iScience, Volume 25

Supplemental information

Unusual (2R,6R)-bicyclo[3.1.1]heptane

ring construction in fungal

α-trans-bergamotene biosynthesis

Yan-Hua Wen, Tian-Jiao Chen, Long-Yu Jiang, Li Li, Mengbo Guo, Yu Peng, Jing-Jing Chen, Fei Pei, Jin-Ling Yang, Rui-Shan Wang, Ting Gong, and Ping Zhu

Supplementary Figures

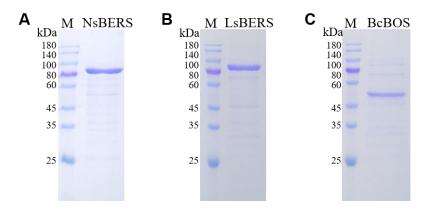


Figure S1. SDS-PAGE of purified STSs by affinity chromatography, related to Figure 2, Figure 4 and Figure S2.

(A) MBP-tagged NsBERS (91 kDa); (B) MBP-tagged LsBERS (92 kDa); (C) BcBOS (53 kDa).

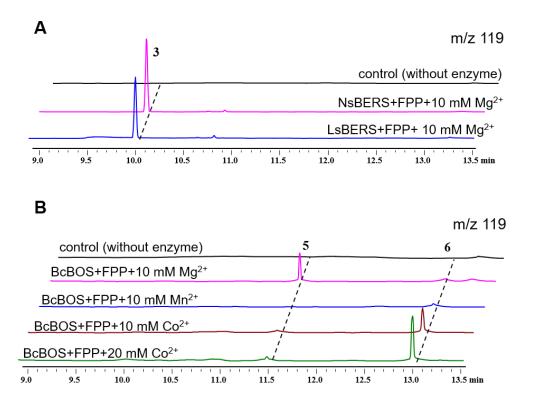


Figure S2. *In vitro* characterization of NsBERS, LsBERS and BcBOS, related to Figure 2, Figure 4 and Figure S1.

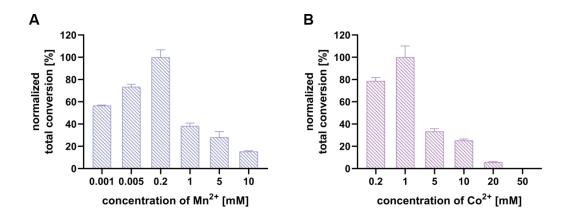


Figure S3. The optimal concentrations of divalent metal ions assay of NsBERS, related to Figure 2, Figure S1 and Figure S2.

The corresponding peak of **3** was integrated in each sample and normalized with the average conversion of optimal concentrations, respectively.

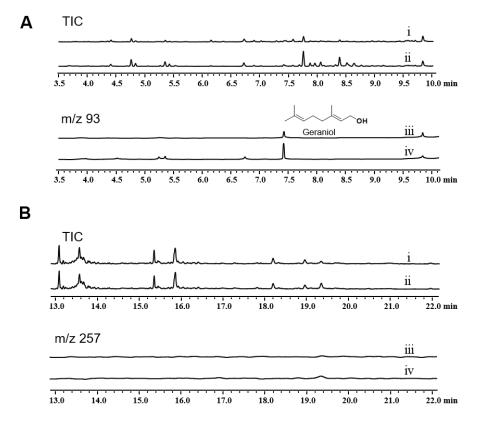


Figure S4. Substrate promiscuity assay of NsBERS, related to Figure 2 and Figure S1.

(A) GC–MS analysis of *n*-hexane layers from *in vitro* biochemical reactions of GPP without (i, iii) or with NsBERS (ii, iv); (B) GC–MS analysis of *n*-dodecane layers from *in vitro* biochemical reactions of GGPP without (i, iii) or with NsBERS (ii, iv).

