4.6 Hz, 2H), 6.53 (s, 1H), 6.62-6.64 (m, 2H), 6.69 (dd, ] = 8.0, 1.1 Hz, 1H), 6.86 (t, ]
= 7.8 Hz, 1H), 7.12 (t, ] = 7.8 Hz, 1H), 7.29 (dd, ] = 7.7, 1.2 Hz, 1H) ppm.

13C-NMR (151 MHz, CDCls): 6 =-4.23,-4.18,-3.87,-3.79, 14.22, 14.26, 14.55, 18.56, 18.68, 19.09,
26.08, 38.15, 39.61, 60.82, 61.36, 73.12, 77.08, 108.25, 115.67, 116.53, 120.40, 121.12, 126.23,
126.58, 127.32, 127.83, 128.29, 131.05, 133.59, 138.48, 141.94, 142.13, 144.60, 145.65, 149.76,
152.36,152.89,172.17, 172.62 ppm.

MS-ESI (ESI+): m/z calculated for C47Heg06SSizH* ([M+H]*): 832.39, found 832.39.

The analytical data is in accordance with the literature.
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Postfunctionalization of the motor core

EtO
o) o o\(\OH o\(\OH
(5305 o (5305 o (545 on
I )\\g g | - |
488 988 9488
OTBS OTBS OTBS OTBS OH OH
S16 $17 S18

(0] (0]
Qowo«“a
(0]
\(\O
L Hsr O
e
\'p/o\/(?o\/o O\/(T)O\/O\Ej\'r

Scheme 3 | Postfunctionalization of the motor core.
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(2R,2'R)-2,2'-((1-(4,5-bis((tert-butyldimethylsilyl) oxy)-9H-thioxanthen-9-ylidene)-2,7-
dimethyl-2,3-dihydro-1H-indene-5,6-diyl)bis(oxy))bis(propan-1-ol) (517)

O\(\OH
O ;\/OH
980

OTBS OTBS

S17
Mw = 749.17 g/mol

Under a nitrogen atmosphere, fully protected motor S16 (179 mg, 0.215 mmol, 1.00 eq.) was
dissolved in dry CH2Cl; (8.2 mL) and diisobutylaluminium hydride (1 M in hexanes, 2.1 mL, 10 eq.)
was slowly added at 0 °C. After stirring for 1.5 h at 0 °C, additional 2 eq. of diisobutylaluminium
hydride were added after 30 min and 1 h, whereby completion of the reaction was monitored by
TLC (SiOz; n-pentane/ethyl acetate 1:1). Then, the reaction was quenched with aq. saturated
Rochelle’s salt and the mixture stirred for 30 min until a clear phase separation was observed. The
reaction mixture was diluted with CH,Cl,, washed with water, and dried over MgS0O,. Typically,
the crude mixture was filtered over a pad of silica gel with CH»Cl;/methanol (10:1) and used for
the next step without further purification. In order to fully characterize the compound, the crude
reaction mixture was once purified by MPLC (SiO2; n-pentane/ethyl acetate gradient 100:0 —
0:100), which provided product $17 as a colorless solid (156 mg, 0.21 mmol, 97%).

(RR.R)-S17

1H-NMR (600 MHz, CsDs): § = 0.22 (s, 3H), 0.23 (s, 3H), 0.24 (s, 3H), 0.25 (s, 3H), 0.77 (d, ] = 6.8 Hz,
3H), 0.84 (d, ] = 6.4 Hz, 3H), 1.15 (s, 9H), 1.17 (s, 9H), 1.20 (d, ] = 6.3 Hz, 3H), 1.56 (s, 3H), 2.30 (d,
J=14.7 Hz, 1H), 3.10 (brs, 2H), 3.33-3.42 (m, 2H), 3.46 (ddd, ] = 12.4, 8.5, 3.7 Hz, 2H), 3.64 (dd,
= 12.2, 2.8 Hz, 1H), 4.04-4.11 (m, 1H), 4.24 (p, ] = 6.7 Hz, 1H), 4.35 (pd, ] = 6.5, 3.0 Hz, 1H), 6.62
(dd, ] = 8.0, 1.2 Hz, 1H), 6.64 (s, 1H), 6.71-6.78 (m, 2H), 6.93 (dd, ] = 7.6, 1.2 Hz, 1H), 7.06 (t, ] =
7.9 Hz, 1H), 7.39 (dd, ] = 7.7, 1.1 Hz, 1H) ppm.

BBC-NMR (151 MHz, CeéDs): 6 = -4.2, -4.1, -3.9, -3.8, 15.2, 15.7, 16.7, 18.7, 18.7, 19.2, 26.2, 26.2,
38.5,39.8,65.7,66.8,76.1,78.4,109.5,116.1,116.8,120.9,121.6,126.6,127.1,128.6,128.6,128.9,
131.4,133.3,139.2, 142.3, 142.8, 145.0, 146.2, 151.0, 152.9, 153.4 ppm. Signals for some carbon
atoms are missing due to signal overlap with C¢De.

(S,R.R)-S17

1H-NMR (600 MHz, CsDe): § = 0.23 (dd, ] = 11.6, 8.6 Hz, 12H), 0.76 (d, ] = 6.8 Hz, 3H), 1.02 (d, ] =
6.4 Hz, 3H), 1.15 (d, ] = 9.3 Hz, 18H), 1.25 (d, ] = 6.2 Hz, 3H), 1.47 (s, 3H), 2.30 (d, ] = 14.7 Hz, 1H),
3.35-3.41 (m, 1H), 3.43 (dd, J = 12.3, 3.9 Hz, 1H), 3.48 (dd, / = 11.8, 6.8 Hz, 1H), 3.58 (dd, /= 11.8,
2.7 Hz, 1H), 3.67 (dd, ] = 12.3, 2.6 Hz, 1H), 3.82 (s, 2H), 4.05 (tq, J = 9.0, 3.0 Hz, 1H), 4.12 (pd, ] =
6.4, 2.5 Hz, 1H), 4.20 (p, ] = 6.7 Hz, 1H), 6.61 (dd, ] = 7.9, 1.2 Hz, 1H), 6.63 (s, 1H), 6.67-6.74 (m,
2H), 6.84 (dd, ] = 7.6, 1.2 Hz, 1H), 7.05 (t, ] = 7.9 Hz, 1H), 7.37 (dd, ] = 7.8, 1.1 Hz, 1H) ppm.

13C-NMR (151 MHz, Ce¢D¢): 6 = -4.2, -4.1, -4.0, -3.9, 15.3, 15.6, 16.7, 18.7, 19.1, 26.2, 38.5, 40.1,
65.4, 66.2, 76.5, 80.2, 110.5, 116.1, 116.8, 120.7, 121.8, 126.5, 126.7, 128.3, 128.7, 129.0, 131.8,
133.8,139.0, 142.6, 142.6, 146.0, 146.1, 151.1, 152.9, 153.5 ppm. Signals for some carbon atoms
are missing due to signal overlap with C¢De.
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HRMS-ESI (ESI+): m/z calculated for C42Hg006SSizNa+ ([M+Na]*): 771.3541, found 771.3523.

9-(5,6-bis(((R)-1-hydroxypropan-2-yl)oxy)-2,7-dimethyl-2,3-dihydro-1H-inden-1-
ylidene)-9H-thioxanthene-4,5-diol (S18)

O\(\OH
Q 3o
408

OH OH

S18
C30H3206S
Mw = 520.64 g/mol

Under a nitrogen atmosphere, bis-TBS motor $17 (159 mg, 0.21 mmol, 1.0 eq.) was dissolved in
dry THF (14 mL) and TBAF (1M in THF, 0.67 mL, 3.1 eq.) was slowly added at 0 °C. After stirring
for 5 min at 0 °C, the reaction mixture was quenched with saturated aq. NH4Cl, diluted with CH,Cl,,
washed with water, and dried over MgS0.. Then, the mixture was filtered over a pad of silica gel
with CH2Cl,/methanol (10:1) and the crude product $18 (110 mg, 0.2 mmol, 99%) was used for
the next step without further purification to avoid decomposition.

