Supplementary Information

Decline in mast cell density during diffuse alveolar damage in idiopathic pulmonary fibrosis

Johanna Salonen^{*a, b} (johanna.salonen@oulu.fi), Mervi Kreus^{a, b}, Siri Lehtonen^{b, c}, Hannu Vähänikkilä^d, Minna Purokivi^e, Riitta Kaarteenaho^{a, b}

^a Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, Oulu, Finland

^b Medical Research Center (MRC) Oulu, Oulu University Hospital, Oulu, Finland

^c Department of Obstetrics and Gynecology, Oulu University Hospital and PEDEGO Research Unit, University of Oulu, Oulu Finland

^d Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland

^e The Center of Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland.

*Corresponding Author

Study	Material	Study subjects	Staining technique for MCs	Findings
Hunt et al 1992	Open lung biopsy (IPF) Autopsy lung specimen (control)	15 idiopathic pulmonary fibrosis (IPF) 6 normal controls	MC tryptase	 Higher number of MCs in IPF compared with controls (counted areas were directly adjacent to the lumen of bronchioles). Mast cells were detected particularly in the areas of dense fibrosis. Altered appearance of mast cells in IPF (irregular surfaces and degranulation).
Pesci et al 1993	Transbronchial biopsies	 9 cryptogenic fibrosing alveolitis 16 sarcoidosis 15 farmer's lung disease 6 idiopathic BOOP 3 histiocytosis X 7 control subjects (non-diseased area from lung cancer patients) 	Toluidine blue	MC counts were higher in fibrotic lung disorders compared with control group. The number of mast cells was positively correlated with the degree of fibrosis
Inoue et al 1996	Thoracoscopic biopsies Transbronchial biopsies Autopsy specimens BAL Tissue from lung allograft donors Cultured human MC and human liver adenocarcinoma cell lines	21 IPF 23 chronic beryllium disease (CBD) 8 beryllium sensitized subjects without ILD 10 sarcoidosis patients (Sar) 18 normal controls	MC tryptase	MCs were found throughout the interstitium in IPF The number of MCs was higher in ILD patients compared with controls, and higher in IPF than in Sar or CBD Anti-basic fibroblast growth factor (anti-bFGF) bound to MCs in the lung interstitium MCs containing bFGF accumulate in the areas of extracellular matrix deposition
Inoue et al 2002	Open lung biopsies Fibrotic lung tissue from ILD patients having undergone transplantation Autopsy specimens	14 IPF9 lymphangioleiomyomatosis (LAM)10 controls	MC tryptase	Higher number of basic fibroblast growth factor (bFGF) containing MCs in IPF and LAM compared with controls. Association of MCs with a high degree of fibrosis in IPF and LAM

TABLE 1. Studies on mast cells in patients with idiopathic pulmonary fibrosis (IPF) compared with other interstitial lung diseases (ILD) or healthy controls.

Hirata et al	Snap-frozen specimens:	7 usual interstitial pneumonia (UIP)	Both MC chymase	The number of MCs was higher in idiopathic interstitial	
2007	Video-assisted	4 other ILD	and MC tryptase	pneumonias than in control specimens.	
	thoracoscopic biopsies	8 normal controls		The chymase-positive mast cells of ILD patients' lung	
	from lungs			tissue were related to an increase in interleukin-4-	
	One autopsy lung tissue			positive cells and an accumulation of smooth muscle	
	specimen			cells and myofibroblasts	
Andersson et	Lung tissue specimens	5 Cystic fibrosis	MC tryptase and	MC density was increased in fibrotic areas of alveolar	
al 2011	collected in the	7 IPF	chymase	parenchyma in IPF	
	association with lung	8 controls (patients having		Density and percentage of MCTC correlated positively	
	transplantation or from	undergone lung surgery for		with the degree of fibrosis	
	open lung biopsy	suspected cancer)		Increased density of MCTCs as well as MC expression of	
				TGF- β correlated negatively with patient lung function	
Cha et al	Lung tissue	29 IPF	MC chymase	A higher density of MCs in IPF compared with cHP, SSc-	
2012		16 chronic hypersensitivity		ILD or control.	
		pneumonia (cHP)		IPF patients with high MC density had a slower rate of	
		9 systemic scleroderma-associated		decline in forced vital capacity (FVC) than other ILD	
		ILD (SSc-ILD)		patients or controls.	
		10 normal controls			
Veerappan et	Animal model: Bleomycin	IPF (BAL and biopsies)	Toluidine blue or	MC-deficient mice were protected from bleomycin	
al 2013	induced fibrosis in mice	Normal controls (BAL and biopsies,	glycoprotein avidin	induced fibrosis	
	Human fibroblasts	surgical waste material)		Re-introduction of MCs to MC-deficient mice led to	
	extracted from surgical			pulmonary fibrosis	
	lung biopsy and			Both human and rat lung fibroblasts expressed	
	BAL material			histamine H1 and angiotensin II AT1 receptors	
				Histamine and renin were fibrogenic in an <i>in vitro</i> model	
Wygrecka et	Lung tissue specimens	IPF (40 BAL and 24 lung tissue)	MC tryptase	Elevated number of MCs in IPF compared with control	
al 2013	from resected lungs of	Normal controls (20 BAL and 10 non-		subjects.	
	transplanted IPF patients	used donor lungs)		The majority of MCs in IPF lungs were activated.	
	Bronchoalveolar lavage			HLFs induced MC activation and proliferation in vitro.	
	fluid (BAL)			IPF patients' HLFs exhibited a higher growth rate	
	In vitro cell cultures of			compared with controls	
	human lung fibroblasts			Tryptase stimulated HLF growth and promoted	
	(HLF) and MCs			extracellular matrix production in vitro.	