NsBERS/1-435 LsBERS/1-444 BcBOS/1-441 AaTPS/1-418 Hyp3/1-372 FfAAS/1-371 FgFS/1-371	1MKSFLYWF IWSGTNNSKSEA I APLTPPPPVRLQNKPSQAKKH I TDI VASHEDLKYI NPI RYAYDPV SPAAPYLNPI-LFF 1MSLPSFFNWQI RRSTPRPVPSAPSSASDSSGSSGSSASSASTHQTKRNLTK-VVSPGDSAH I SPI KYAYDPVPEVPQYLSPL-PFE 1 MAQI MTSAESLPEFSI SFNWEFQKNDGI HQ	84 86 IR 56 25
NsBERS/1-435 LsBERS/1-444 BcBOS/1-441 AaTPS/1-418 Hyp3/1-372 FfAAS/1-371 FgFS/1-371	80 FPSQ ASRPCPOM-ANSVRIYPLRGGLPYRSSLDYVRGCKHFRANIQESTDLLQGIMR KSAGDIPVGTAKITLSKL-AKHELRPGIED 85 FPHY ATKSCAYATLNAVKIK RAAGLPYRSSLDYVRGNKNMKANLDESVKLLELIVADKAALDEEVGK-GITLSKI-AKKELRPGLEH 87 FPQY ASTDCQYTSVNSVRVNRAAGLPYRSRFELIRASKHMKANUDETKKMLELIIADHSSTSVGMR-DGLTLAGL-AKKELRPGLEH 57 TDSPLASPKPSNVKEGITENNENSFSISPQLTGLPWPTSFFKVRQNRHMRQSLRISTQLLEFAADDTSAQ-AVRRNGVSLARI-ASHELQTDEED 26FLREAISSVPGL-ENCNYFDRSLGVFWPTSFFAAAGSKYMKDAEEAAAELMDOIVAAPAGEQGSLFAELAVSDKKAAKRELLD 33LFRERNVPEDAPLTLYPEQLNVPMHTSLPWTRQSKYMKVQEAAGRDLVNRISADKASERGALPVEMDE-RRKGKIDELVE 33LFREDSVSEDAPLVIYPEDMEVYNTSLPWTRQSKFMAYAEAAGYEMANGISLDKASERGTLPME-MDE-RRKWKIDELVE	RM 172 RV 174 RF 153 TS 112 DA 114
NsBERS/1-435 LsBERS/1-444 BcBOS/1-441 AaTPS/1-418 Hyp3/1-372 FIAAS/1-371 FgFS/1-371	DDXXE 168 MLATNYMFPFADARRVKI I AVLMI MY I I FDKVE TPEGAQLNHFRNDFLNHFODPGVLSTEP - TSDFHRHTRETMTA I WEEDG I SGNGGREM I EA 173 VVATSYMFPFADERRLROI ATLMI MY VFDKVE TPEGAPLSNFRTDFLRRFREPSSVESDVSTMSEL OHHLDFTVRI I GEEDS I SGNGGKEM I EA 175 VLATSYMYPNANERRAR I I AATMMLLE I YDKME TPEGLSFTNSREOFLDYFKKENDVMASDSTTSDFORHLKSTMSA I ADEDE I SGNGGKEM I EA 176 TKFATI I FPEANEERMKLIAAT I VY I I FDDSVE MHSE- DTLGL VRODF I RRLRGD I EGMAE HOTPL QQL I NSITVQGFKODOKTMGNGQOEVLDR 113 VSAPNMFPANANPRAR I MAKANLLI I MHDVO'CY QSVGSTI I DSAL ADTSTPNGKGADI LWONR I FKERSETNRE PVVGPGLGGILKA 115 SCAVYLYPSSSPTT I EL LTGALLLLIFHDDYME RGATQODATVC DDFVTMI PKNKHMKRYFAEVLECDPILGPELLRAI GL 116 I SCCAVLYPTSSPTT I ALLTGSVLLIE LHDDVIE RGATQNETTVV	LM 271 MI 273 LI 249 WV 205 FV 198
NsBERS/1-435 LsBERS/1-444 BcBOS/1-441 AaTPS/1-418 Hyp3/1-372 FfAAS/1-371 FgFS/1-371	265 DAFROVHE NGDETSVEDVLQFERINVGARFVI AAAKFTIKSSVDVKD - PRLSRVLGLIGDHLGIINDMASFDKE SRALEQGETQDMINVASVIQK 272 AAFHOVHE DGDFHSLEDVLKFRINVGARFVI AAAKFSIKSSVDVKD - PRFARVLSLVGDHVGIINDMASYDKE SKALREGETQDMINIVAVFQT 274 GGFROVHE NGEFQSLEEVLSFRINVGAQVVI AAKFTIKSSVDVDD - PRFARVLSLVGDHVGIINDMASYDKE SKALREGETQDMINIVAVFQT 276 DFCFHVPF QTKFAMEDVLSVKVGAQVVI AAKFTIKSSVDVDD - PRFARVLSLVGDHVGIINDMASYDKE SKALREGETQDMINIVAVFQT 260 DFCFHVPF QTKFAMEDVLSVKVGAQVVI AAKFTIKSSVDVDD - PRFARVLSLVGDHVGINDMASYDKE SKALREGETQDMINIVAVFQT 200 BFLTRKALFAS - MTFRSFNEVIDVRTVLIOVACA 206 EHTRKALFAS - MTFRSFNEVIDVR HDIAKPFMIAAILTCEIFLTPADMEPLRKLHRLYMTHFSLTNDLYSFNKE VVAEQET - GSAVINAVRVLEQ 199 NAGRKKSFFKQDKVATLAEVLDVR HDIAKPFMIAAIRFGSGVQQTREELAPFDELADLYVQHSILINDLYSVDKE WYEARTI - NOSVVNAVHVIEK 199 RDGRVKSFFKQDHVATLADVMLYR 3NDVGKTFMIAAIRFGSGVQQTREELAPFDELADLYVRSILINDLYSVDKE VHEVKTI - DASIVNAVHVIEK	LL 367 LR 369 LF 345 LV 302 LM 296
NsBERS/1-435 LsBERS/1-444 BcBOS/1-441 AaTPS/1-418 Hyp3/1-372 FfAAS/1-371 FgFS/1-371	361 SLOSMEARKAASYAYQLOVEYWIME IKRLEREEDITDEEWWFLEAVFLTATGNTFFCMTSA <mark>RY</mark> GGOCAAIDPSW 368 SLPDARAAKAAAYGYQLOVEAWIVEEIEALESFGKLSDEDWWFVEAVLLSATGNVFFCMTSSRYGGOAAMIEPQYTS 370 SLPSSAERKVAAYTYQLOVESWIIEEVEMLAARGDITDEEWWFIEAVEMTATGNAFFCMTSSRYGGDAAKLT 346 SLPSAAEAKALTYSMQLLVEAQIKTELDSLVAGGILSCEELRELDAALLMASGNVFYSVSSRYGGDAAKLEK 303 DTS-TRSAKVLLRÄFLWDELCUIHDELTRI-KGTDLTPSCWRFARGMVEVCABNIFYSATCLRYAKPERGI 297 CVP-PHLAKTITRTMSFDVEKKYYAESERFMRDPALNDKORTYVIALFDCLTGNLFHHATLGRYSRYAEYVFDCKT- 297 SVS-PDLAKNLTRAITFDMEKEFYGICEKFMHSPDINDRORVEVTALFDALTGNIEHSATLSKYVHGERPLECKC-	435 444 441 418 372 371 371

