	Age distribution of patients with CRC by site						
site	Q0	Q1	median	Q3	Q4	mean	
colon	8	50	59	68	89	58.9	
rectum	14	49	57	66	89	57.1	
	Age	distributi	on of patien	its with C	RC by	y sex	
sex	Q0	Q1	med	Q3	Q4	mean	
F	12	49	59	68	89	58.4	
Μ	8	50	59	68	89	58.7	
Age distri	bution of	patients	with CRC b	by MS co	hort		
MS							
cohort	Q0	Q1	median	Q3	Q4	mean	
MT-H	8	51	64	75	89	62.4	
MT-L	8	50	59	67	89	58.4	
MSS							
htmb	16	44	55	65	87	53.8	

Supplementary Table 1. Age distribution of patients with CRC by site, sex, and MS status (relevant to Figure 1c, Supplementary Figure 1a,b)

Supplementary Table 2. Sex distribution of patients, by MS status (relevant to Figure 1d)

Significance was calculated using 2-sample test for equality of proportions with continuity correction (prop.test function in R).

MS cohort	sex	count	fraction	comparison	p-value
MT-H	F	812	0.507	MT-H to MT-L	2.92E-06
MT-H	М	791	0.493		
MT-L	F	14389	0.447	MT-L to MSS htmb	0.000377
MT-L	М	17823	0.553		
MSS htmb	F	80	0.331	MSS htmb to MT-H	4.73E-07
MSS htmb	М	162	0.669		

Supplementary Table 3. Distribution of tumor subsites, by MS status (relevant to Figure 1e)

Significance was calculated using 2-sample test for equality of proportions with continuity correction (prop.test function in R).

MS cohort	site	count	fraction	comparison	p-value
MT-H colon		1526	0.952	MT-H to MT-L	5.60E-37
MT-H	rectum	77	0.048		
MT-L	colon	26807	0.832	MT-L to MSS htmb	0.561
MT-L	rectum	5426	0.168		
MSS htmb color		206	0.848	MSS htmb to MT-H	7.90E-10
MSS htmb	rectum	37	0.152		

Supplementary Table 4. Prevalence of PTEN mutations in CRC cohorts (relevant to Figure 2b)

Column	Description
MS cohort	status assigned by integrating microsatellite instability and TMB
samples	counts of samples
single_pten	counts of samples carrying a single PTEN alterations
mult_pten	counts of samples carrying multiple PTEN alterations
any_pten	counts of samples carrying at least one PTEN alteration
fract_single	fraction of samples carrying a single PTEN alterations
fract_mult	fraction of samples carrying multiple PTEN alterations
fraction_any	fraction of samples carrying at least one PTEN alteration

Confidence intervals for a population proportion, as well as significance of difference between proportions (using 2-sample test for equality of proportions with continuity correction) were calculated based on the data for any PTEN alterations, using prop.test function in R.

		Sample	ples with PTEN S		Samp	Samples with PTEN		Confidence			
		alterat	ions, c	ount	alterat	tions, fr	action	interv	als comb	comparisons	
MS cohort	patients	Single	Mult	Any	Single	Mult	Any	lower	upper	groups	p-value
										MT-H to	
MT-H	1603	211	189	400	0.132	0.118	0.250	0.229	0.272	MT-L	8.80E-132
										MT-L to	
MT-L	32233	2301	137	2438	0.071	0.004	0.076	0.073	0.079	MSS htmb	5.29E-104
										MSS htmb	
MSS htmb	243	43	67	110	0.177	0.276	0.453	0.389	0.518	to MT-H	6.70E-11

MS cohort	sex	PTEN alt	PTEN wt	Fraction pten	ConfL	ConfU	p-value by sex
MT-H	F	211	600	0.260	0.2306	0.2921	0.3399
MT-H	М	188	601	0.238	0.2093	0.2699	
MT-L	F	1290	13099	0.090	0.0851	0.0945	2.00E-17
MT-L	М	1148	16675	0.064	0.0609	0.0681	
MSS htmb	F	28	52	0.350	0.2490	0.4656	0.0309
MSS htmb	М	82	80	0.506	0.4269	0.5851	

Supplementary Table 5. Prevalence of PTEN mutations in CRC cohorts by sex (relevant to Fig.2d)

Supplementary Table 6. Prevalence of PTEN mutations in CRC cohorts by tumor subsite (relevant to Fig.2e)

		PTEN	PTEN	Fraction			p-value
MS cohort	sex	alt	wt	pten	ConfL	ConfU	by site
MT-H	colon	381	1142	0.250	0.229	0.273	0.85
MT-H	rectum	18	59	0.234	0.148	0.347	
MT-L	colon	2138	24669	0.080	0.077	0.083	6.11E-10
MT-L	rectum	300	5126	0.055	0.049	0.062	
MSS htmb	colon	96	110	0.466	0.397	0.537	0.42
MSS htmb	rectum	14	23	0.378	0.229	0.552	

Supplementary Table 7. PTEN alteration trends by age and MS cohort (relevant to Fig.2f)

Logistic regression coefficients and p-values were calculated using the glm function in R

MS cohort	PTEN alt	wt	reg_coef	p_value
MT-H	400	1203	0.00067	0.32366
MT-L	2438	29795	0.00062	1.6E-07
MSS htmb	110	133	-0.0072	0.00067

Supplementary Table 8. PTEN alteration trends by age, MS cohort, and tumor subsite (relevant to Supplementary Fig.2, bdf)

Logistic regression coefficients and p-values were calculated using the glm function in R

Assigned	site	PTEN alt	wt	reg_coef	p_value
МТ-Н	colon	381	1142	0.000933	0.190803
МТ-Н	rectum	18	59	-0.005512	0.076489
MT-L	colon	2138	24669	0.000571	0.000014
MT-L	rectum	300	5126	0.000663	0.008633
MSS htmb	colon	96	110	-0.006711	0.003187
MSS htmb	rectum	14	23	-0.011004	0.050463

Supplementary Table 9. PTEN alteration trends by age, MS cohort and sex (relevant to Supplementary Fig.2, ceg)

Logistic regression coefficients and p-values were calculated using the glm function in R

Assigned	sex	PTEN alt	wt	reg_coef	p_value
MT-H	F	211	600	-0.000464	0.657156
MT-H	М	188	601	0.001416	0.135962
MT-L	F	1290	13099	0.000756	0.000051
MT-L	М	1148	16675	0.000555	0.000187
MSS htmb	F	28	52	-0.005393	0.112681
MSS htmb	М	82	80	-0.007459	0.005152

Supplementary Table 10. Major PTEN alteration classes, by MS cohort (relevant to Fig.2g)

MS cohort	alteration_Class	count	fraction in cohort
MT-H	deletion	1	0.00165
МТ-Н	missense_indel	177	0.292
МТ-Н	truncation	429	0.707
MT-L	amplification	1	0.000387
MT-L	deletion	1055	0.408
MT-L	missense_indel	640	0.248
MT-L	rearrangement	38	0.0147
MT-L	truncation	851	0.329
MSS htmb	deletion	5	0.0234
MSS htmb	missense_indel	132	0.617
MSS htmb	truncation	77	0.36