Shimbori et al	Lung tissue	IPF	Toluidine blue	MC number was increased in IPF	
2019	Animal model: TGF-β1 or	Normal lung tissue from patients	Immunofluorescence	MC number correlated inversely with lung function	
	bleomycin induced	having undergone surgery for lung	stainings for tryptase	(forced vital capacity, all stainings)	
	pulmonary fibrosis in rats	cancer	and chymase	MCs accumulated in fibrotic lung (animal model)	
	or mice			MCs on fibrotic extracellular matrix (ECM) produced	
				more TGF- β compared with normal ECM (animal model)	
				Mechanical stretch of lungs caused mast cell	
				degranulation	
Overed-Sayer	Lung biopsy material	MC quantification and phenotyping:	MC tryptase and	MCs were elevated in IPF and cHP lung, but not in NSIP	
et al 2020	Cell cultures with cord	17 IPF	chymase	MCs correlated negatively with baseline FVC	
	blood-derived MCs and	9 chronic HP (cHP)		MCs correlated positively with fibroblast foci	
	normal human lung	9 non-specific interstitial pneumonia		MC signature was increased in IPF lung	
	fibroblasts	(NSIP)		MCs induced fibroblast proliferation and activation	
	Rats with bleomycin	20 normal lung tissue from patients		MCs and fibroblasts displayed crosstalk in co-culture	
	induced ILD	with lung cancer		studies	
		MC protease signature analysis:		Nintedanib inhibited MC survival and activation	
		10 IPF lung volume reduction		Nintedanib reduced MC recruitment in rat bleomycin	
		patients		model	
		9 normal lung tissue samples			
Bagher et al	Cell cultures on plastic	Human lung fibroblasts from IPF	NA	MCs and tryptase increased fibroblast release of	
2021	plates and decellularized	patients and healthy controls		mediators	
	human lung tissue			Epithelial migration was influenced by the release of	
	(scaffolds)			mediators	

BAL, bronchoalveolar lavage; bFGF, basic fibroblast growth factor; BOOP, bronchiolitis obliterance organizing pneumonia; CBD, chronic beryllium disease; ECM, extracellular matrix; FVC, forced vital capacity; HLF, human lung fibroblast; HP, hypersensitivity pneumonia; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; LAM, lymphangioleiomyomatosis; MC, mast cell; MCTC, mast cells positive for both tryptase and chymase, NSIP, non-specific interstitial pneumonia; sar, sarcoidosis; Ssc-ILD, systemic scleroderma-associated ILD; TGFβ1, transforming growth factor β1; UIP, usual interstitial pneumonia

	IPF (N=47)	Control (N=12)	P-value
Age, years	62±7.7	71±6.0	<0.01
Male	34 (72.3)	2 (16.7)	<0.01
Smoking status at biopsy			<0.01
Never-smoker	16 (38.1)	11 (91.7)	
Ex-smoker	20 (47.6)	1 (8.3)	
Current smoker	6 (14.3)	0	
Pack-years of ever-	26±11	7	0.115
smokers ^a			
FVC% ^b	74±16	106±14	<0.01
FEV1% ^c	79±17	105±15	<0.01
FEV1/FVC ^d	86±6.0	78±3.4	<0.01
DLCO% ^e	55±13	81±5.8	<0.01

TABLE 2. Clinical characteristics of normal controls compared with IPF patients.

Data is presented as mean± standard deviation, median (interquartile range) and number of patients (%) when appropriate. ^a Data of 13 smokers or ex-smokers was missing, ^b Data of 9 IPF patients and 4 control patients was missing, ^c Data of 8 IPF patients and 4 control patients was missing, ^dData of 9 IPF patients and 5 control patients was missing ^eData of 10 IPF patients and 8 control patients was missing.