Figure S5. Multiple sequence alignment of characterized TPSs in Clade III, related to

Figure 2 and Figure 3.

The multiple sequence alignment was generated using Clustal Omega and edited with Jalview.

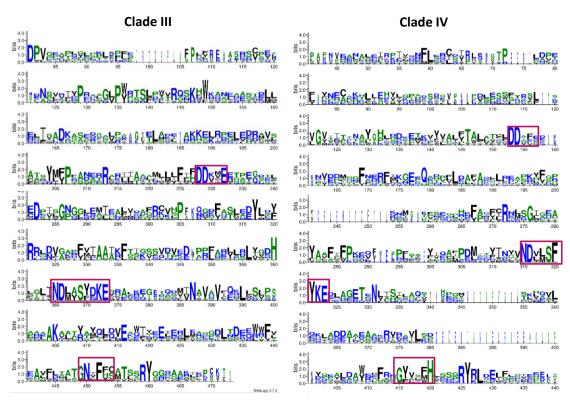
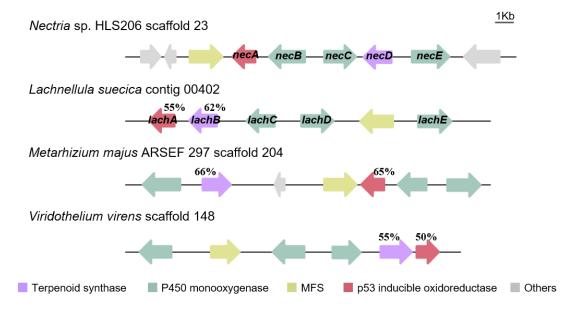



Figure S6. Conserved sites analysis of identified STSs in Clade III and Clade IV, related to Figure 3.

Figure S7. Homologous gene clusters of *nec* cluster, related to Figure 2.

The PIG3 variants, NsBERS-like enzymes and cytochrome P450s monooxygenases colocalized in many phytopathogen BGCs.

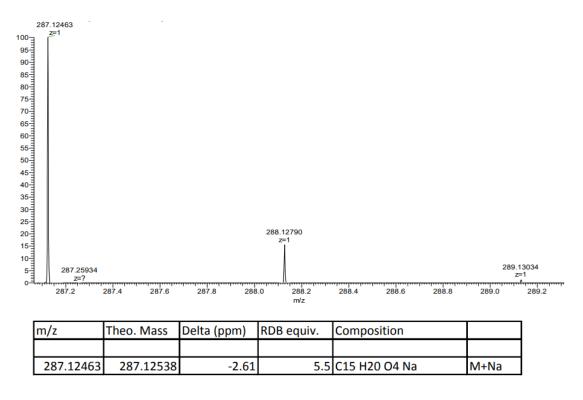


Figure S8. HRESIMS spectrum of 1, related to Figure 1.