MS cohort	sex	alteration_Class	n_samples
MT-H	F	deletion	1
MT-H	F	missense & inframe indels	99
MT-H	F	truncation	208
MT-H	М	missense & inframe indels	78
MT-H	М	truncation	219
MT-L	F	deletion	569
MT-L	F	other	20
MT-L	F	missense & inframe indels	326
MT-L	F	truncation	452
MT-L	М	deletion	486
MT-L	М	other	19
MT-L	М	missense & inframe indels	314
MT-L	М	truncation	399

Supplementary Table 11. Major PTEN alteration classes, in MT-L and MT-H cohorts, by sex (relevant to Supplementary Fig.2h)

Supplementary Table 12. Major PTEN alteration classes, in MT-L and MT-H cohorts, by tumor subsite (relevant to Supplementary Fig.2i)

MS cohort	site	alteration_Class	n_samples			
МТ-Н	colon	deletion	1			
МТ-Н	colon missense & inframe indels					
MT-H	colon	truncation	410			
MT-H	rectum	missense & inframe indels	9			
MT-H	rectum	truncation	17			
MT-L	colon	deletion	927			
MT-L	colon	other	34			
MT-L	colon	missense & inframe indels	553			
MT-L	colon	truncation	756			
MT-L	rectum	deletion	128			
MT-L	rectum	other	5			
MT-L	rectum	missense & inframe indels	87			
MT-L	rectum	truncation	95			

Supplementary Table 13. Major PTEN alteration classes, in MT-L and MT-H cohorts, by age (relevant to Supplementary Fig.2j)

In each of the MTL and MTH subsets, the samples with PTEN alterations were ranked by age and split into three equal groups.

Age group	alteration_Class	n_samples MTL	n_samples MTH
1	deletion	293	0
1	other	15	0
1	missense & inframe indels	164	45
1	truncation	256	146
2	deletion	347	0
2	other	10	0
2	missense & inframe indels	231	67
2	truncation	298	138
3	deletion	401	1
3	other	13	0
3	missense & inframe indels	237	68
3	truncation	287	137

Supplementary Table 14. PTEN post-translational modifications (relevant to Fig.3a) References are given as PMIDs

Amino Acid	Modification	Ref.1	Ref.2	Ref.3	Ref.4	UNIPROT
K13	ubiquitination	17218261				YES
K63	ubiquitination	34416231				NO
C83	S-nitrosylation	21646525				NO
K125	acetylation	16829519				NO
K128	acetylation	16829519				NO
K163	acetylation	26279303				NO
S229	phosphorylation	15793569				NO
Y240	phosphorylation	30827889				NO
K254	SUMOylation	23888040	22713753			NO
K266	SUMOylation	23888040	22713753	23013792	22713753	NO
K289	ubiquitination	17218261				YES
T321	phosphorylation	15793569				NO
Y336	phosphorylation	19345329				YES
T366	phosphorylation	12297295	20940307			YES
S370	phosphorylation	12297295	20940307	11035045		YES
S380	phosphorylation	24706748				YES
T382	phosphorylation	11035045	24706748			YES
T383	phosphorylation	11035045	24706748			YES
S385	phosphorylation	11035045	12297295			YES
T398	phosphorylation	23888040				NO
T401	phosphorylation	10646847				YES
K402	acetylation	18757404				NO

Supplementary Table 15. PTEN single-residue hotspots, by MS/TMB cohort

Column	Description
Counts_	number of mutations in a given codon.
as % in	share of mutations in a given codon among all mutations in cohort
found in	whether or not this hotspot was identified in the pancancer cohort, as available on
cancerhotspots	cancerhotspots.org
Cutoff (top line):	cutoffs calculated using binomial distribution for the p-value 0.005

cutoff	9	8	5	4 Counto				00. ⁹ /	
Codon	Counts all	Counts MTL	Counts MTH	MSS htmb	as % overall	as % in MTL	as % in MTH	in MSS htmb	found in cancerhotspots
130	177	108	27	41	8%	8%	5%	20%	Y
267	133	3	129	0	6%	0%	22%	0%	Y
173	111	67	27	15	5%	5%	5%	7%	Y
323	96	20	76	0	5%	2%	13%	0%	n
233	95	65	2/	2	4%	5%	5%	1%	Ŷ
200	33	6	1	25	2%	4 /0	0%	12%	n
157	30	9	21	0	1%	1%	4%	0%	n
7	29	5	0	23	1%	0%	0%	11%	n
268	28	7	20	1	1%	1%	3%	0%	Y
136	24	21	3	0	1%	2%	1%	0%	Y
33	22	15	7	0	1%	1%	1%	0%	n
68	22	18	4	0	1%	1%	1%	0%	Y
335	22	16	6	0	1%	1%	1%	0%	Y
27	18	16	2	0	1%	1%	0%	0%	Y
57	18	9	9	0	1%	1%	2%	0%	n
63	18	3	13	1	1%	0%	2%	0%	n
290	18	5	12	1	1%	0%	2%	0%	n
30	17	14	2	0	1%	1%	0%	0%	n V
165	16	14	2	0	1%	1%	0%	0%	v v
126	15	13	2	0	1%	1%	0%	0%	Y
93	14	12	2	0	1%	1%	0%	0%	Ŷ
246	14	12	1	1	1%	1%	0%	0%	n
15	12	7	1	4	1%	1%	0%	2%	n
17	12	12	0	0	1%	1%	0%	0%	n
127	12	11	1	0	1%	1%	0%	0%	Y
134	12	6	3	3	1%	0%	1%	1%	n
155	12	10	2	0	1%	1%	0%	0%	Y
171	12	12	0	0	1%	1%	0%	0%	Y
2/4	12	/	5	0	1%	1%	1%	0%	Ŷ
24	11	8	2	1	1%	1%	0%	0%	Y
120	11	9	2	0	1 70	1 %	10/	0%	T V
142	11	5	0	5	1%	0%	0%	2%	n
320	11	11	0	0	1%	1%	0%	0%	Y
336	11	8	0	3	1%	1%	0%	1%	Y
66	10	5	0	4	0%	0%	0%	2%	n
92	10	6	0	3	0%	0%	0%	1%	Υ
96	10	3	7	0	0%	0%	1%	0%	n
101	10	9	1	0	0%	1%	0%	0%	Y
105	10	7	3	0	0%	1%	1%	0%	Y
146	10	6	4	0	0%	0%	1%	0%	Y
164	10	0	9	1	0%	0%	2%	0%	n
211	10	8	2	0	0%	1%	0%	0%	n V
211	10	9	1	0	0%	1%	0%	0%	r n
35	9	9	2	0	0%	1%	0%	0%	v v
38	9	9	0	0	0%	1%	0%	0%	v v
76	9	5	4	0	0%	0%	1%	0%	n.
90	9	1	8	0	0%	0%	1%	0%	n .
123	9	8	0	1	0%	1%	0%	0%	n
159	9	8	1	0	0%	1%	0%	0%	n
170	9	6	2	0	0%	0%	0%	0%	Y
124	8	8	0	0	0%	1%	0%	0%	Y
219	8	8	0	0	0%	1%	0%	0%	n
298	8	8	0	0	0%	1%	0%	0%	n
41	7	3	0	4	0%	0%	0%	2%	n
183	6	2	0	4	0%	0%	0%	2%	n
341	8	3	0	4	0%	0%	0%	2%	l n