4,4'-((((9-(5,6-bis(((R)-1-hydroxypropan-2-yl)oxy)-2,7-dimethyl-2,3-dihydro-1H-inden-1-

ylidene)-9H-thioxanthene-4,5-diyl)bis(oxy))bis(dodecane-12,1-
diyl))bis(oxy))dibenzaldehyde (S19)

O\(\OH
O j\/OH

S
O AR O O AR O
| I 10 10 | |
H H
0 S19 o
CesHgsO10S

Mw = 1097.50 g/mol

Under a nitrogen atmosphere, deprotected motor $18 (110 mg, 0.20 mmol, 1.0 eq.), tosylate S3
(584 mg, 1.3 mmol, 6.0 eq.), and freshly grinded K>CO3 (175 mg, 1.3 mmol, 6.0 eq.) were stirred in
DMF (7.5 mL) at 60 °C for 3 days. The reaction mixture was diluted with CH»Cl;, washed with
water, and dried over MgSO.. Purification by MPLC (SiOz; n-pentane/ethyl acetate gradient 100:0
— 30:70) afforded product S19 as a colorless 0il (0.11 g, 0.10 mmol, 47% over three steps).

(RR.R)-S19
IH-NMR (600 MHz, CsDs): & = 0.80 (d, J = 6.8 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H), 1.21 (d, J = 6.3 Hz,
3H), 1.23-1.38 (m, 30H), 1.41-1.52 (m, 4H), 1.52-1.60 (m, 7H), 1.66-1.78 (m, 4H), 2.32 (d, J =

14.8 Hz, 1H), 3.36-3.49 (m, 4H), 3.52 (t, J = 6.4 Hz, 4H), 3.62-3.71 (m, 2H), 3.74 (dt, J = 9.1, 6.5 Hz,
1H), 3.82 (ddt, J = 21.9, 9.0, 6.4 Hz, 2H), 4.09 (dt, J = 6.4, 3.4 Hz, 1H), 4.26-4.39 (m, 2H), 6.44-6.49
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(m, 1H), 6.57 (d, J = 7.5 Hz, 1H), 6.64-6.69 (m, 5H), 6.84 (t, J = 7.9 Hz, 1H), 6.96 (dd, J = 7.7, 1.0 Hz,
1H), 7.45 (d, J = 7.6 Hz, 1H), 7.57-7.62 (m, 4H), 9.72 (s, 2H) ppm.

BC-NMR (151 MHz, CeDs): & = 15.0, 15.3, 16.4, 18.9, 26.0, 26.1, 26.1, 29.0, 29.2, 29.3, 29.4, 29.5,
29.7,29.7, 29.8, 38.3, 39.6, 65.3, 66.5, 67.9, 68.6, 75.7, 78.0, 109.0, 114.5, 120.0, 120.6, 125.4, 125.7,
126.3, 126.8, 127.5, 127.6, 127.7, 127.8, 127.8, 128.0, 130.3, 131.1, 131.6, 133.0, 138.5, 141.9, 142.1,
144.6, 145.9, 150.6, 156.1, 156.5, 163.8, 189.4 ppm.

Signals for some carbon atoms are missing due to signal overlap with C¢De.

(S,R.R)-S19

1H-NMR (600 MHz, CDs): § = 0.77 (d, ] = 6.8 Hz, 3H), 1.05 (d, ] = 6.4 Hz, 3H), 1.23-1.37 (m, 33H),
1.39-1.52 (m, 7H), 1.57 (dq,/ = 13.7, 6.6 Hz, 4H), 1.62-1.77 (m, 4H), 2.32 (d, ] = 14.8 Hz, 1H), 3.38-
3.46 (m, 2H), 3.49 (dd, ] = 11.8, 6.5 Hz, 1H), 3.53 (td, ] = 6.4, 1.1 Hz, 4H), 3.61 (dd, J = 11.8, 2.6 Hz,
1H), 3.64-3.70 (m, 2H), 3.74 (dt, ] = 9.0, 6.4 Hz, 1H), 3.81 (ddt, ] = 13.0, 8.9, 6.4 Hz, 2H), 4.07 (dq,
=9.8,6.2, 4.9 Hz, 1H), 4.17 (pd, ] = 6.3, 2.5 Hz, 1H), 4.27 (p,] = 6.7 Hz, 1H), 6.45-6.50 (m, 1H), 6.57
(d,] = 7.8 Hz, 1H), 6.66 (s, 1H), 6.68 (d, ] = 8.6 Hz, 4H), 6.83 (t, ] = 7.9 Hz, 1H), 6.90 (dd, / = 7.7,
1.0 Hz, 1H), 7.42 (d, ] = 7.7 Hz, 1H), 7.58-7.62 (m, 4H), 9.72 (s, 2H) ppm.

13C-NMR (151 MHz, CsD6): 6 = 15.4, 15.7, 16.8, 19.2, 26.3, 26.4, 26.5, 29.4, 29.6, 29.6, 29.8, 29.9,
30.1,30.1, 30.1, 38.6,40.1, 65.4, 66.1, 68.3, 69.0, 69.1, 76.7,80.0, 109.1, 109.2,110.7, 114.9, 120.3,
121.1, 125.5, 126.2, 126.6, 126.7, 128.4, 128.6, 128.8, 130.6, 131.9, 132.0, 133.9, 138.6, 142.4,
142.6,145.9,146.2,151.2,156.4,156.9, 164.2, 189.9 ppm.

Signals for some carbon atoms are missing due to signal overlap with C¢De.

HRMS-ESI (ESI+): m/z calculated for CesHssO10SNa* ([M+Na]*): 1119.5990, found 1119.5973.
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(2R,2'R)-((1-(4,5-bis((12-(4-formylphenoxy)dodecyl)oxy)-9H-thioxanthen-9-ylidene)-
2,7-dimethyl-2,3-dihydro-1H-indene-5,6-diyl)bis(oxy))bis(propane-2,1-diyl) bis(4-
methylbenzenesulfonate) (S20)

O\(\OTS
O 3\/%

S20
Cg2H100014S3
Mw = 1405.87 g/mol

Under a nitrogen atmosphere, bis-alcohol S19 (110 mg, 0.10 mmol, 1.0 eq.), EtsN (0.14 mL,
1.0 mmol, 10 eq.), 4-dimethylaminopyridine (12 mg, 0.10 mmol, 1.0 eq.), and 4-toluenesulfonyl
chloride (191 mg, 1.00 mmol, 10.0 eq.) were stirred in dry CH2Cl; (3.4 mL) at room temperature
for 16 h. The reaction mixture was diluted with CH,Cl, washed with water, and dried over MgSQO,.
Purification by flash column chromatography (SiOg; first n-pentane/CH,Cl; 8:2, then ethyl acetate)
provided product S20 as a colorless oil (140 mg, 99%).

(RR.R)-S20

1H-NMR (600 MHz, C¢Ds): 6 = 0.71 (d, / = 6.8 Hz, 3H), 0.91 (d, / = 6.3 Hz, 3H), 1.07 (d,J = 6.3 Hz,
3H), 1.21-1.41 (m, 37H), 1.42-1.52 (m, 7H), 1.53-1.60 (m, 4H), 1.67-1.80 (m, 4H), 1.87 (s, 3H),
1.90 (s, 3H), 2.25 (d, / = 14.8 Hz, 1H), 3.34 (dd, J = 14.8, 6.2 Hz, 1H), 3.53 (t, / = 6.5 Hz, 5H), 3.69-
3.85 (m, 4H), 3.92-4.04 (m, 5H), 4.15 (dd, J = 10.1, 4.5 Hz, 1H), 4.24 (ddd, /= 10.2, 7.6, 5.2 Hz, 2H),
4.37 (pd, ] = 6.2, 4.4 Hz, 1H), 6.53-6.59 (m, 2H), 6.68 (d, / = 8.4 Hz, 4H), 6.73-6.83 (m, 5H), 6.92
(dd,J=7.7,1.1 Hz, 1H), 7.42 (d,] = 7.7 Hz, 1H), 7.60 (d, ] = 8.6 Hz, 4H), 7.80 (dd, ] = 8.3, 3.0 Hz, 4H),
9.72 (s, 2H) ppm.

13C-NMR (151 MHz, C¢Ds): 6 = 15.1, 16.4, 17.4, 19.1, 21.2, 21.3, 26.3, 26.3, 26.5, 26.5, 29.4, 29.6,
29.8, 29.8, 29.9, 29.9, 30.1, 30.1, 38.6, 39.9, 68.3, 69.0, 69.1, 71.7, 71.8, 72.6, 75.3, 109.1, 109.9,
110.5, 114.9, 120.3, 120.9, 125.7, 125.9, 126.7, 127.3, 129.1, 129.9, 130.0, 130.7, 131.7, 131.9,
134.0, 134.3, 134.3, 138.7, 142.0, 142.4, 144.4, 144.7, 145.3, 145.9, 150.6, 156.4, 157.0, 164.2,
189.8 ppm.