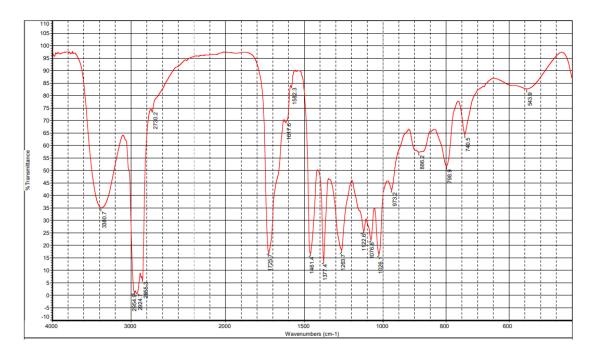


Figure S9. IR spectrum of 1, related to Figure 1.

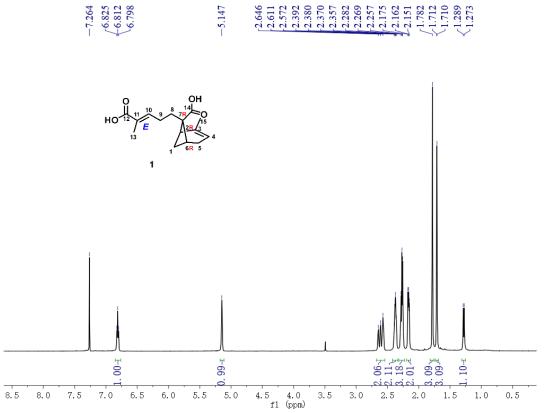
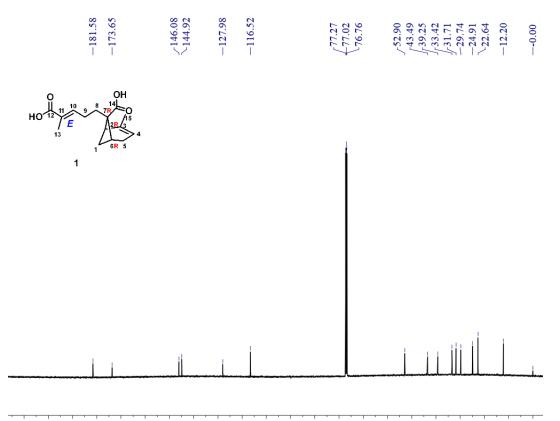



Figure S10. ¹H NMR spectrum (500 MHz) of 1 in CDCl₃, related to Figure 1 and Table 1.

²¹⁰ 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S11. ¹³C NMR spectrum (125 MHz) of 1 in CDCl₃, related to Figure 1 and Table 1.

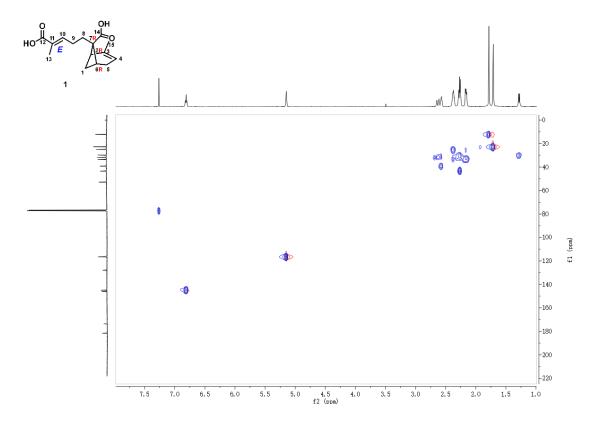


Figure S12. HSQC spectrum of 1 in CDCl₃, related to Figure 1.

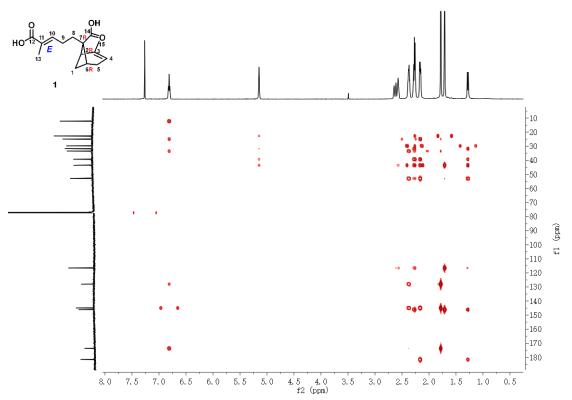


Figure S13. HMBC spectrum of 1 in $CDCI_3$, related to Figure 1.