Supplementary Table 16. Percent of major PTEN mutational single-residue hotspots, by MS/TMB cohort (relevant to Fig.3b)

	Hotspots MTL	Hotspots MTH	Hotspots MSS htmb
non-hotspot mut	49.1	29.4	36.5
R130	8.2	4.6	20.2
R173	5.1	4.6	7.4
R233	4.9	4.6	
T319	4.1		
K267		22.2	
N323		13.1	
E157		3.6	
D268		3.4	
E299			12.3
E7			11.3
other hotspots			
combined	32.7	14.5	12.3

Supplementary Table 17. Age trends for mutational signatures in MT-L and MT-H cohorts (relevant to Fig.4b). Regression coefficients and p-values were calculated using generalized linear model (glm function in R).

MT-L										
signature	PTEN alt	wt	reg_coef	p_value						
IDT_count	60	32173	3.46E-05	0.07011						
PTEN_count	2589	29791	0.000634	7.70E-07						
PTEN_nonsig	2265	30074	0.000575	1.44E-06						
SBS1_count	264	31972	2.42E-05	0.54931						

MT-H										
signature	PTEN alt	wt	reg_coef	p_value						
IDT_count	286	1370	-8.96E-05	0.90317						
PTEN_count	608	1198	0.000719	0.52818						
PTEN_nonsig	224	1403	0.000533	0.40021						
SBS1_count	98	1506	0.000276	0.48141						

	PTE	N MT-L			PTE	N MT-H		PTEN MSS htmb			nb
	mut		Mut		mut		Mut		mut		
Codon	count	% of mut	signature	Codon	count	% of mut	signature	Codon	count	% of mut	Mut signature
130	108	8.2%	SBS1	267	129	22.2%	IDT	130	41	20%	SBS10b/SBS1
173	67	5.1%	SBS1	323	76	13.1%	IDT	299	25	12%	SBS10a
233	65	4.9%	SBS1	130	27	4.6%	SBS1	7	23	11%	SBS10a
			repeat								
319	54	4.1%	deletion	173	27	4.6%	SBS1	173	15	7%	SBS1
136	21	1.6%		233	27	4.6%	SBS1	142	5	2%	SBS10b/SBS1
323	20	1.5%	IDT	157	21	3.6%	IDT	15	4	2%	SBS10b
68	18	1.4%		268	20	3.4%	IDT	41	4	2%	SBS10a
27	16	1.2%		63	13	2.2%	IDT	66	4	2%	
335	16	1.2%	SBS1	290	12	2.1%	IDT	183	4	2%	SBS10a
16	15	1.1%		57	9	1.5%	IDT	341	4	2%	SBS28
			repeat								
33	15	1.1%	deletion	164	9	1.5%	IDT				
36	14	1.1%		90	8	1.4%	IDT				
							repeat				
165	14	1.1%		33	7	1.2%	deletion				
126	13	1.0%		96	7	1.2%					
					_		repeat				
17	12	0.9%		319	7	1.2%	deletion				
93	12	0.9%		335	6	1.0%	SBS1				
171	12	0.9%		274	5	0.9%	IDT				
246	12	0.9%									
127	11	0.8%									
320	11	0.8%									
155	10	0.8%									
35	9	0.7%									
38	9	0.7%									
57	9	0.7%	וטו								
101	9	0.7%									
111	9	0.7%									
157	9	0.7%									
2//	9	0.7%									
24	8	0.6%									
123	8	0.6%									
124	8	0.6%									
129	8	0.6%									
159	8	0.6%									
211	8	0.6%									
219	8	0.6%			1	I	1		1		1

Supplementary Table 18. Mutational signatures primarily associated with single-residue hotspots, by MS/TMB cohort (relevant to Fig.4c)

Supplementary Table 19. Truncations prior to aa 352, by MS/TMB cohort

MS cohort	Truncations 1:352	non- truncations	total	fraction of truncations	fraction of non-truncations
MT-H	669	1920	2589	0.26	0.74
MT-L	403	207	610	0.66	0.34
MSS					
htmb	71	143	214	0.33	0.67

Supplementary Table 20. PTEN single-residue mutation hotspots, only considering missense/indels, by MS/TMB cohort (relevant to Fig.5, Supplementary Figs 7ab, 9acde)

	All cohorts,	MTL, M/I	MT-H, M/I	MSS htmb,
Codon	M/I only	only	only	M/I only
173	110	66	27	15
130	91	41	10	39
33	22	15	7	NA
136	20	17	NA	NA
68	16	12	4	NA
126	15	13	NA	NA
27	14	12	NA	NA
36	14	11	NA	NA
93	14	12	NA	NA
246	14	12	NA	NA
155	12	10	NA	NA
15	11	6	NA	4
24	11	8	NA	NA
142	11	NA	NA	5
165	11	10	NA	NA
127	10	9	NA	NA
129	10	8	NA	NA
134	10	NA	NA	NA
31	9	6	NA	NA
35	9	9	NA	NA
66	9	NA	NA	4
92	9	NA	NA	NA
96	9	NA	7	NA
123	9	8	NA	NA
159	9	8	NA	NA
38	8	8	NA	NA
47	8	6	NA	NA
101	8	7	NA	NA
124	8	8	NA	NA
170	8	NA	NA	NA
252	8	6	NA	NA
76	7	NA	4	NA
95	7	6	NA	NA
128	7	6	NA	NA
131	7	7	NA	NA
132	7	6	NA	NA
277	7	6	NA	NA
45	6	NA	4	NA
105	6	6	NA	NA
138	6	NA	NA	NA
171	6	6	NA	NA
234	NA	NA	4	NA
41	NA	NA	NA	4
183	NA	NA	NA	4
341	NA	NA	NA	4

Supplementary Table 21. Distribution of LPA scores by cohort (relevant to Fig.6a, Supplementary Fig. 10ab).

MS cohort	se	ex	s	ite	total in cohort	box plot stats			comparison				
	F	М	colon	rectum		low whisker	low box	median	high box	high whisker	Comp. groups	t.test	ks.test
МТ-Н	131	101	220	12	232	-4.79	-3.49	-2.04	-1.26	0.41	MT-H to MT-L	4.75E-04	0.001
MT-L	481	447	812	116	928	-5.41	-3.58	-2.69	-1.43	1.73	MT-L to MSS htmb	5.57E-04	3.08E-10
MSS htmb	50	145	167	28	195	-5.69	-3.38	-2.04	-1.26	0.56	MSS htmb to MT-H	0.647	0.005

Supplementary Table 22. Distribution of abundance scores by cohort (relevant to Fig.6b, Supplementary Fig. 10cd).