Signals for some carbon atoms are missing due to signal overlap with C¢De.

(S,R.R)-S20

1H-NMR (600 MHz, C¢De): 8 = 0.71 (d, ] = 6.7 Hz, 3H), 0.98 (d, ] = 6.4 Hz, 3H), 1.09 (d, ] = 6.4 Hz,
3H), 1.24-1.37 (m, 30H), 1.38 (s, 3H), 1.47 (dtd, ] = 15.4, 12.2, 9.1, 4.5 Hz, 4H), 1.53-1.61 (m, 4H),
1.70 (ddp, J = 19.7, 13.1, 6.1 Hz, 4H), 1.83 (s, 3H), 1.87 (s, 3H), 2.25 (d, ] = 14.8 Hz, 1H), 3.33 (dd, ]
= 14.7, 6.1 Hz, 1H), 3.53 (td, ] = 6.4, 1.5 Hz, 4H), 3.70 (ddt, ] = 36.7, 9.2, 6.6 Hz, 2H), 3.76-3.86 (m,
2H), 3.99 (dd, ] = 10.6, 4.2 Hz, 1H), 4.03 (dd, J = 10.2, 5.3 Hz, 1H), 4.12 (dd, ] = 10.6, 5.8 Hz, 1H),
4.23 (dq, ] = 10.3, 5.8, 4.8 Hz, 2H), 4.27-4.34 (m, 1H), 4.39 (h, ] = 6.3 Hz, 1H), 6.47 (dd, ] = 7.7,
1.5 Hz, 1H), 6.51 - 6.58 (m, 2H), 6.68 (d, ] = 8.8 Hz, 4H), 6.75 (dd, ] = 17.4, 7.9 Hz, 4H), 6.84 - 6.92
(m, 2H), 7.39 (d,] = 7.7 Hz, 1H), 7.60 (d, ] = 8.5 Hz, 4H), 7.77-7.82 (m, 4H), 9.72 (s, 2H).

13C-NMR (151 MHz, C¢D¢): 6 = 15.2,16.2, 17.2, 19.1, 21.2, 21.2, 26.3, 26.4, 26.5, 29.4, 29.6, 29.7,
29.8,29.9,30.1,30.1,30.1,30.1, 30.1, 38.6, 39.9, 68.3,69.0,69.0,71.9, 72.1,72.7,75.5,109.1, 109.3,

15



110.4, 114.9, 120.3, 121.0, 125.6, 126.0, 126.7, 127.0, 128.3, 128.9, 129.9, 130.0, 130.7, 131.8,
131.9, 134.0, 134.1, 138.6, 142.2, 142.3, 144.4, 144.5, 145.3, 146.0, 150.2, 156.4, 156.9, 164.2,
164.2,189.8 ppm.

Signals for some carbon atoms are missing due to signal overlap with CeDs.

HRMS-ESI (ESI+): m/z calculated for Cs2H100014S3Na* ([M+Na]+): 1427.6167, found 1427.6151.

2.3.5 4,4'-((((9-(5,6-bis(((R)-1-(4-((12-azidododecyl)oxy)phenoxy)propan-2-yl)oxy)-
2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-9H-thioxanthene-4,5-
diyl)bis(oxy))bis(dodecane-12,1-diyl))bis(oxy))dibenzaldehyde (S21)

N
O\/(AE/3

o

val
F Ot

s21 o
C104H142Ng0 128
Mw = 1700.37 g/mol

Under a nitrogen atmosphere, bis-tosylate $20 (30 mg, 21 umol, 1.0 eq.), phenol S5 (0.20 g, 0.64
mmol, 30.0 eq.), and Cs2C03 (0.21 g, 0.64 mmol, 30.0 eq.) were stirred in a mixture of DMF/THF
(1 mL, 7:3) at 55 °C for 9 d. The reaction mixture was diluted with CH:Cl;, washed with water,
dried over MgSO0,, and filtered over a pad of silica gel with ethyl acetate. After purification by MPLC
(Si0Oy; first n-pentane/CH>Cl; 1:1, then n-pentane/ethyl acetate gradient 100:0 — 80:20), product
$21 was obtained as an off-white solid (18 mg, 11 umol, 50%).

(RRR)-S21

1H-NMR (600 MHz, CsD): § = 0.78 (d, ] = 6.7 Hz, 3H), 1.05-1.15 (m, 8H), 1.16-1.38 (m, 57H), 1.39-
1.60 (m, 15H), 1.65 (s, 3H), 1.67-1.75 (m, 7H), 2.33 (d, ] = 14.8 Hz, 1H), 2.71 (t,] = 6.8 Hz, 4H), 3.43
(dd,] = 14.9, 6.1 Hz, 1H), 3.52 (t, ] = 6.5 Hz, 4H), 3.65-3.79 (m, 9H), 3.79-3.91 (m, 1H), 3.96 (dd, J
= 9.7, 5.8 Hz, 1H), 4.05 (dd, ] = 9.3, 4.0 Hz, 1H), 4.29 (p, ] = 6.7 Hz, 1H), 4.57-4.62 (m, 1H), 4.79-
4.85 (m, 1H), 6.41-6.48 (m, 1H), 6.56 (d, ] = 8.1 Hz, 1H), 6.67 (d, ] = 8.7 Hz, 4H), 6.79-6.92 (m,
10H), 6.95-7.01 (m, 1H), 7.39-7.46 (m, 1H), 7.56-7.63 (m, 4H), 9.72 (s, 2H) ppm.

13C-NMR (151 MHz, C¢Ds): 6 = 15.2, 17.4, 18.5, 19.2, 26.3, 26.5, 26.5, 26.6, 27.0, 29.0, 29.4, 29.5,
29.6,29.6, 29.8, 29.9, 29.9, 29.9, 29.9, 30.0, 30.0, 30.0, 30.1, 30.1, 30.2, 38.8, 40.1, 51.4, 68.3, 68.5,
68.5, 69.0, 69.0,71.7,71.7,73.4,76.6,109.0, 109.4,110.0, 114.9, 115.6, 115.7, 116.0, 116.0, 120.4,
121.0, 125.8, 126.1, 126.6, 127.1, 127.6, 128.7, 130.7, 131.8, 131.9, 133.5, 138.9, 142.2, 1424,
146.1, 146.4, 151.7, 153.4, 153.8, 154.1, 154.3, 156.4, 156.9, 164.1, 189.8 ppm. Signals for some
carbon atoms are missing due to signal overlap with CeDe.
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(S,R.R)-S21

1H-NMR (600 MHz, CsDs): § = 0.80 (d, ] = 6.8 Hz, 3H), 1.08-1.12 (m, 7H), 1.19 (m, 5H), 1.20-1.35
(m, 42H), 1.37-1.52 (m, 13H), 1.52-1.60 (m, 4H), 1.63-1.76 (m, 11H), 2.33 (d, ] = 14.8 Hz, 1H),
2.72 (td, ] = 6.9, 2.8 Hz, 4H), 3.43 (dd, ] = 14.8, 6.1 Hz, 2H), 3.52 (t, ] = 6.4 Hz, 4H), 3.63-3.77 (m,
7H), 3.77-3.83 (m, 3H), 3.93 (dd, ] = 9.4, 6.5 Hz, 1H), 3.99 (dd, ] = 9.6, 5.4 Hz, 1H), 4.21 (dd, ] = 9.4,
4.6 Hz, 1H), 4.29 (p, ] = 6.7 Hz, 2H), 4.61-4.67 (m, 2H), 4.75-4.83 (m, 2H), 6.47 (d, ] = 7.4 Hz, 1H),
6.56 (d, ] = 7.8 Hz, 1H), 6.67 (d, ] = 8.1 Hz, 4H), 6.77-6.90 (m, 11H), 7.00 (dd, ] = 7.7, 0.9 Hz, 2H),
7.14 (d,] = 7.9 Hz, 1H), 7.43 (d,] = 7.7 Hz, 1H), 7.57-7.63 (m, 4H), 9.72 (s, 2H) ppm.