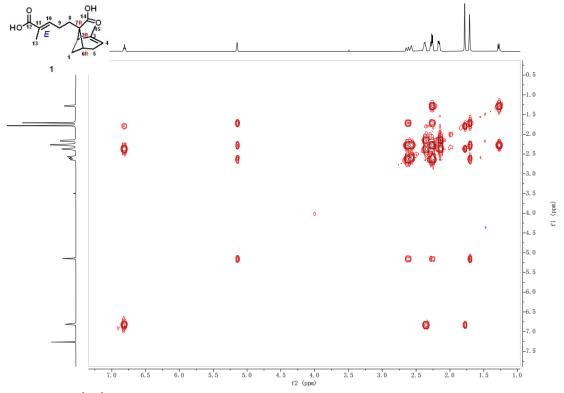
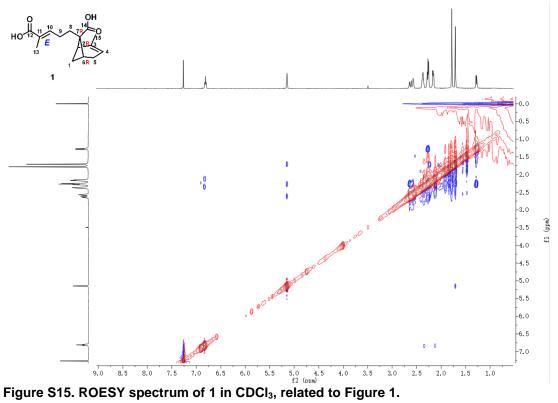



Figure S14 .¹H-¹H COSY spectrum of 1 in CDCI₃, related to Figure 1.

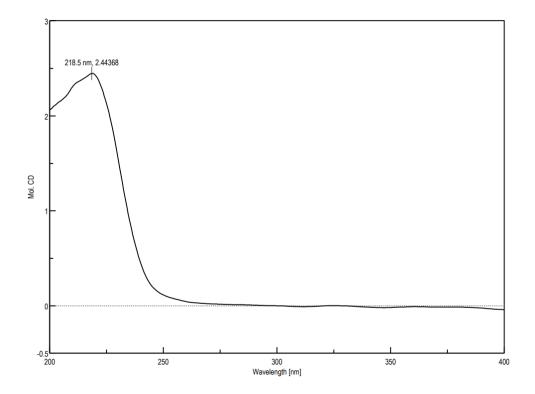


Figure S16. CD spectrum of 1 in CH₃OH, related to Figure 1.

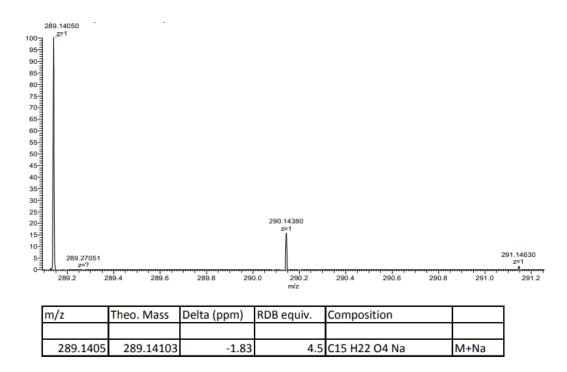


Figure S17. HRESIMS spectrum of 2, related to Figure 1.

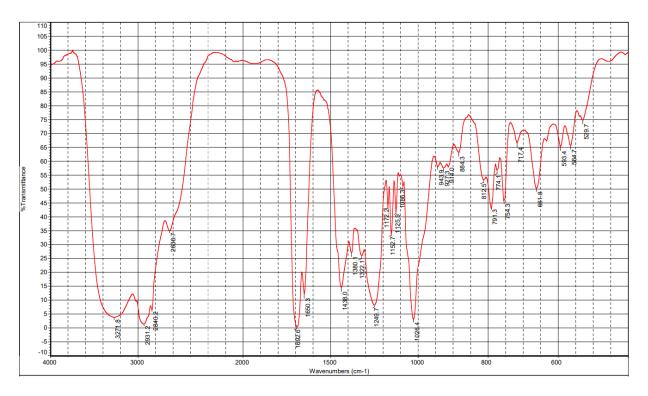


Figure S18. IR spectrum of 2, related to Figure 1.