MS cohort	se	ex	s	ite	total in cohort	box plot stats			comparison				
	F	м	colon	rectum		low whisker	low box	median	high box	high whisker	Comp. groups	t.test	ks.test
МТ-Н	51	41	85	7	92	-0.08	0.29	0.33	0.70	1.24	MT-H to MT-L	0.8	0.3
MT-L	243	198	387	54	441	-0.12	0.25	0.33	0.80	1.31	MT-L to MSS htmb	0.5	2.84E-04
MSS htmb	16	68	73	11	84	-0.05	0.16	0.32	0.73	1.24	MSS htmb to MT-H	0.4	5.57E-05

Supplementary Table 23. Distribution of LPA and abundance scores based on hotspot status (relevant to Fig.6gh).

boxplot stats	LPA non-hotspot	LPA hotspot				
sample size	346	582				
low whisker	-5.685	-5.41				
low box	-3.488	-3.579				
median	-2.2255	-2.472				
high box	-0.718	-1.484				
high whisker	1.727	1.295				
	Comparisor	n (p-value)				
ks.test	6.84E	-07				
t.test	0.003083					
	abundance	abundance				
boxplot stats	abundance non-hotspot	abundance hotspot				
boxplot stats sample size	abundance non-hotspot 181	abundance hotspot 260				
boxplot stats sample size low whisker	abundance non-hotspot 181 -0.124	abundance hotspot 260 -0.081				
boxplot stats sample size low whisker low box	abundance non-hotspot 181 -0.124 0.21	abundance hotspot 260 -0.081 0.255				
boxplot stats sample size low whisker low box median	abundance non-hotspot 181 -0.124 0.21 0.481	abundance hotspot 260 -0.081 0.255 0.29				
boxplot stats sample size low whisker low box median high box	abundance non-hotspot 181 -0.124 0.21 0.481 0.8355	abundance hotspot 260 -0.081 0.255 0.29 0.64				
boxplot stats sample size low whisker low box median high box high whisker	abundance non-hotspot 181 -0.124 0.21 0.481 0.8355 1.312	abundance hotspot 260 -0.081 0.255 0.29 0.64 1.205				
boxplot stats sample size low whisker low box median high box high whisker	abundance non-hotspot 181 -0.124 0.21 0.481 0.8355 1.312 Comparisor	abundance hotspot 260 -0.081 0.255 0.29 0.64 1.205 n (p-value)				
boxplot stats sample size low whisker low box median high box high whisker ks.test	abundance non-hotspot 181 -0.124 0.21 0.481 0.8355 1.312 Comparison 0.0007	abundance hotspot 260 -0.081 0.255 0.29 0.64 1.205 n (p-value)				

Supplementary Table 21. Distribution of LPA scores by cohort (relevant to Fig.6a, Supplementary Fig. 10ab). Statistical significance was calculated using Welch's unequal variances t-test and Kolmogorov-Smirnov test.

MS	s	ex	s	ite	total in		box plot					comparison		
cohort					cohort		stats				-			
							-							
	F	м	colon	rectum		low whisker	low box	median	high box	high whisker	Comp. groups	t.test	ks.test	
											MT-H to			
MT-H	127	96	211	12	223	-4.8	-3.5	-2	-1.3	0.4	MT-L	4.75E-04	0.001	
											MT-L to			
MT-L	475	440	800	115	915	-5.4	-3.6	-2.7	-1.4	1.7	MSS htmb	5.57E-04	3.08E-10	
MSS											MSS htmb			
htmb	50	145	167	28	195	-5.7	-3.4	-2	-1.3	0.5	to MT-H	0.647	0.005	

Supplementary Table 22. Distribution of abundance scores by cohort (relevant to Fig.6b, Supplementary Fig. 10cd). Statistical significance was calculated using Welch's unequal variances t-test and Kolmogorov-Smirnov test.

MS cohort	se	ex	s	ite	total in cohort	box plot stats			comparison				
	F	м	colon	rectum		low whisker	low box	median	high box	high whisker	Comp. groups	t.test	ks.test
МТ-Н	88	64	141	11	152	-0.1	0.3	0.3	0.7	1.2	MT-H to MT-L	0.8	0.3
MT-L	325	300	549	76	625	-0.1	0.2	0.3	0.8	1.3	MT-L to MSS htmb	0.5	2.84E-04
MSS htmb	30	106	117	19	136	-0.1	0.2	0.3	0.7	1.2	MSS htmb to MT-H	0.4	5.57E-05

Supplementary Table 23. Distribution of LPA and abundance scores based on hotspot status (relevant to Fig.6gh). Statistical significance was calculated using Welch's unequal variances t-test and Kolmogorov-Smirnov test.

			abundance	abundance		
boxplot stats	LPA non-hotspot	LPA hotspot	non-hotspot	hotspot		
sample size	346	582	181	260		
low whisker	-5.685	-5.41	-0.124	-0.081		
low box	-3.488	-3.579	0.21	0.255		
median	-2.2255	-2.472	0.481	0.29		
high box	-0.718	-1.484	0.8355	0.64		
high whisker	1.727	1.295	1.312	1.205		
Comparison (p-value)						
ks.test	6.84E	-07	0.0001618			
t.test	0.003	083	0.04735			

Supplementary Table 24. Comparison of copy number alteration profiles, by MS cohorts, subsite, and sex (p-values); relevant to Fig.7a and Supplementary Fig. 12. Statistical significance was calculated using two-sided Fisher exact test.

MS cohorts

Group	p_value
MT-L vs MT-H	0.0002
MSS_htmb vs MT-H	0.0792
MSS_htmb vs MT-L	0.0002

Sex (M vs F)

Group	p_value
MT-L	0.7942
MT-H	0.0148
MSS htmb	0.3919

Site (colon vs rectum)	
Group	p_value
MT-L	0.1338
MT-H	0.1644
MSS_htmb	0.0002

Supplementary Table 25. Co-occurrence between PTEN mutations, by cohort

Expected co-occurrence and the p-values for the actual co-occurrence were calculated using binominal distribution model

		M	T-L		MT-H				MT-L htmb				
	LOF mutations			LOF mutations				LOF mutation			nutations		
	all point	mutations	or	ıly	all point	mutations	0	nly	all point	mutations	(only	
	log2		log2		log2		log2		log2		log2		
mut #	(ratio)	p-value	(ratio)	p-value	(ratio)	p-value	(ratio)	p-value	(ratio)	p-value	(ratio)	p-value	
0	0.00328	0.955	0.00335	0.968	0.131	0.213	0.141	0.182	0.422	0.072	0.476	0.0452	
1	-0.143	0.063	-0.172	0.038	-0.956	5.98E-10	-1.16	2.87E-14	-1.23	6.77E-05	-1.86	7.07E-07	
2 or													
more	1.56	2.60E-08	1.9	3.63E-10	1.07	7.86E-08	1.22	2.40E-09	0.366	0.253	0.521	0.107	

box plot					MSS htmb	MSS htmb
stats	MT-H mult	MT-H single	MT-L mult	MT-L single	mult	single
low whisker	11.3	15	0	0	17.5	16.3
low box	34.8	33.8	2.6	2.5	117.9	45.1
median	49.6	46.3	4.8	3.8	195	148.8
high box	63.8	63.9	7	6.1	275.7	256
high whisker	106.3	105.3	13.2	11.3	474.1	553.3

Supplementary Table 26. TMB distribution, by MS cohorts and PTEN mutation multiplicity. Related to Supplementary Figure 13.

