Supplementary Information:

High-Speed 4D Neutron Computed Tomography for Quantifying Water Dynamics in Polymer Electrolyte Fuel Cells

Ziesche et al.

Supplementary Figure 1: Pre-beamtime laboratory testing; Polarisation and power curves of the single serpentine PEFC: a V-I characteristic with average V-I slope of 636 Ohm cm⁻² in the working region of the cell. **b** power curve with a maximum of 340 mW cm⁻² at a current density of 627 mA cm⁻² and a potential of 543 mV. In the linear working region the cell exhibits shows a power slope of 690 mW A⁻¹ or mV.

Supplementary Figure 2: Pre-beamtime laboratory testing; Polarisation and power curves of the single serpentine PEFC with fits of the V-I-characterisation and the power slope: a shows the V-I characterisation curve of the used fuel cell with a V-I slope of about 636 mV/(A/cm²) in the working range. b displays the corresponding power curve with a maximum of ca. 340 mW at 543 mA and a power increase of ca. 690 mW/A in the working range.

Supplementary Figure 3: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 100 mA/cm².

Supplementary Figure 4: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 200 mA/cm².

Supplementary Figure 5: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 300 mA/cm².

Supplementary Figure 6: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 400 mA/cm².

Supplementary Figure 7: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 500 mA/cm².

Supplementary Figure 8: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 600 mA/cm².

Supplementary Figure 9: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant current hold of 700 mA/cm².

Supplementary Figure 10: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant potential hold at 0.7 V.

Supplementary Figure 11: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant potential hold at 0.5 V.

Supplementary Figure 12: 3D visualisation of the water evolution in the single serpentine PEFC. Water evolution in the **a** anode flow field (red), **b** the MEA (green) and **c** the cathode flow field (blue) at a constant potential hold at 0.3 V.

$$f(t) = mt + y$$

100 mA/cm²: 0.0493 mm³/min

Supplementary Figure 13: Calculation of the water volume evolution inside the single serpentine anode flow field for different current holds from 100 to 700 mA/cm².

0.5 V: 0.4920 mm³/min

Supplementary Figure 14: Calculation of the water volume evolution inside the single serpentine anode flow field for different potential holds from 0.7 to 0.3 V.

-0.3 V

.

time [s]

Supplementary Table 1: Slope of the water evolution in the single serpentine anode flow field for the different current and potential holds: The determined slopes represent the time dependent water evolution in the anode flow field for different constant current densities and potentials.

Current density [mA cm ⁻²]	Water volume [mm ³ s ⁻¹]	Water volume [mm ³ min ⁻¹]
100	0.00082	0.0493
200	0.00191	0.1146
300	0.00414	0.2484
400	0.00804	0.4824
500	0.01125	0.6750
600	0.01224	0.7344
700	0.01641	0.9846
Potential [V]	Water volume [mm ³ s ⁻¹]	Water volume [mm ³ min ⁻¹]
0.7	0.00075	0.0452
0.5	0.0082	0.4920
0.3	0.01893	1.1358

Supplementary Table 2: Slope of the water evolution in the single serpentine cathode flow field for the different current and potential holds: The determined slopes represent the time dependent water evolution in the cathode flow field for different constant current densities and potentials.

Current density [mA cm ⁻²]	Water volume [mm ³ s ⁻¹]	Water volume [mm ³ min ⁻¹]
100	0.00154	0.0924
200	0.00378	0.2268
300	0.00761	0.4566
400	0.01152	0.6912
500	0.01601	0.9606
600	0.02256	1.3536
700	0.0266	1.5960
Potential [V]	Water volume [mm ³ s ⁻¹]	Water volume [mm ³ min ⁻¹]
0.7	0.00494	0.2964
0.5	0.0151	0.9060
0.3	0.02912	1.7472

$$f(t) = mt + y$$

time [s]

🗕 0.3 V

Supplementary Figure 15: Calculation of the water volume evolution inside the single serpentine cathode flow field for different current holds from 100 to 700 mA/cm².

0.5 V: 0.9060 mm³/min

Supplementary Figure 16: Calculation of the water volume evolution inside the single serpentine cathode flow field for different potential holds from 0.7 to 0.3 V.

$$f(t) = a\left(1 - e^{-\frac{t}{\tau}}\right) + b$$

700 mA/cm²: 2.43 mm³

Supplementary Figure 17: Calculation of the maximal water saturation volume evolution inside the MEA of the single serpentine flow field fuel cell for different current holds from 100 to 700 mA/cm².

0.3 V fit function

400

500

0.5 0

100

200

300

time [s]

Supplementary Figure 18: Calculation of the maximal water saturation volume evolution inside the MEA of the single serpentine flow field fuel cell for different potential holds from 0.7 to 0.3 V.

1.3

Supplementary Table 3: Current and potential dependent maximal water volume evolution in the MEA: The maximal water volumes in the MEA show a current density and potential dependent behaviour and seem to converge towards a constant value for higher powers.

Current density [mA cm ⁻²]	Maximal water volume [mm ³]
100	0.75
200	1.46
300	2.15
400	2.33
500	2.23
600	2.47
700	2.43
Potential [V]	Maximal water volume [mm ³]
0.7	1.31
0.5	2.05
0.3	2.53

Supplementary Table 4: Calculated times to reach 95 % and 99 % of the maximal water volume in the MEA and the equilibrium state for different current densities and potentials.

Current density [mA cm ⁻²]	t _{equilibrium} (p = 0.95) [s]	t _{equilibrium} (p = 0.99) [s]
100	1283	2183
200	724	1061
300	663	1021
400	530	787
500	373	581
600	424	662
700	366	579
Potential [V]	t _{equilibrium} (p = 0.95) [s]	t _{equilibrium} (p = 0.99) [s]
0.7	369	634
0.5	298	479
0.3	365	554

Current density [mA cm ⁻²]	Water slope [mm ³ s ⁻¹]	Water slope [mm ³ min ⁻¹]
100	0.00323	0.1938
200	0.00798	0.4788
300	0.01406	0.8436
400	0.02252	1.3512
500	0.03159	1.8954
600	0.04087	2.4522
700	0.04475	2.6850
Potential [V]	Water slope [mm ³ s ⁻¹]	Water slope [mm ³ min ⁻¹]
0.7	0.00646	0.3876
0.5	0.02508	1.5048
0.3	0.04700	2.8200

Supplementary Table 5: Experimentally determined water volume slope of the current and potential hold measurements.

Supplementary Table 6: Calculated water volume slope for current and potential hold conditions.

Current density [mA cm ⁻²]	Water slope [mm ³ s ⁻¹]	Water slope [mm ³ min ⁻¹]
100	0.00938	0.5625
200	0.01875	1.1250
300	0.02813	1.6875
400	0.03750	2.2500
500	0.04688	2.8125
600	0.05625	3.3750
700	0.06563	3.9375
Potential [V]	Water slope [mm ³ s ⁻¹]	Water slope [mm ³ min ⁻¹]
0.7	0.02017	1.2102
0.5	0.04297	2.5782
0.3	0.07239	4.3434

$$f(t) = mt + y$$

100 mA/cm²: 0.1938 mm³/min

time [s]

200 mA/cm²: 0.4788 mm³/min

time [s]

----- 600 mA/cm³

Supplementary Figure 19: Calculation of the water volume evolution inside the single serpentine PEFC for different current holds from 100 to 700 mA/cm².

0

100

200

300

time [s]

400

500

---- 0.3 V

600

0.5 V: 1.5048 mm³/min

Supplementary Figure 20: Calculation of the water volume evolution inside the single serpentine PEFC for different potential holds from 0.7 to 0.3 V.