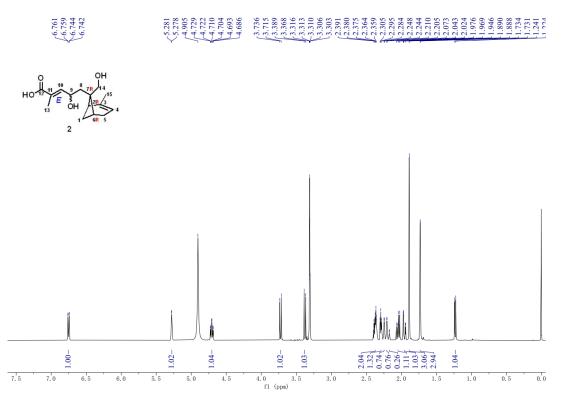


Figure S19. ¹H NMR spectrum (500 MHz) of 2 in CD₃OD, related to Figure 1 and Table 1.

Figure S20. ¹³C NMR spectrum (125 MHz) of 2 in CD₃OD, related to Figure 1 and Table 1.

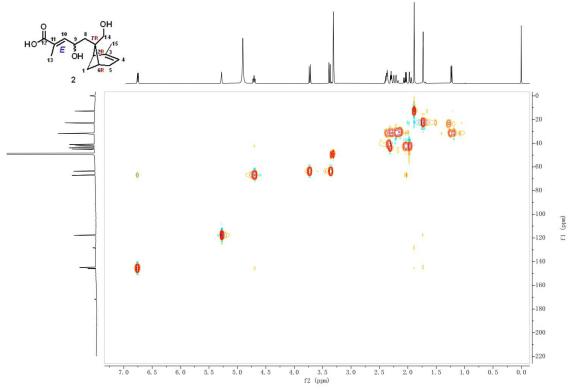


Figure S21. HSQC spectrum of 2 in CD_3OD , related to Figure 1.

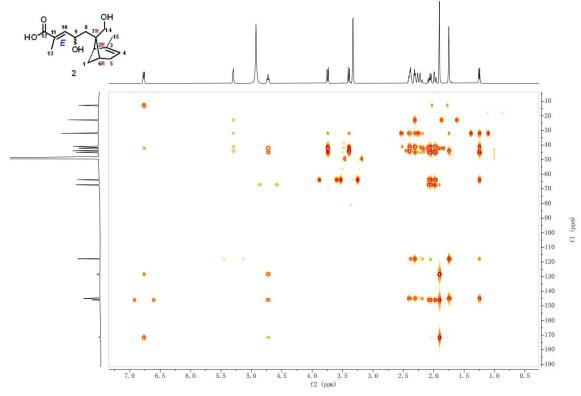


Figure S22. HMBC spectrum of 2 in CD₃OD, related to Figure 1.

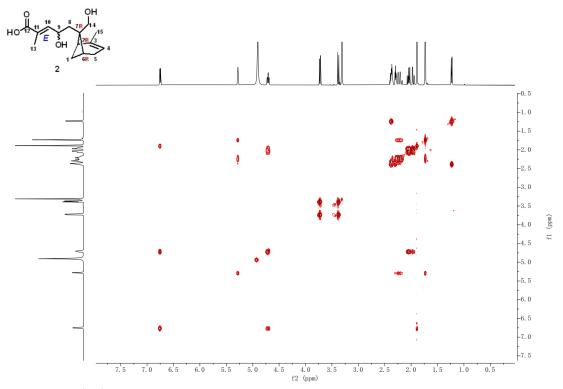


Figure S23. 1 H- 1 H COSY spectrum of 2 in CD₃OD, related to Figure 1.

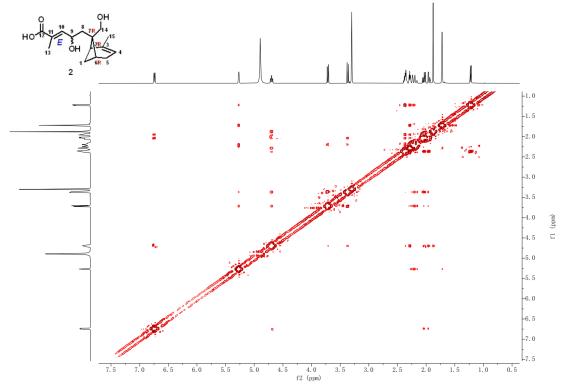


Figure S24. ROESY spectrum of 2 in CD₃OD, related to Figure 1.

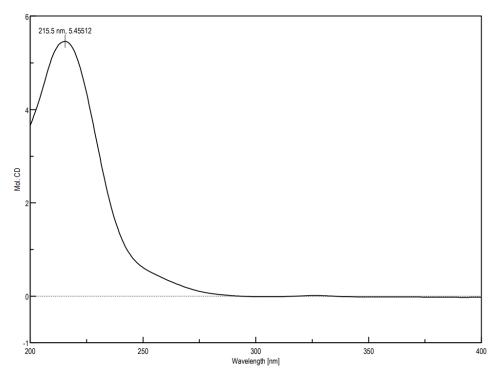


Figure S25. CD spectrum of 2 in CH₃OH, related to Figure 1.