13C-NMR (151 MHz, C¢Dg): 6 = 15.1, 16.9, 18.1, 18.9, 26.0, 26.1, 26.1, 26.2, 26.6, 28.7, 29.0, 29.1,
29.2,29.3,294, 29.5, 295, 29.5, 29.6, 29.6, 29.7, 29.7, 29.7, 38.3, 39.6, 51.0, 67.9, 68.1, 68.1, 68.6,
71.5,71.9, 728, 76.3, 108.7, 108.9, 109.9, 114.5, 115.3, 115.4, 115.5, 115.6, 120.0, 120.8, 125.4,
125.7, 126.3, 126.6, 128.3, 130.3, 131.5, 131.6, 133.3, 138.4, 141.6, 142.0, 145.9, 146.0, 150.9,
153.0,153.3,153.7,153.9, 156.0, 156.5, 163.8, 189.4 ppm.

Signals for some carbon atoms are missing due to signal overlap with C¢De.

HRMS-ESI (ESI+): m/z calculated for C104H142N6012SNa* ([M+Na]*): 1723.0332, found 1723.0283.
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General procedure for the formation of (S,R,R)- and (R,R,R)-+n

N
O\/(/-ZF/S

Q CHSO
e <5 7 $0y
94 C
o__o ov(f\)vo CH212
H 1(©/ ° \©\WH <CH2)12

s21 o +n

A stock solution of motor S21 (1.0 mg, 0.60 umol, 1.0 eq.) in C¢Ds was lyophilized in a ]. Young
NMR tube. Then, PPh3z (0.6 mg, 2.4 mmol, 4.0 eq.) was added and the tube was put under high
vacuum for 16 h. After that, the solids were dissolved in dry (distilled from CaH;) and degassed
(three freeze-pump-thaw cycles) C¢D¢ or toluene-d8 (0.6 mL) inside a glovebox and activated
molecular sieves (3 A) were added. The sealed NMR tube was taken out of the glovebox and heated
to 60 °C for 7 d in an oil bath under exclusion of light. Subsequently, the molecular sieves were
removed inside a glovebox and the sample was used for further experiments without purification.
Since the system is dynamic, the formation of the bridged bis-macrocyclic £n is concentration
dependent. Increasing the concentration leads to formation of an insoluble polymer. The
conversion of S21 to +n was followed using 1H-NMR spectroscopy by observing the decrease of
the aldehyde signal (ca. 9.7 ppm) and increase of imine signals (ca. 8.1 ppm). Typically, bis-
macrocyclic #n forms in 90-95%.

Note that PPhs; does not engage in any kind of exchange reaction with the imines. Therefore, no
influence of PPh; on the relaxation rate of wound #n was observed.

Diastereomer (S,RR)-*n and its machine-like function was characterized and investigated by
HRMS, IMS, CD and NMR spectroscopy, SAXS, and computational studies. Our data supports that

the formation of oligomers under our experimental conditions is negligible.

HRMS-ESI (ESI+): m/z calculated for C104H143N2010S [M+H]+: 1613.0492, found: 1613.0484

18



Comparison of tH-NMR spectra of S21, equilibrated, illuminated, and partially relaxed £n

samples in C¢D¢ at 10 °C

(S,R,R)-S21 ﬁ

(S.R,R)-*n
365 nm (18 min) .

(S,R,R)-tn
60 °C (6 min)

(S,R,R)-tn h !I I
,_equilibrated '( L/\A
(R,R,R)-£n
, 365 nm (18 min)
(R,R,R)-£n ‘
, 60 °C (6 min) N
(R,R,R)-#n
equilibrated

J(RRR)S21 U

=
S

| T | T T T T T T T T T T T T T T
9 8 7 6 5 4 3 2 1
chemical shift (ppm)

Fig. 1| Comparison of 1H-NMR spectra of S21 and +n samples at different relaxation stages. CéDs, c =1 mM,

10 °C, 500 MHz.
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Supplementary Fig. 2 | Comparison of *H-NMR spectra of S21 and +n samples at different relaxation stages
from 5.2 to 2.2 ppm. Arrows indicate interconversion of key signals. CsDs, ¢ =1 mM, 10 °C, 500 MHz.
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2D NMR spectra of equilibrated (R,R,R)-+n sample

.

5.9 5.0
chemical shift (ppm)

4.5

Supplementary Fig. S3 | 'H-NMR spectrum of an equilibrated (R,R,R)-tn sample. Toluene-d8, ¢ =1 mM,

-40 °C, 500 MHz.
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Supplementary Fig. 4 | *H, 'H COSY NMR spectrum of an equilibrated (R,R,R)-+tn sample. Toluene-d8,

c=1mM, -40 °C, 500 MHz.
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chemical shift (ppm)

Supplementary Fig. 5 | *H, *H NOESY NMR spectrum of an equilibrated (R,R,R)-tn sample. Toluene-d8,
¢ =1 mM, -40 °C, 500 MHz.

NMR spectra of illuminated (R,R,R)-+n sample

LN

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 45 4.0 35 3.0 25 2.0 15 1.0

5.5 5.0
chemical shift (ppm)

Supplementary Fig. 6 | *H-NMR spectrum after illumination of (R,R,R)-tn. Toluene-d8, c = 1 mM, -40 °C, 500
MHz, Air = 365 nm (18 min).
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Supplementary Fig. 7 | *H, *H COSY NMR spectrum after illumination of (R,R,R)-tn. Toluene-d8, c = 1 mM,
-40 °C, 500 MHz, Air = 365 nm (18 min).
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Supplementary Fig. 8 | H, *H NOESY NMR spectrum after illumination of (R,R,R)-tn. Toluene-d8, c =1 mM,
-40 °C, 500 MHz, Air = 365 nm (18 min).
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NMR spectra of partially relaxed (R,R,R)-+n sample
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Supplementary Fig. 9 | *H-NMR spectrum of (R,R,R)-tn sample after 6 min at 60 °C. Toluene-d8, ¢ = 1 mM,

-40 °C, 500 MHz.
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Supplementary Fig. 10 | *H,*H COSY NMR spectrum of (R,R,R)-tn sample after 6 min at 60 °C.
¢ =1mM, -40 °C, 500 MHz.
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Supplementary Fig. 11 | *H,'H NOESY NMR spectrum of (R,R,R)-tn sample after 6 min at 60 °C.
¢ =1 mM, -40 °C, 500 MHz.
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Supplementary Tab. 1 | Chemical shifts of important proton signal of (R,R,R)-tn. Toluene-d8, c = 1 mM,
-40 °C, 500 MHz.

Protons Equilibrated llluminated Partially relaxed
a 0.82 0.87 0.82

b 4.33 4.34 4.34

c,d 2.39,3.51 2.44,3.55 2.40, 3.53

e’ 1.28, 1.50 1.43,1.59 1.08, 1.40

f,f 4.44,4.50, 4.82,4.91 4.53, 5.00 4.41,4.82
g,9’.h,h’ 3.56, 3.60, 3.69, 3.75, 3.85, 3.90 3.41,3.74,3.77, 4.16 3.52, 3.69, 3.72, 3.93
i’ 8.00, 8.02 7.92,7.98 8.00

iy 7.79 7.69,7.76 7.80

k, kK’ 3.61 3.49, 3.59 3.60

I 1.61 1.64 -

m 6.75 6.83 6.69
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NMR spectra of equilibrated (S,R,R)-+n sample
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Supplementary Fig. 12 | *H-NMR spectrum of an equilibrated (S,R,R)-tn sample. Toluene-d8, ¢ =1 mM,
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Supplementary Fig. 13 | 'H, *H COSY NMR spectrum of an equilibrated (S,R,R)-tn sample. Toluene-d8,c =1
mM, -40 °C, 500 MHz.
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Supplementary Fig. 14 | *H,*H NOESY NMR spectrum of an equilibrated (S,R,R)-tn sample. Toluene-d8,c =1
mM, —-40 °C, 500 MHz.

NMR spectra of illuminated (S,R,R)-+n sample
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Supplementary Fig. 15 | *H-NMR spectrum after illumination of (S,R,R)-tn. Toluene-d8, c = 1 mM, =40 °C, 500
MHz, Air = 365 nm (18 min).