Supplementary Table 27. Co-occurrence or mutual exclusion between alterations in PTEN and genes shown, in the complete cohort (for any alteration). Statistical significance was calculated using two-sided Fisher exact test.

Second gene (gene B)	APC	KRAS	SMAD4	TP53	PIK3CA
Neither	6551	15464	24809	6844	25267
PTEN_not_B	668	1286	2208	1102	2197
B_not_ PTEN	24612	15699	6354	24319	5896
Both	2298	1680	758	1864	769
log2 (odds ratio)	-0.1271	0.3638	0.42264	-1.0709	0.58495
p-value	0.05671	6.97E-11	9.96E-11	5.96E-71	5.73E-19
95% conf, upper limit	0.00546	0.47459	0.54895	-0.9552	0.71118
95% conf, lower limit	-0.2583	0.25328	0.29522	-1.186	0.45769

Supplementary Table 28. Co-occurrence or mutual exclusion between alterations in PTEN and genes shown (relevant to Fig.8ad). Statistical significance was calculated using two-sided Fisher exact test.

Gene_A	Gene_B	MS	log2_odds	p_val	95% conf.,	95% conf.,	
		cohort			upper	bottom	
PTEN_lof	APC	MT-L	-0.08	0.64728867	0.26	-0.40	
PTEN_lof	KRAS	MT-L	0.86	2.30E-10	1.14	0.59	
PTEN_lof	SMAD4	MT-L	0.45	0.00297895	0.75	0.15	
PTEN_lof	TP53	MT-L	-1.38	8.82E-23	-1.11	-1.65	
PTEN_lof	APC	MT-H	-0.20	0.45950189	0.35	-0.75	
PTEN_lof	KRAS	MT-H	-0.38	0.23290731	0.23	-1.01	
PTEN_lof	SMAD4	MT-H	0.20	0.59479284	0.94	-0.60	
PTEN_lof	TP53	MT-H	-0.11	0.77358084	0.46	-0.69	
PTEN_lof	APC	MSS htmb	4.07	7.11E-05	9.44	1.43	
PTEN_lof	KRAS	MSS htmb	0.37	0.3956815	1.24	-0.50	
PTEN_lof	SMAD4	MSS htmb	0.84	0.05278208	1.73	-0.04	
PTEN_lof	TP53	MSS htmb	-0.01	1	0.89	-0.89	
PTEN_deletion	APC	MT-L	-0.16	0.14652764	0.06	-0.38	
PTEN_deletion	KRAS	MT-L	0.29	0.00172171	0.47	0.11	
PTEN_deletion	SMAD4	MT-L	0.56	6.98E-08	0.76	0.36	
PTEN_deletion	TP53	MT-L	-0.34	0.00112935	-0.13	-0.55	
PTEN_presence	PIK3CA	all comb.	0.58	5.73E-19	0.71	0.46	
PTEN_presence	PIK3CA	MT-L	0.24	1.50E-03	0.39	0.09	
PTEN_point	PIK3CA	MT-L	0.68	1.11E-06	0.94	0.40	
PTEN_lof	PIK3CA	MT-L	0.69	1.06E-05	0.98	0.38	
PTEN_deletion	PIK3CA	MT-L	-0.49	1.08E-04	-0.24	-0.76	
PTEN_lof	PIK3CA	MT-H	-0.08	7.79E-01	0.47	-0.65	
PTEN_lof	PIK3CA	MSS htmb	2.03	3.00E-05	3.21	0.97	

Supplementary references

- 1. Chang MT, *et al.* Accelerating Discovery of Functional Mutant Alleles in Cancer. *Cancer Discov* **8**, 174-183 (2018).
- 2. Chao JT, *et al.* A Premalignant Cell-Based Model for Functionalization and Classification of *PTEN* Variants. *Cancer Res* **80**, 2775-2789 (2020).
- 3. Hu Q, *et al.* LncRNAs-directed *PTEN* enzymatic switch governs epithelialmesenchymal transition. *Cell Res* **29**, 286-304 (2019).
- 4. Gong L, *et al.* Nuclear *PTEN* tumor-suppressor functions through maintaining heterochromatin structure. *Cell Cycle* **14**, 2323-2332 (2015).
- 5. Post KL, *et al.* Multi-model functionalization of disease-associated *PTEN* missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. *Nat Commun* **11**, 2073 (2020).

Supplementary Fig. 1. Additional characteristics of cohort, including analysis of relationship between TMB, age, sex, and tumor subsite (related to Fig.1; Source Data are provided as a Source Data file). a, b. Age distribution for patients with sequenced tumors arising in the colon versus rectum (a), or in males versus females (b). c. Distribution of TMB in relation to age in MSI-H and MSS tumors. Left, individual tumors; right, trend lines; gray shading indicates 95% confidence limit. Orange, MSS; blue, MSI-H. d. Establishing TMB cutoff score for assignment of likely MS status. Left, distribution of TMB in MSI-H and MSS tumors, for FMI (blue) and TCGA CRC (red) cohorts. Right, percentage of MSS (orange) versus MSI-H (blue) tumors correctly identified by a TMB cutoff. e, f. Gender ratio, plotted as % of males, in MT-L vs MT-H vs MSS-htmb tumors, based on age (e) or TMB (f). Inset, gender ratio in the MT-H subset with the TMB<16. Gray shading indicates 95% confidence interval.

Supplementary Fig. 2. Patterns of *PTEN* mutation based on age, sex, and tumor subsite, in MT-L, MT-H, and MSS-htmb tumors (related to Fig.2; Source Data are provided as a Source Data file). a. Frequency of alteration of *PTEN* in MT-L, MT-H, or MSS-htmb subsets (left), and normalized to TMB (second panel from left). Right two panels: actual (solid line) number of *PTEN* mutations observed at distinct levels of TMB, versus number predicted if mutations occur exactly proportional to TMB (dotted line); tumors with low TMB are shown in panel second from right, and with high TMB at far right. Shading indicates confidence level of 95%. b-g. Percent tumors with at least one *PTEN* alteration based on tumor subsite (b, d, f) or sex (c, e, g) as a factor of age in MT-L (b, c), MT-H (d, e), or MSS-htmb (f, g) CRC. Shaded areas represent 95% confidence intervals. Sample sizes, logistic regression coefficients and exact p-values are provided in Supplementary Tables 8 and 9. h-j. Percentage of *PTEN* alterations falling into the indicated classes based on sex (h), tumor subsite (i), or age (j) in MT-L or MT-H CRC. Blue, deep deletion; red, truncation (frameshift, nonsense); yellow, missense or small indel; green, other.