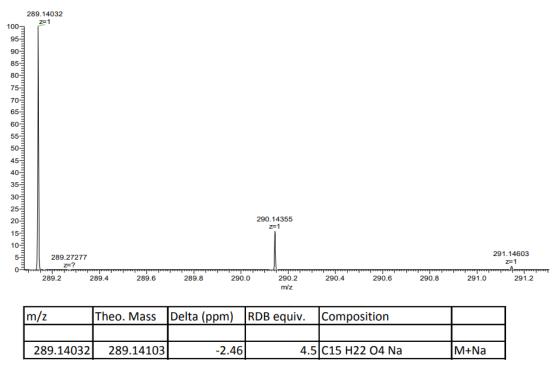


Figure S26. HRESIMS spectrum of 2', related to Figure 1.

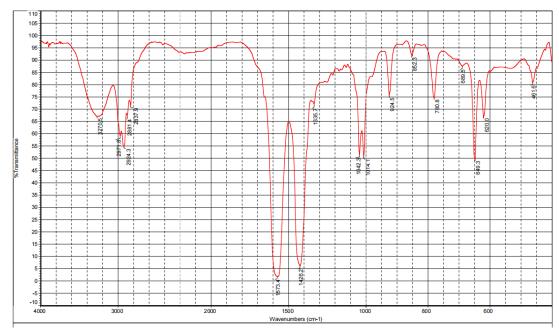


Figure S27. IR spectrum of 2', related to Figure 1.

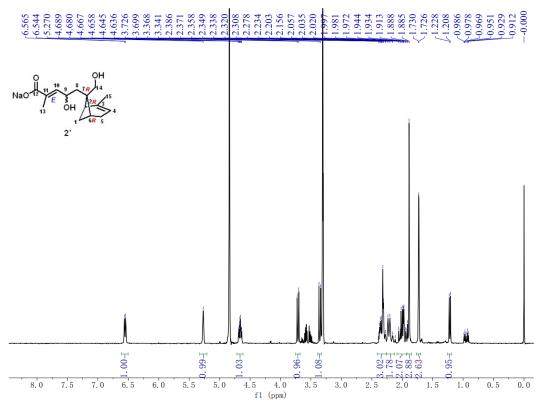


Figure S28. ¹H NMR spectrum (500 MHz) of 2' in CD₃OD, related to Figure 1 and Table 1.

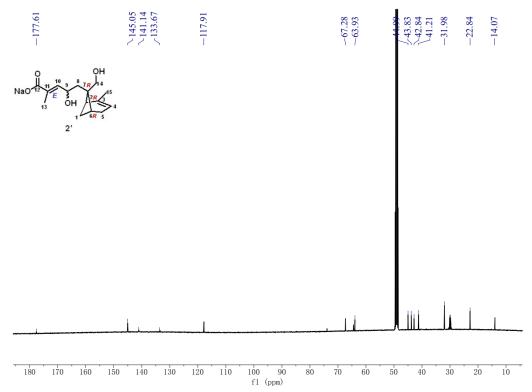


Figure S29. ¹³C NMR spectrum (125 MHz) of 2' in CD₃OD, related to Figure 1 and Table 1.

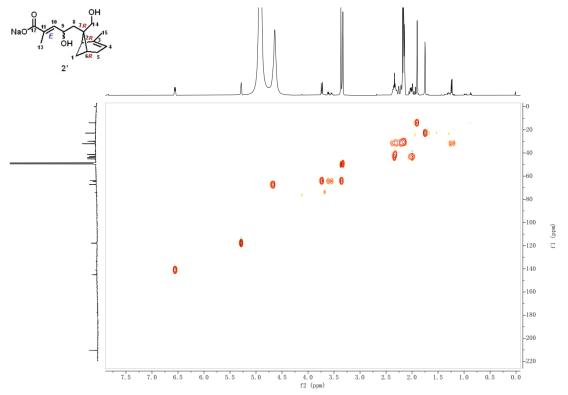


Figure S30. HSQC spectrum of 2' in CD₃OD, related to Figure 1.

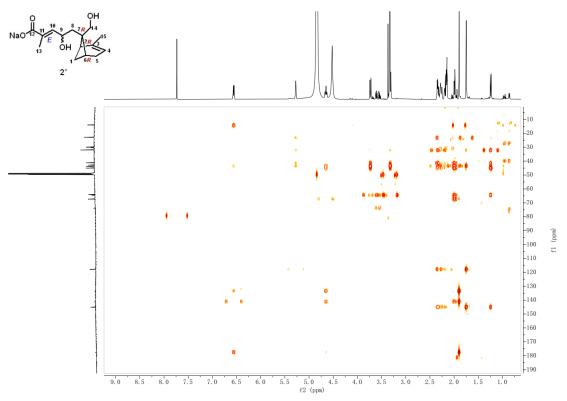


Figure S31. HMBC spectrum of 2' in CD₃OD, related to Figure 1.