28



I I

3
&
‘R
2
& b b AT R
chemical shift (ppm)

8.0 75 7.0 6.5 6.0 5.5 5.0 4.5 4.0
chemia| shift (ppm)

Supplementary Fig. 16 | *H, 'H COSY NMR spectrum after illumination of (S,R,R)-tn. Toluene-d8, ¢ = 1 mM,
-40 °C, 500 MHz, Air = 365 nm (18 min).
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Supplementary Fig. 17 | H, *H NOESY NMR spectrum after illumination of (S,R,R)-tn. Toluene-d8, ¢ = 1 mM,
-40 °C, 500 MHz, Lir = 365 nm (18 min).
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NMR spectra of partially relaxed (S,R,R)-n sample
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Supplementary Fig. 18 | tH-NMR spectrum of (S,R,R)-tn sample after 6 min at 60 °C. Toluene-d8, c = 1 mM,
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Supplementary Fig. 19 | *H,'H COSY NMR spectrum of (S,R,R)-tn sample after 6 min at 60 °C. Toluene-d8,
¢ =1mM, -40 °C, 500 MHz.
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Supplementary Fig. 20 | *H, *H NOESY NMR spectrum of (S,R,R)-tn sample after 6 min at 60 °C. Toluene-d8,
¢ =1 mM, -40 °C, 500 MHz.
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Supplementary Tab. 2 | Chemical shifts of important proton signal of (S,R,R)-tn. Toluene-d8, c = 1 mM,
-40 °C, 500 MHz.

Protons Equilibrated llluminated Partially relaxed
a 0.76, 0.81, 0.86 0.80 0.83

b 4.32 4.30 4.32

c.d 2.36, 3.50 2,45, 3.50 2.39,3.52

ee’ 1.35,1.43 1.25,1.31 1.21,1.41

f,f 4.46,4.87,4.93, 5.13 4.26, 4.55 4.24,4.86
g,9’.h,h’ 3.72,3.78,3.76, 4.13, 4.16 3.65, 3.74, 3.64, 3.97 3.59, 3.70, 3.56, 4.08
ii’ 8.02 7.98, 8.00 7.98, 8.03

iy 7.80 7.67,7.74 7.80, 7.83

k, k’ 3.47,3.61 3.59 3.53, 3.62

I 1.56, 1.62, 1.66 1.55 1.58

m 6.71,6.75 6.77 6.71
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Light-driven winding
General illumination conditions

Typically, a ]. Young NMR tube containing a 1 mM solution of equilibrated (S,RR) or (R R R)-%n in
0.6 mL C¢D¢ was illuminated with a lamp for TLC control (365 nm, 6 W) on a shaker plate for
18 min at 8 °C (in a walkable fridge) or room temperature. The distance between lamp and NMR
tube was kept constant throughout the experiment. To prevent any significant relaxation,
illuminated samples were cooled with a 10 °C acetone bath before the respective measurement.

Stability towards oxygen

Under a nitrogen atmosphere, a sample can be irradiated and relaxed at elevated temperatures
several times without noticeable fatigue. Note, that trace amounts of oxygen cannot be fully
avoided, which over time has a noticeable impact on the highly dilute samples. First, residual PPh3
acts as an oxygen scavenger and is oxidized to OPPhs, which is then followed by photo-
decomposition of (S,RR) or (RRR)-*n upon irradiation with UV light of 365 nm. A similar
behavior was observed for a comparable system by Giuseppone and co-workers 6.

Control experiments

To check if bis-macrocyclization of the motor is necessary for the winding mechanism, a 1 mM
solution of bis-azide (S,R R)-S21 in C¢D¢ was illuminated for 18 min with UV light of 365 nm. No
noticeable change in the 'H-NMR spectrum was observed. Furthermore, we investigated the
influence of different macrocyclization stages of (S,R,R)-S21 on the winding process. Therefore,
we illuminated (Air = 365 nm, 18 min) a sample that was prepared according to the general
procedure for imine macrocyclization after a reaction time of 6.5 h (7% aldehyde conversion) and
27 h (50% aldehyde conversion). This lead to the formation of (S,R,R)-+3 in 0% and 10% yield,
respectively (Supplementary Fig. 21).
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Supplementary Fig. 21 | *H-NMR spectra after illumination of partially macrocyclized bis-azide (S,R,R)-S21.
After a reaction time of 6.5 h (7% aldehyde conversion, bottom) and 27 h (50% aldehyde conversion, top), (S,R,R)-
+3 forms in 0% (bottom) and 10% (top), respectively upon UV light illumination. CsDs, ¢ =1 mM, 10 °C, 500 MHz,
Airr = 365 nm (18 min).

We also prepared the n-butyl bis-imine of compound (S,R R)-S21 in CsDs (0.6 mL, 1 mM) by in-situ
condensation with n-butyl imine (2 eq.). Almost quantitative conversion was observed after three
d at 60 °C in presence of 3 A molecular sieves. Also in this case, no change was observed after
illumination with UV light of 365 nm for 18 min (Supplementary Fig. 22).
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Supplementary Fig. 22 | 'H-NMR spectra before and after illumination of (S,R,R)-S21 bis-n-butyl amine. No
winding of the motor was observed. CsDs, ¢ = 1 mM, 10 °C, 500 MHz, Air = 365 nm (18 min).
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CD Spectroscopy

In a cuvette, 30 pL of a solution of (R,R,R)- or (S,R,R)-*n (1 mM in Ce¢Ds) was diluted with degassed
and dry THF to a total volume of 3 mL (c = 10 uM ). Benzene absorbs in the deep UV region and
forces a cut-off at 270 nm. Spectra of illuminated samples were either recorded after in-situ
illumination with a TLC lamp at 365 nm for 5 min (the distance between the cuvette and the lamp
was ~2 cm) or by diluting a pre-illuminated sample at PSS with THF. Partial relaxation of the
irradiated sample was achieved by heating the sample to 60 °C for 10 min. Subsequent in-situ
illumination showed that the process is reversible (Figs. 23 and24).
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Supplementary Fig. 23 | CD spectra of (R,R,R)-xn. Fully relaxed (brown, solid line), illuminated (blue, solid line),
relaxed at 60 °C for 10 min (brown, dotted line), and illuminated (blue, dotted line). THF, c =1 - 10°°M, 0 °C, Airr =
365 nm (18 min).
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Supplementary Fig. 24 | CD spectra of (S,R,R)-xn. Fully relaxed (brown, solid line), illuminated (blue, solid line),
relaxed at 60 °C for 10 min (brown, dotted line), and illuminated (blue, dotted line). THF, ¢ = 1-107°M, 0 °C, Air =
365 nm (18 min).
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CD spectra for fully protected motors (R,RR)-S16 and (S,R R)-S16 were recorded as reference
spectra (Supplementary Fig. 25).
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Supplementary Fig. 25 | CD spectra of (R,R,R)-S16 and (S,R,R)-S16. THF,c=1-10"°M, 0 °C.
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NMR Experiments and Kinetic Analysis

General

All experiments were conducted on a Varian AVIII 500 NMR spectrometer that was pre-cooled or
-warmed to the proper temperature. (S,R R)-n samples were typically equilibrated for 5 min
inside the instrument until the lock signal reached a constant value. All samples were prepared
according to the general procedure and were usually equilibrated at 60 °C. The experimental data
were subsequently fitted using COPASI 4.297. In order to obtain a fit that could give a realistic
approximation of the irreversible and reversible reactions involved in each experiment, we
simulated a reaction compartment of 0.6 mL (to match the volume of the solution of a typical NMR
experiment) with concentration of the species involved of 1 mM. In all cases, the time unit used
was minutes. The default Levenberg-Marquardt algorithm with a tolerance of 1-10-6 implemented
in COPASI was used. The initial guess for the kinetic parameter estimation was to consider all
species in equilibrium with one another. After every fitting run, visual inspection of the error
associated to each kinetic constant provided indication of the relevance of a certain reaction.
Kinetic constants with absolute values lower than 10-6 min-! were approximated to 0 and the
respective reaction deleted in the next iteration. In the following section, the fitting of the
experimental values, along with the kinetic model and the associated constants will be provided.
For clarity, only a representative example of each dataset is presented. For all the output files of
our kinetic simulations see Supplementary Data Set 1.
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Relaxation kinetics of a (S,R,R)-+n sample at 10 °C without nucleophile.
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Supplementary Fig. 26 | Relaxation of a (S,R,R)-tn sample at 10 °C without nucleophile. Kinetic trace of a
representative example with fit (top), NMR stack (middle) and proposed mechanism with average rate constants
(bottom). CsDs, ¢ = 1 mM, 500 MHz.
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Relaxation kinetics of a (S,R,R)-+n sample at 10 °C with 20 mol% n-butyl amine