Supplementary Fig. 3. *PTEN* mutations identified in CRC cohort (related to Fig.3). Location of all mutations of all classes, including truncating mutations, identified in the complete cohort (a), or the MT-L (b), MT-H (c), or MSS-htmb (d) subsets. The height of each lollipop indicates the count of the corresponding mutation in the dataset (left Y-axis). Red triangles underneath the lollipops: novel hotspots identified in this work; green triangles, previously hotspots present in the dataset; red circles on lollipops, hotspots representing >3% of total mutations observed in at least one subset. Density distribution (light gray line) represents the probability of concentration of non-hotspot mutations along the primary structure of *PTEN*, and is plotted as -log10(p) on the right Y-axis, with the values above the indicated 2.3 threshold corresponding to p-values <0.005. Mutation counts for each codon and p-values for sliding window analysis are provided as a Source Data file. **e.** Hotspots potentially identifiable in *PTEN* based on analysis of number of sequenced CRC tumors, as described in ¹; the current analysis has identified 54 hotspots. Shaded areas represent 95% confidence intervals. Hotspot mutations and mutation-enriched stretches along the primary protein sequence were identified using a binominal distribution model with a p-value cutoff 0.005, uncorrected for multiple comparisons. Source Data are provided as a Source Data file.

Serebriiskii et.al.

Supplementary Fig. 4. *PTEN* hotspot mutation analyzed based on sex, tumor subsite, or age (related to Fig.3). a-c. Pattern of codon location of hotspot mutations in MT-L or MT-H tumors as indicated, analyzed by sex (a), or age as subdivided into groups with equal sample size (b), or tumor subsite (c). No difference in patterns was identified, using chi-squared contingency table test. Insufficient cohort size limited this detailed analysis of hotspot mutations in the MSS-htmb and (in some cases) MT-H cohorts.

Serebriiskii et.al.

Supplementary Fig. 5. Comparison of *PTEN* mutations observed in FMI CRC cohort versus publicly available data for CRC and other tumor types (related to Fig.3). Location of mutations in *PTEN* protein identified in this study (a) contrasted to patterns identifiable from CRC in publicly available data (PAD-CRC) (b), or to two cancer types with high frequency of *PTEN* mutation, endometrial and glioma, based on data in AACR GENIE (c, d). The height of each lollipop indicates the count of the corresponding mutation in the dataset (left Y-axis). Red circles on lollipops, hotspots representing >3% of total mutations observed in at least one subset. Density distribution (light gray line) represents the probability of statistically significant concentration of non-hotspot mutations along the primary structure of *PTEN*, and is plotted as -log10(p) on the right Y-axis, with the values above the indicated 2.3 threshold corresponding to p-values below 0.005. Hotspot mutations and mutation-enriched stretches along the primary protein sequence were identified using a binominal distribution model with a p-value cutoff 0.005, uncorrected for multiple comparisons. Mutation counts for each codon and p-values for sliding window analysis are provided as a Source Data file.

MT-L

	1 ATGACAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGATATCAAGAGGATGGAT	129
	$1 - M - T - A - I - I - I - K - \overline{E} - I - V - S - R - N - K - R - R - \overline{Y} - Q - E - D - G - F - D - L - D - L - T - \overline{Y} - I - Y - P - N - \overline{I - I} - A - M - \overline{G} - F - P - A - E - R - L - E - R - L - E - R - I - I - I - I - I - I - I - I - I$	43
	*/D/K */D/F/S */C/S F/N/T/del */E/R/V	
130	GGCGTATACAGGAACAATATTGATGATGTAGTAAGGTTTTTGGATTCAAAGCATAAAAACCATTACAAGATATACAATCTTTGTGCTGAAAGACATTATGACACCGCCAAATTTAATTGCAGAGTTGCA	258
44	-GVYRNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVA-	86
	57 63 57 53 57 53 56 5 $H/N/*/C$	
259		387
87	-QYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKG-	129
	D/N/R/Y	
388	CGAACTGGTGTAATGATATGATATGTGCATATTTATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCCTAGATTTCTATGGGGGAAGTAAGGACCAGAGACAAAAAGGGGAGAAAAAAGGGGAGAAAAAA	516
130	R TGVMI C AYLHRGKFLKAQEALDFYG- E VRTRDKK G VTIPSQR	172
	$\frac{^{130}}{^{*}/\text{Q}/\text{G}/\text{L}/\text{P}} = \frac{^{136}}{^{*}/\text{W}/\text{Y}} = \frac{^{137}}{^{*}/\text{fs}*23^{\text{s}/\text{fs}}/\text{fs}*23^{\text{s}/\text{fs}}/\text{s}} = \frac{^{107}}{^{*}/\text{fs}*23^{\text{s}/\text{fs}}/\text{fs}*23^{\text{s}/\text{fs}}/\text{s}} = \frac{^{107}}{^{*}/\text{fs}*23^{\text{s}/\text{fs}}/\text{fs}*23^{\text{s}/\text{fs}}/\text{s}} = \frac{^{107}}{^{*}/\text{fs}*23^{\text{s}/\text{fs}}/\text{fs}*23^{\text{s}/\text{fs}}/\text{s}} = \frac{^{107}}{^{*}/\text{s}} = \frac{^{107}$	
517		645
173	-RYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQF-	215
	C/H/L	
646	GTGGTCTGCCAGCTAAAGGTGAAGATATATTCCTCCAATTCAGGACCCACACGACGGGAAGACAAGTTCATGTACTTTGAGTTCCCTCAGCCGCTGACGTGTGGTGGTGATATCAAAGTAGAGTTCTTC	774
216	-VVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFF- 233 **Q 246	258
775		903
259	-HKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEID	301
	fs+8/fs+30 fs+1/fs+8 *	
904	AGCATTTGCAGTATAGAGCGTGCAGATAATGACAAGGAATATCTAGT <mark>ACTTACTTT</mark> AAC <mark>AAAAAA</mark> TGATCTTGACAAAGCAAAGACAAAGCCAA <mark>CCGA</mark> TACTTTTCTCCAAATTTTAAGGTGAAG	1032
302	-SICSIERADNDKEYLVLTLTKNDKANKDKANRYFSPNFKVK- 319 323 335/0	344
1033	TS+0 TS+2/TS+21 *** CTGTACTTCACAAAAACAGTAGAGGAGCCGTCAAATCCAGAGGCTAGCAGTTCAACTTCTGAACACCAGATGTTAGTGACAACGAATGAACCTGATCATTATAGATATTCTGACACCACTGACTCTGATCCA	1161
345		387
712		507
1162	GAGAATGAACCTTTTGATGAAGATCAGCATACAACAATTACAAAAGTCTGA 1212 SBS1: Deamination of 5-mC SBS2: Activity of APOBEC deaminases	
388	-ENEPFDEDQHTQITKV* 403SBS5: Unknown SBS10a/b: Polymerase epsilon exonuclease domain muta SBS44: Defective MMR ID1/2: Slippage during DNA replication ID5: Unknown or hypoxiaID7: Defective MMR	tions

Serebriiskii et. al.

Supplementary Fig. 6a. Mutational signatures associated with PTEN hotspots (related to Fig.4). Nucleotide sequences annotated with mutation signatures MT-L tumor subset. Amino acids shown under lines represent protein changes associated with distinct mutational processes.