The amine (as a stock solution in deuterated benzene) was added inside a glovebox to a pre-
illuminated (S,R R)-+n sample (according to the general procedure). The same samples as for the
relaxation experiment at 10 °C without nucleophile was used.
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Supplementary Fig. 27 | Relaxation of a (S,R,R)-tn sample at 10 °C with 20 mol% n-butyl amine. Kinetic trace
of a representative example with fit (top), NMR stack (middle) and proposed mechanism with average rate constants
(bottom). CeDs, ¢ = 1 mM, 500 MHz.
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Relaxation kinetics of a (S,R,R)-+n sample at 60 °C without nucleophile
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Supplementary Fig. 28 | Relaxation of a (S,R,R)-tn sample at 60 °C without nucleophile. Kinetic trace of a
representative example with fit (top), NMR stack (middle) and proposed mechanism with average rate constants
(bottom). CsDs, ¢ = 1 mM, 500 MHz.
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Relaxation kinetics of a (S,R,R)-+n sample at 40 °C without nucleophile
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Supplementary Fig. 29 | Relaxation of a (S,R,R)-tn sample at 40 °C without nucleophile. Kinetic trace of a
representative example with fit (top), NMR stack (middle) and proposed mechanism with average rate constants
(bottom). CsDs, ¢ = 1 mM, 500 MHz.
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Supplementary Fig. 30 | 'H-NMR spectra showing the relaxation of a (S,R,R)-zn sample at 40 °C without
nucleophile over one week. CsDs, ¢ = 1 mM, 500 MHz.
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Relaxed (S,R,R)-in sample at 10-60 °C without nucleophile and at 40 °C with 20 mol% n-
butyl amine
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Supplementary Fig. 31 | *H-NMR spectra of an equilibrated (S,R,R)-tn samples. Without nucleophile at 10—
60 °C (top) and with 20 mol% n-butyl amine at 40 °C (bottom). CsDs, ¢ = 1 mM, 500 MHz.
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Relaxation kinetics of a (S,R,R)-+n sample at 10-40 °C without nucleophile
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Supplementary Fig. 32 | Temperature dependent relaxation of (S,R,R)-+3 without nucleophile. The first order
decay of (S,R,R)-+3 accelerates by a factor of ~4 per 10 °C. CeDs, ¢ =1 mM, 500 MHz.
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Relaxation of a (S,R,R)-+n sample in presence of water

Water (as a stock solution in deuterated THF) was added to a relaxed (S,R R)-+n sample under an
inert atmosphere. The same sample was used for all experiments. Water does not significantly
increase the decay rate of (S,RR)-+3 (k(+3,+2) = 0.2-0.3:10-3 min-1) at 10 °C. However, an
illuminated sample (according to the general procedure) containing 20 eq. of water relaxed to
isomers (S,RR)--1, 0, +1, and +2 at room temperature after 3 d. A similar sample without
nucleophile forms almost exclusively (S,R,R)-+2 under the same conditions.
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Supplementary Fig. 33 | Decay rate of (S,R,R)-+3 in presence of water. The amount of water has no significant
effect on the decay rate of (S,R,R)-+3. The first order rate constant k (+3,+2) = 0.2-0.3-102 min™! was determined
by initial slope approximation. CeDs, ¢ =1 mM, 10 °C, 500 MHz.
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Supplementary Fig. 34 | *H-NMR spectra of irradiated (S,R,R)-+n samples at room temperature after 72 h

with and without water. With 20 eq. water (top) and without external nucleophile (bottom). CsDe, ¢ = 1 mM, 500
MHz.

46



Irradiation Kinetics of a (S,R,R)-+n sample at 10 °C without nucleophile

A relaxed (S,R,R)-+n was illuminated at 8 °C inside a walkable fridge according to the general
procedure. After each irradiation step, the sample was cooled to 10 °C with an acetone bath to
prevent significant relaxation during transportation to the NMR instrument. Further experimental

details for the quantum yield determination are given at page 56 of the Supplementary
Information.
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Supplementary Fig. 35 | Irradiation kinetics of a relaxed (S,R,R)-tn sample. Kinetic trace of a representative

example with fit (top), NMR stack (middle) and proposed mechanism with average quantum yields (bottom).CeDs,
¢=1mM, 10 °C, 500 MHz.
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Mass Spectrometry

Ion mobility (IM) measurements were performed using a custom drift-tube instrumentation
hosted in the Fritz Haber Institute of the Max Planck Society (Berlin, Germany) and adapted from
a previous design8. The instrument is designed around a nanoelectrospray ionization (nESI)
source interfaced with a succession of radially-confining entrance funnel, drift tube and exit
funnel. This ensemble is prolonged by a quadrupole mass analyzer under high vacuum and ended
by an electron multiplier detector (ETP lon Detect) for ion counting. In practice, samples were
diluted to 10 uM in acetonitrile and nESI was used to generate ions using a needle voltage of 0.57
kV and a backing pressure of 0.8 bar (N2). The ~160 cm long drift tube was filled with helium
buffer gas at a pressure of 4 mbar and subjected to a 2 kV direct current (DC) electric field for
mobility separation. lons were filtered for m/z = 1612 Da, which correspond to the singly-
protonated molecular ion [M+H]-~.

Experimental collision cross sections (PTCCSue) 2 were determined from the reduced mobility
coefficient Ky using Eq. 19 after measuring the arrival time distributions (ATD) for DC voltages
ranging from 1.3 kV to 2.3 kV. The contribution of each peak was extracted by fitting the ATD
using multiple Gaussian functions (OriginPro 2020, OriginLab).

K—3 q(Zn)1/21
716 Ny \ukzT) 0

where q is the ion charge, Nyis the standard gas number density, u is the reduced mass of the ion-
gas colliding partners, kg is the Boltzmann constant and 7 is the temperature.

Theoretical collision cross section (TMCCS) were calculated using the trajectory method (TM)
implemented in the MobCal software suite 10 as the average of 500 individual candidate structures
randomly picked along the dynamics (Supplementary Data Set 2). The CCS values for all
experimentally observed topological isomers of (S,RR)-n amount to: ™CCSy. (-1) = 344 A?,
T™™MCCShe (0) = 352 A2, ™MCCSye (+1) = 336 A2, ™CCSke (+2) = 328 A%, ™CCSye (+3) = 348 A2,

Supplementary Fig. 36a shows the evolution of the ATD for increasing durations of irradiation at
Airr = 365 nm. The transition is characterized by a progressive narrowing of the distribution
toward the emergence of a single peak associated with +3 after 15 min. Supplementary Fig. 36b
shows the evolution of the ATD for increasing injection voltages applied on the irradiated sample.
The initial single peak corresponding to +3 at low voltage is progressively extinguished in favor
of three distinct contributions corresponding to -1, 0 and +1 at high voltages. This latter
distribution agrees with the distribution of the non-irradiated sample, thereby validating the
reversibility of the reaction pathway.
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Supplementary Fig. 36 | ATDs of (S,R,R)-tn recorded on the drift tube instrumentation. a, ATDs for increasing
durations of irradiation at Air = 375 nm and b, increasing injection voltages from 20 V to 30 V applied on the irradiated
sample.
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Computational Analysis

The full thermal rotational path of the motor was probed at the wB97X-D/def2-TZVP//wB97X-
D/def2-SVP level of theory as implemented in the Gaussian 16, Version B.01 software package!®.
The values of the Gibbs free energies (in kcal/mol) of each species are given in Supplementary Fig.
37. Two different pathways for the thermal helix inversion (THI) were considered (populating
either intermediate 2 or 4). To have a better overview of the unidirectionality of the motor, the
thermal E-Z barrier (TEZ) was also computed using the broken-symmetry approach at the same
level of theory used for calculating the thermal helix inversion step. A difference of more than 6
kcal/mol between the THI and TEZ barriers confirms the unidirectionality of the thermal step of
the motor rotation.

The structures of the macrocyclic compounds in different topological isomers were modelled in
the respective stable states of the motor core. All the structures were pre-screened using the
CREST driver in the xTB software!2-1¢ using the GFN force field!s. In this way, the most stable
conformers for each structure were picked via the default series of metadynamics and dynamics
runs implemented in the driver. The conformers obtained following this procedure were re-
optimized at the GFN2-xTB level with very tight optimization criteria. The energy was then
computed with a single-point calculation at the M06-2x/def2-SVP level, as implemented in the
Gaussian 16, Version B.01 software packagell. The energy profile of the isomerization process
afforded a stepwise increase of the overall energy with a global minimum at the topological isomer
0. The experimentally observed energy differences between the states amount to
AGexp (+3,+2) 2 2.0 kcal/mol, AGexp (+2,+1) 2 2.0 kcal/mol, AGexp (+1,0) = 0.24 kcal/mol and
AGexp (-1,0) = 0.39 kcal/mol by assuming that 3% of #n cannot be reliably detected by tH-NMR
spectroscopy. These values are comparable with the computed electronic energy differences
presented in Fig. 5b of the main text.

The CD spectra of (S,R,R)-+n with progressive number of turns was calculated at the sTDA-xTB
level on the optimized structures. The results for the motor core with S-chirality are in
Supplementary Fig. 38. The results furnish a qualitative flavor of the CD signs associated to
metastable and stable states. From the computations, all the stable states show a positive Cotton
effect in the most red-shifted band. The metastable states possess opposite helicity and
consequently, opposite sign. Each metastable state was optimized following the same procedure
previously discussed for the stable states. Every metastable state generated from a certain stable
state was dubbed with an additional “.5” in the name (e.g. +1.5 is generated by photochemical
isomerization of +1).
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Supplementary Fig. 37 | Full thermal isomerization pathways of the motor core at the wB97X-D/def2-
TZVP//wB97X-D/def2-SVP level.
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Supplementary Fig. 38 | Simulated CD spectra of the core of the different motors computed at the TDA(30
states)-wB97X-D/def2-SVP level.

The dynamic behavior of the different topological isomer of the protonated macrocycle in vacuum
were also computed, to provide a theoretical interpretation for the IM-MS results. The different
stable isomers were optimized with the xTB software!2-14 using the GFN force field!5. A molecular
dynamics simulation of 1 ns was then run using the default values recommended from the
developers (298.15 K, Berendsen thermostat, SHAKE algorithm for all bonds, hydrogen mass = 4,
timestep of 2 fs). 500 geometries were then sampled randomly and used to calculate the collision
cross-section values. Cartesian coordinates of all structures can be found in Supplementary Data

Set 2.
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SAXS Measurements
General

SAXS measurements were performed at the Multipurpose X-ray Instrument for Nanostructure
Analysis (MINA) instrument at the University of Groningen. The instrument is built on a Cu
rotating anode high brilliance X-ray source, providing X-ray photons with wavelength of A = 0.154
nm. The SAXS patterns were recorded using a 2D Vantec500 detector placed 24 cm away from the
sample. SAXS 1D profiles were obtained by radially averaging the scattered intensity around the
origin of the image (defined by the direct beam position on the detector) using MATLAB. Standard
corrections for the detector distortion and sensitivity were applied. The scattering from the buffer
solution was subtracted to obtain the neat SAXS signal of the sample. The 1D SAXS profiles are
plotted against the modulus of the scattering vector defined as q = 41 sin6/A, where 6 is half of
the scattering angle. The probed scattering angle range was calibrated using known position of
diffraction peaks from a standard Silver Behenate sample (NIST).

Sample preparation

A relaxed (SR R)-+n sample (1 mM solution in toluene-d8) was contained in a glass capillary of
1.5 mm diameter (wall size of 0.01 mm), flame-sealed to avoid solvent evaporation and placed in
the X-ray vacuum chamber to remove air absorption and scattering. The capillary temperature
was stabilized at 23 °C. After the measurement, the same solution was illuminated inside the
capillary with UV light (Air = 365 nm, 18 min) and immediately measured. To probe reversible
conformation change of the molecule, the sample was allowed to relax at 60 °C for 16 h and then
measured. We also measured a sample that was pre-illuminated according to the general
procedure, which lead to similar results.

(S,R,R)-tn (dark)
(S,R,R)-xn (dark) fit
1y (S,R,R)-tn (irradiated)

Ll e ——— (S,R,R)-n (irradiated) fit
1 e (S,R,R)-£n (60 °C)
\\ (S,R,R)-+n (60 °C) fit

Intensity (q) (a.u.)

g (1/nm)

Supplementary Fig. 39 | Scattering intensities of a (S,R,R)-tn sample. At equilibrium (brown circles), after
illumination with 365 nm for 18 min (blue squares), and after relaxation at 60 °C for 16 h (brown triangles). 23 °C,
¢ =1 mM, toluene-ds.
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Data analysis
As the shape of the nanoratchet in solution is not the one of a simple object (sphere, cylinder, etc.),

SAXS profiles were further analyzed to estimate the dimensions of the nanoobject in solution
using a model-independent approach. In this case, a generalized Guinier equation was used.

— RZ 2
I(q):{ 1 fora=0 }Aexp< aqa>

anq~* fora # 0

where « is the shape factor (0 for sphere, 1 for rod, and 3 for disk), R, is the radius of gyration
and A is a scaling pre-factor that depends on quantities specific of the sample (volume, contrast,
and concentration) and specific of the experimental configuration (photon flux, detector
sensitivity, and solid angle defined by the detector). The advantage of this approach is that no a-
priori assumption is made on the shape of the nanoobject in solution, that can be inferred by the
fitted value of a.

The best fitting curves obtained by this method are in Fig. 2 of the main manuscript and the fitting

results are summarized in Supplementary Tab. 3. Data fitting was performed using analytical
models via the SASFIT program?e.

Supplementary Tab. 3 | SAXS profile fitting results.

A a R, (nm)
Equilibrated 3.9 0.19 0.86
llluminated 2.1 0.85 0.88
60 °C (16 h) 3.8 0.15 0.79

Our SAXS analysis clearly suggests that the pristine molecules in solution adopt a close-to-
spheroidal configuration as a = 0.19 is close to 0 which is expected for a perfect sphere. On the
contrary, winding causes a clear shape change towards an elongated-like conformation as a = 0.85
is close to 1 which is expected for a perfect cylinder. In this case, an estimation of the cross-
sectional radius of gyration for a rod-like conformation (or of the short semi-axis for an ellipsoidal
conformation) can be obtained by the cross-sectional Guinier analysis??, i.e. fit of the linear partin
the plot log(ql(q)) vs q? in the range of points that satisfy the relationship gR, < 1. The value of
the slope is related to the cross-sectional radius as slope = R?/2.For the irradiated sample (see
Supplementary Fig. 40), we get an estimated R.~0.7 nm.

The larger dimension of the elongated nanoobject can be estimated assuming either an ellipsoidal
2 2 2 2

shape (R2 = a? + %, with a > b being the semi-axes) or a cylindrical shape (R2 = R;‘: + ]1“—2). We

thus estimate a~1.7 nm and L~2.5 nm. These values should be considered with care as they are

based on the assumption of a well-defined geometrical shape, but can be nevertheless considered
as the lower and an upper limits of the larger axis of the wound nanoobject in solution.
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Supplementary Fig. 40 | Guinier plot for the irradiated sample. Red line is the linear fit that gives a slope of
-0.25.
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Quantum Yield Determination

The quantum yields for every single winding step of molecular machine (S,RR)-#n were
determined by NMR spectroscopy with ortho-nitrobenzaldehyde (NBA) as an actinometer,
following a literature procedure from Ji et al.18 The following equation was used for the fit:

d[NBA
_% = ®ppalo(1 - 10‘5N3Ab[NBA])

The molar extinction coefficient of NBA is exga (365nm) = 265 M-! cm-! and its quantum yield is
®nga = 0.518. The light intensity in our irradiation setup was measured at 365 nm and corresponds
to a molar photon flux Ip (365nm) = 4.252 mM min-!; the path length corresponds tob = 0.027 cm
(Supplementary Fig. 41 left).

The molar extinction coefficient € was determined for the motor core (S,R,R)-S16 (Supplementary
Fig. 41 right) and corresponds to ¢ (365nm)=3891 M-1cm-!. Based on UV/vis and CD
spectroscopic experiments, we can assume that ¢ (365nm) is similar for all topological isomers.
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Supplementary Fig. 41 | Determination of the light intensitiy (lo), path length (b) and molar extinction
coefficient (g) at 365 nm. The photochemical conversion rates of ortho-nitrobenzaldehyde to ortho-nitrosobenzoic

acid at various concentrations give lo and b (left), whereas € was determined by measuring the absorbance of motor
core (S,R,R)-S16 at different concentrations (right).

The quantum yield ® was then determined by following the temporal change of a fully relaxed
sample of (S,R,R)-+n upon illumination with 365 nm by NMR spectroscopy (Supplementary Fig.
35). The kinetic profile was fitted with COPASI 4.297 by applying the following equation:

d[+n]
dt

— 4)10(1 _ 10—£b[in])

Strictly speaking, the quantum yield values provided are apparent quantum yields connecting a
stable state *n of the motor with the successive having an increased crossing number, +n+1. The
metastable form connecting these two states (and the associated ultrafast thermal reaction that
populates *n+1) is neglected because it is impossible to observe under our experimental
conditions.
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Energetic Considerations of the Winding Mechanism

Our experiments show that AMM #n works by an energy ratchet mechanism and the winding
process is driven by light energy (only the (S,R,R) isomer is considered in this discussion).