MT-H

	1 ATGACAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGATATCAAGAGGATGGAT	129
:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43
130		258
44	-GVYRNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVA- 57 68 fs*6/fs*42 fs*36 H	86
259		387
87	-QYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAG 93 Y	129
388	CG AACTGGTGTAATGATATGATATGTGCATATTTATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCCTAGATTTCTATGGGGGAAGTAAGGACCAGAGACAAAAAGGGGAGAAAAAAGGGACAAAAAA	516
130	R-TGVMICAYLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQR 130 136 */G R/Y */G R/Y	172
517		645
173	R-Y-V-Y-Y-Y-Y-S-Y-L-L-K-N-H-L-D-Y-R-P-V-A-L-L-F-H-K-M-M-F-E-T-I-P-M-F-S-G-G-T-C-N-P-Q-F- 173 C/H	215
646		774
216	¹ -VVCQLKVKIYSSNSGPT R REDKFMYFEFPQ P LPVCGDIKVEFF- ²³³ ^{*/} Q L	258
775	CACAAACAGAACAAGATGCT <mark>AAAAAAGG</mark> ACAAAATGTTTCACTTTTGGGTAAATACATTCTTCATACCAGGACCAGAGGAAACCTCAG <mark>AAAAA</mark> GTAGAAAATGGAAGTCTATGTGATCAAGAAATCGAT	903
259	-HKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEID- 267 268 299 fs*9 fs*8/fs*30 fs*8/*	301
904	AGCATTTGCAGTATAGAGCGTGCAGATAATGACAAGGAATATCTAGTACTTACT	1032
302	-SICSIERADNDKEYLVLTLTKNDKANKDKAN R YFSPNFKVK- 323 fs+2/fs+21 */ G	344
1033		1161
345	LYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDP-	387
1162 388	GAGAATGAACCTTTTGATGAAGATCAGCATACACAAATTACAAAAGTCTGA 1212 -EN-EPFDEDQHTQITKV* 403 -SBS1: Deamination of 5-mC SBS2: Activity of APOBEC deaminases -SBS5: Unknown SSS10a/b: Polymerase epsilon exonuclease domain mutation SBS4: Defective MMR ID1/2: Slippage during DNA replication ID5: Unknown or hypoxia ID7: Defective MMR Serebriiskii et.	ions al.

Supplementary Fig. 6b. Mutational signatures associated with *PTEN* hotspots (related to Fig.4). Nucleotide sequences annotated with mutation signatures for MT-H tumor subset. Amino acids shown under lines represent protein changes associated with distinct mutational processes.

MSS htmb

Serebriiskii et. al.

Supplementary Fig. 6c. Mutational signatures associated with *PTEN* hotspots (related to Fig.4). Nucleotide sequences annotated with mutation signatures for MSS htmb tumor subset. Amino acids shown under lines represent protein changes associated with distinct mutational processes.

Supplementary Fig. 7. Location of selected hotspot missense and indel mutations in MT-H versus MT-L tumors, and of a 3D hotspot in the C2 domain on PTEN 3D structure (modeled from pdb:1D5R [https://www.rcsb.org/structure/1d5r]; related to Fig.5). a., b. MT-H (a) and MT-L (b) missense and indel mutations. Heatmap scale for MT-L: Yellow, counts >6 (R15, D24, N31, M35, P38, R47, P95, I101, C105, H123, C124, G127, G129, T131, K128, G132, R159, Q171, D252, T277); Orange, counts > 10 (Y27, I33, G36, Y68, H93, A126, C136, Y155, G165, P246); Red, R130 and R173. Heatmap scale for MT-H: Red, 7 or more (I33, P96, R130, R173); Orange, 3 or 4 (V45, Y68, Y76, A79, M134, C136); Yellow, 1 or 2 (R15, D24, Y27, N31, G36, R47, H93, P95, I101, A126, G127, G129, G132, Y155, R159, G165, S170, P246, D252, T277). c. 3D hotspot identified in C2 domain. Heatmap scale for number of mutations: 5, lime green (F257 and F341); 4, cyan, (P204); 3, limon (M199); 2, lime (V343 and F241); 1, green cyan (F200 and F271) (color names according to PyMol specifications).

Serebriiskii et.al.

Supplementary Fig. 8. PTEN mutations affecting splicing. a. Nucleotide positions of introns and exons in PTEN with Human Genome Sequence Variant (HGVS) nomenclature for donor and acceptor splice site mutations (a). Number of mutations by intron (b) and +2, +1, -1, -2 positions (c). Fraction of PTEN splice mutations by sex (d), tumor site (e), age (f), and in the MT-L, MT-H, and MSS-htmb cohorts (g). No statistically significant relationship between mutations and patient characteristics (d-g) was found, as assessed by a two-sided Fisher exact test (p > 0.05).

Serebriiskii et.al.

Supplementary Fig. 9. Missense and small indel mutation hotspots affecting protein sequence in PTEN (related to Fig.5). a. Location of missense/small indel hotspot mutations in PTEN protein identified in this study (green; >6 mutations observed), and 3D hotspots (magenta) in complete set of CRCs. Hotspots that are members of both groups (>6 mutations but located in a region of elevated 3D mutation) are colored magenta. b. Fraction of single-residue hotspot mutations based on sliding window analysis (window size: 20aa). c-e. Location of missense and small indel hotspots (green) and 3D hotspots (magenta) in the MT-L (c), MT-H (d), and MSS-htmb (e) subsets. Description of protein features for a, and c-e: R, Arginine loop (35-49); A, ATP-binding type-A motif (60-73);W, WPD loop (88–98); P, P loop (123–131); B, ATP-binding type-B motif (122–136); TI, TI loop (160–171); M1, Inter-domain Motif 1 (169–180); M2, Inter-domain Motif 2 (250–259); C, CBR3 loop (260–269); M3, Inter-domain Motif 3 (264– 276); I, Internal loop in C2 domain (286-309); M4, Inter-domain Motif 4 (321-334); Ca, Ca2 loop (321-342). Blue triangles, active site (aa 92,93,124-126,129,130,171); brown triangles, most common post-translational modifications. Hotspot mutations and mutation-enriched stretches along the primary protein sequence were identified using a binominal distribution model; significance of the enrichment of mutations in 3D hotspots was calculated in permutation-based test. P-value cutoff 0.005 was used as a threshold for hotspot detection, uncorrected for multiple comparisons. Missense and inframe-indel mutation counts for each codon and p-values for sliding window analysis are provided as a Source Data file.

Serebriiskii et.al.

Supplementary Fig. 10. Lipid phosphatase activity (LPA) and protein abundance of *PTEN* mutations based on tumor subsite, sex, and age, in MT-L and MT-H CRC. a-d. LPA (a, b) and abundance (c, d) profiles for *PTEN* variants from MT-L (a, c) and MT-H (b, d) CRCs, based on colon versus rectum tumor subsite (left) or sex (center), or age (right). Box plots indicate median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers). Shaded areas represent 95% confidence intervals. Sample sizes for the violin plots are provided in Supplementary Tables 21, 22; no significant differences were found by sex, subsite (using Welch's unequal variances t-test and Kolmogorov-Smirnov tests) or age (using regression analysis).