Experimentally, the Gibbs free energy (G) of — and thus strain in - the system increases with
increasing amount of crossings (N), whereas the state with zero crossings (N = 0) has the lowest
energy. At thermal equilibrium, three states are populated, namely -1, 0 and +1. States with N >
+1or N < —1 were not observed.

The system can thermally equilibrate either by intermolecular nucleophile-imine exchange or
intramolecular, thermal double bond isomerization. While the rate constant (k) of the former is
independent of N, the rate constant of the latter decreases with increasing N.

Light-driven winding increases N stepwise by +1 and occurs by a photochemical E/Z
isomerization, forming a metastable isomer (experimentally not observed) that relaxes by a fast
thermal helix inversion (THI). The quantum yield (®) of the double bond isomerization decreases
with increasing N and is therefore dependent on strain in the system. Experimentally, the system
reaches up to +3 crossings.

With these observations in mind, we can derive the conditions which limit the number of crossings
in our light-driven molecular machine (assuming that no competing nucleophile is present),
considering a simple model for our nanoratchet (Supplementary Fig. 42).
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Supplementary Fig. 42 | Schematic representation describing the energetics of the winding mechanism. 6,
Y and ¢ are transition constants; horizontal lines represent qualitative energy levels of different winding states.

For a generic molecular motor to operate, an equilibrium between its states N (a stable state that
was subjected to N turns), N + 1,, (a metastable state that was subjected to N+1 turns) and N +
1, (a stable state that was subjected to N+1 turns) must be established, where ultimately the
probabilities to find the system in a certain stable state will be regulated by the Boltzmann
equation:

GNg—GN+1g
(m) _ (™)
Pn,

Pn+1, and py_ are the steady-state levels for N + 15 and N, Gy, and Gy, are the free energies of
N + 1 and N, kg is Boltzmann’s constant and T is the temperature in Kelvin. This scenario can
be described in more detail by considering the equilibria involving these three species on the same
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potential energy surface and the possibility to populate the respective excited states of species N
and N + 1,,, namely N;" and N + 1,,". The diabatic transition from ground to the excited state is
regulated by the Bose-Einstein equations for absorption (transition constant 8), stimulated and
spontaneous emission (transition constant ). It is known that for Feringa-type molecular
motors the population of the productive excited state involved in the isomerization leads to the
(almost barrierless) formation of a so-called dark-state M*2021, When an equilibrium is reached
between the different species and if we consider the two surfaces separated, the ground state will
have:

P (GNS_GN+1m> » (GN+1m_GN+1S)
(M) —e kgT and (N_+15) =e kgT

DPNg PN+1py

while at the excited state:

(pi) -
Dn;

The population of M* leads to the non-adiabatic formation2021 of Ng and N + 1,, with transition
constants ¢ and ¢,,, given the approximation that the directionality of the motion at the excited
state does not depend on the state initially populated, but only by the characteristics of M*1.

<GN;<—GM*> (GN_'_I;ﬁn—GM*)
*
kT and ( Pm ) =e kT

DN+1;

Given these premises, we can for example consider that at the stationary state the probability to
photochemically populate the state N + 1,, starting from N via M* will be the product of the
probabilities associated with each step involving these species!!:

pNSes ) pN;kN;‘—>M* “Pm* Om

th —
Pn: s

NgoN+1p =

— . p’hv
= DN, " P'NgoN+1,,

In this way, we can consider that at the stationary state, the sum of probabilities that lead from N
and N + 1 should equal the sum of the ones that form N + 1, from Ny. Thus:

hv . .
PN oN+ 1, " PN+ 1oN+1g T PugoN+1, - PNt oN+1

hv . .
N1, -N, 7 PNt1gon+1, T P ong © Purrgon+,

1=

which can be rewritten as:

rhy
1= Py, - P Ng—N+1y, PN+1,,,’\"«N+1,,,—>N+1S + pNSkNS—>N+1m ) pN+1mkN+1m—>N+15

. p’hv . .
PN+1y, " P N+1,;,-Ng pN+1skN+1s—>N+1m + pN+1mkN+1m—>Ns pN+1skN+1s—>N+1m
and simplified to:

. rhv
PN EN+ 1 oN+15 * (PN oN+ 1, T ANGoN+1,,)

hv

1=
!
PN+1SkN+1S—>N+1m - (P N+1,-N; T kN+1m—>NS)

finally obtaining:

I'The excited state vibrationally coherent population of conical intersections is deliberately omitted in this
treatment.

' We will not consider here the possibility of an up-hill population of N + 1,,," (or N*) from M* and
subsequent light emission to afford N + 1,, (or Ny).
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rhy
<PN+1S> _ kNt1gone1, (PINGoN+1, T RNGN+L,)

- Thv
pNS kN+1s_)N+1m (P N+1,—Ng + kN+1m—>NS)

rhv rhv .
Thus, when ky_n+1,, < P'Ni-N+1,, and kny1, N, K P'ngg, N, we have:

G -G 'hv
<pN+1s> _ e(w) P Ng—>N+1,,

kpT
Plhv
PN N+1;,-Ng

We can simplify this equation by assuming that the ratio of the photochemical probabilities is the
photostationary state (PSS)22:

rhv

P NgoN+1y, CDNS—>N+1m€NS
Thv -

PNS 1, oN,  PN1,-N EN+1,

thus:

GN41—G
<PN+1S>_6(M) ONoN+1,EN;  EN+1oN+1,  PNoN+1, EN,

kT — .
PNy ‘DN+1m—>Ns€N+1m kN+1s—>N+1m ‘DN+1m—»NSSN+1m

®y__N+1,, describes the quantum yield of the Ny — N + 1, process starting from N upon light
absorption and incorporates both the Bose-Einstein terms and the non-adiabatic terms. We can
also explicitly consider the probability of the diabatic transition as proportional to the
absorptivity of N (&).

This equation can be zeroed in the following extreme cases, consequently impeding winding and
thus the population of N + 15:

1. Gny1,, < Gni1,, hence the metastable state ensuing from the photochemical step (N +
1,,) is more stable than the next “stable” state (N + 1) that is generated from the thermal
helix inversion (THI) step and/or kni1,-N+1,, > kn+1,,-N+1,, hence further winding is
kinetically prevented;

2. Oy N1, K Dnyq,oN, given similar molar absorptivities & and &y, hence the
photochemical population of N + 1,,, will not be feasible;

3. & K gy at a given wavelength of irradiation, preventing the excitation of Ny and the
formation of N + 1,,.

Il Conditions typical of a photochemically-fueled motor with an E/Z barrier that prevents the thermal
population of N + 1,, from Ny,
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Spectra Appendix

1H and 13C NMR spectra for compound S2
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1H and 13C NMR spectra for compound S3
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1H and 13C NMR spectra for compound S5
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1H and 13C NMR spectra for compound S10
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1H NMR spectrum for compound $13
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1H NMR spectrum for compound (R,R,R)-S15
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1H,13C HSQC NMR spectrum for compound (R,R,R)-S16
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1H,13C HSQC NMR spectrum for compound (S,R,R)-S16
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1H and 13C NMR spectra for compound (R,R,R)-S17
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1H and 13C NMR spectrum for compound (S,R,R)-S17
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1H and 13C NMR spectra for compound (R,R,R)-S19
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1H,'H COSY NMR spectrum for compound (R,R,R)-S19
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1H and 13C NMR spectrum for compound (S,R,R)-S19
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1H,'H COSY NMR spectrum for compound (S,R,R)-S19
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1H and 13C NMR spectra for compound (R,R,R)-S20
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1H,'H COSY NMR spectrum for compound (R,R,R)-S20
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1H and 13C NMR spectra for compound (S,R,R)-S20
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1H,'H COSY NMR spectrum for compound (S,R,R)-S20
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1H and 13C NMR spectra for compound (R,R,R)-S21
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1H,'H COSY NMR spectrum for compound (R,R,R)-S21
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1H and 13C NMR spectra for compound (S,R,R)-S21
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1H,'H COSY NMR spectrum for compound (S,R,R)-S21
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High-resolution ESI+ mass spectra of equilibrated (S,R,R)-+n sample
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ESI+ mass spectra of equilibrated and illuminated (S,R,R)-+n sample
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