Serebriiskii et.al.

Supplementary Fig. 11. Frequency of mutations leading to distinct loss of function (LoF) profiles, based on abundance or lipid phosphatase activity (LPA) (related to Fig.6). a. PTEN LoF profile based on tumor subsite. WT, wild type; NA, not assigned due to lack of information; LoF, loss of function. Difference in LoF profile is not statistically significant, as determined by chi-squared contingency table test. b, c. LPA and abundance (VAMP-seq) profiles in the MT-L (b) and MT-H (c) subsets of CRC. *** indicates p-value < 2.2e-16 for MT-L subset, and 1. 8e-12 for MT-H subset, based on Pearson's product moment correlation coefficient (cortest function in R, two-sided). Source Data are provided as a Source Data file. d. Defective activity reported for selected hotspot mutations that do not compromise LPA. PTEN Y336* (red) has reduced abundance but LPA comparable to wt PTEN; although this C-terminally truncated PTEN mutant does not function as a tumor suppressor, tumors bearing this mutation are sensitive to chemotherapeutic agents, and have altered heterochromatin structure ². Multiple mutations at K66 are observed (including K66N, K66T, K66M, shown in green), with different consequences on protein abundance and little effect on LPA. Notably, K27-linked ubiquitination of PTEN at K66 converts the protein from a phosphoinositide/Tyr phosphatase to a Ser/Thr phosphatase, suggesting these mutations may be selected based on loss of Ser/ Thr activity ³. Some other mutations with limited effect on LPA, such as a recurring R142W mutation (purple), has been classified as "likely pathogenic" based on reduced ability to rescue the spheroid formation phenotype of normal mammary epithelial cells lacking PTEN 4. For other common mutations, functional significance remains unknown.

а	MT-H Male (294) # of copies altered						T-H Fe f copie	male s alte	e (307 ered		N #	/Т-Н С of copi	olon es al	(485) terec	MT-H Rectum (46) # of copies altered						
copy #	1	2	3	4	5	1	2	3	4	5	copy #	1	2	3	4	5	1	2	3	4	5
1	3%	0%	0%	0%	0%	4%	0%	0%	0%	0%	1	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	48%	2%	0%	0%	0%	56%	5%	0%	0%	0%	2	47%	2%	0%	0%	0%	46%	4%	0%	0%	0%
3	5%	7%	0%	0%	0%	7%	7%	2%	0%	0%	3	10%	11%	1%	0%	0%	11%	15%	2%	0%	0%
4	0%	27%	0%	1%	0%	0%	18%	0%	0%	0%	4	1%	16%	1%	0%	0%	0%	17%	0%	0%	0%
5	0%	3%	2%	0%	0%	0%	1%	1%	0%	1%	5	0%	4%	3%	1%	1%	2%	0%	2%	0%	0%
b	N #	IT-L M	ale (8	3615)	4	MT-L Female (7802)						M	T-L Col	on (1	.3740	MT-L Rectum (2687)					
$\frac{1}{1}$			1	2	ادی ما ع	4	5	copy #	# of copies aftered												
1	- 2%	-	0%	- 0%	0%	2%	-	0%	- 0%	0%	1	2%	-	0%	- 0%	0%	2%	-	0%	- 0%	0%
2	270	7%	0%	0%	0%	2/%	8%	0%	0%	0%	2	270	8%	0%	0%	0%	2/0	7%	0%	0%	0%
2	12%	17%	1%	0%	0%	12%	17%	1%	0%	0%	2	12%	18%	1%	0%	0%	13%	15%	4%	0%	0%
л Л	2%	15%	470	2%	0%	20%	1/0	2%	2%	0%	л Л	2%	1/1%	4/0	2%	0%	20%	16%	2%	1%	0%
4	570 10/	20/	470	270	20%	270	20/	370	270	0%	4	570 10/	20/	470	270	20%	270	10%	570	20/	20%
5	170	570	570	270	270	170	570	570	270	270	5	170	570	570	Ζ70	270	170	470	470	270	270
C MT-L htmb Male (97) # of copies altered					MT- #	L htmb of copi	Fem ies al	ale (terec	55)		мт- #	L htm of copi	MT-L htmb Rectum (27) # of copies altered								
copy #	1	2	3	4	5	1	2	3	4	5	copy #	1	2	3	4	5	1	2	3	4	5
1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	36%	3%	0%	0%	0%	38%	0%	0%	0%	0%	2	56%	2%	0%	0%	0%	19%	4%	0%	0%	0%
3	11%	11%	0%	0%	0%	16%	13%	4%	0%	0%	3	7%	2%	0%	0%	0%	7%	26%	0%	0%	0%
4	0%	19%	3%	0%	0%	7%	11%	7%	2%	0%	4	1%	26%	0%	0%	0%	0%	30%	0%	0%	0%
5	0%	7%	7%	2%	0%	0%	0%	0%	2%	0%	5	0%	3%	3%	0%	0%	0%	0%	15%	0%	0%

Serebriiskii et.al.

Supplementary Fig. 12. Copy number pattern of PTEN mutations by tumor sub-site and sex (related to Fig.7). a, b. For males versus females (a) or colon versus rectum subsites (b), data indicate co-occurrence of PTEN mutations with altered copy number of PTEN alleles. A value of 1 indicates loss of one allele; values of 3 or higher indicate increased gene copy number. Vertical axis, the estimated total PTEN copy number; on horizontal axis, the estimated copy number for the allele carrying PTEN mutations. Numbers in the cells indicate percent of all mutations with a combination of total/altered copy numbers. Source Data are provided as a Source Data file.

Serebriiskii et.al.

Supplementary Fig. 13. Relationship between multiplicity of *PTEN* **mutations and TMB (related to Fig.7)**. **a-c**. Distribution of TMB based on the number of *PTEN* mutations in MT-L, MT-H, or MSS-htmb. No statistically significant difference was found using Welch's unequal variances t-test. Box plots indicate median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers). Number of samples for each plot is shown beneath the labels on X-axis. d-f. Frequency of *PTEN* alterations as a factor of TMB and multiplicity. Red, single *PTEN* alteration; blue-green, additional *PTEN* alterations. Shaded areas represent 95% confidence intervals. Source Data are provided as a Source Data file.

Supplementary references

- 1. Chang MT, *et al.* Accelerating Discovery of Functional Mutant Alleles in Cancer. *Cancer Discov* **8**, 174-183 (2018).
- 2. Chao JT, *et al.* A Premalignant Cell-Based Model for Functionalization and Classification of *PTEN* Variants. *Cancer Res* **80**, 2775-2789 (2020).
- 3. Hu Q, *et al.* LncRNAs-directed *PTEN* enzymatic switch governs epithelialmesenchymal transition. *Cell Res* **29**, 286-304 (2019).
- 4. Gong L, *et al.* Nuclear *PTEN* tumor-suppressor functions through maintaining heterochromatin structure. *Cell Cycle* **14**, 2323-2332 (2015).
- 5. Post KL, *et al.* Multi-model functionalization of disease-associated *PTEN* missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. *Nat Commun* **11**, 2073 (2020).