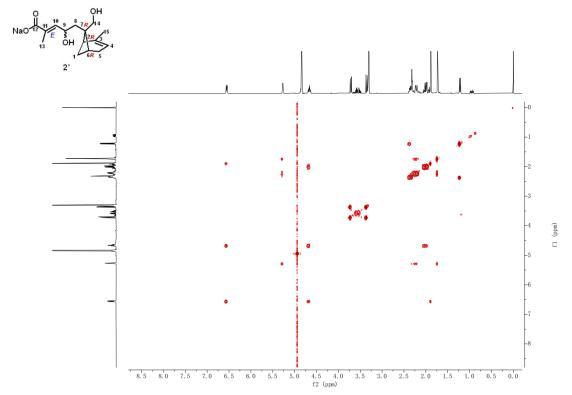


Figure S32. ¹H-¹H COSY spectrum of 2' in CD₃OD, related to Figure 1.

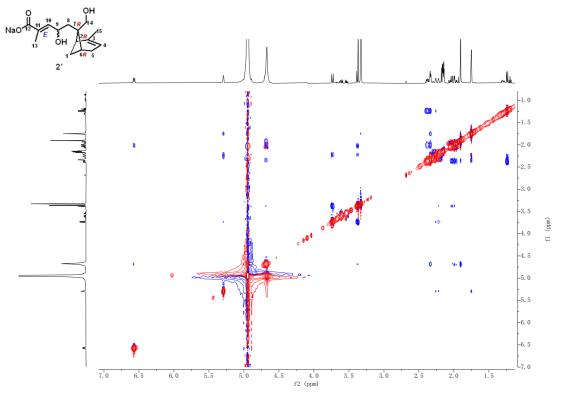


Figure S33. ROESY spectrum of 2' in CD_3OD , related to Figure 1.

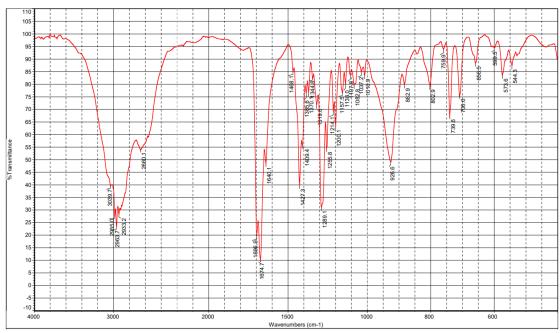


Figure S34. IR spectrum of 3, related to Figure 2.

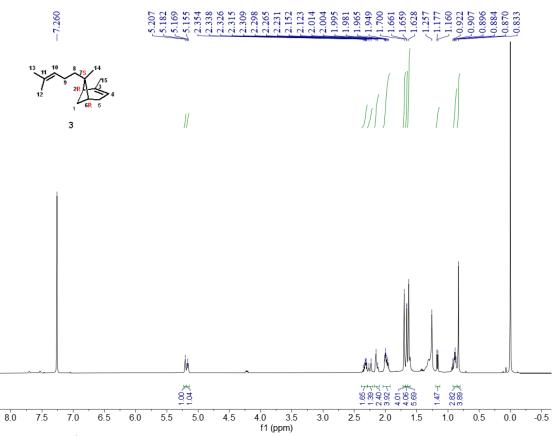


Figure S35. ¹H NMR spectrum (500 MHz) of 3 in CDCl₃, related to Figure 2 and Table S2.

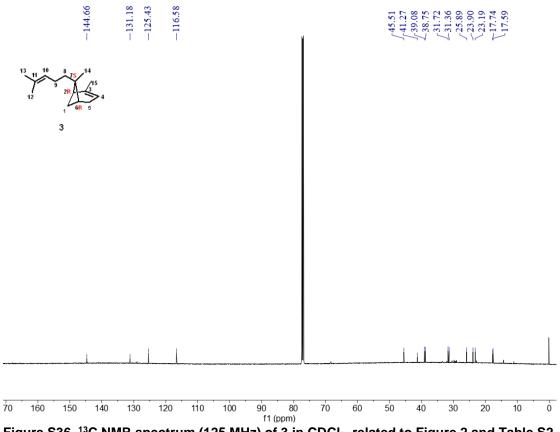


Figure S36. ¹³C NMR spectrum (125 MHz) of 3 in CDCI₃, related to Figure 2 and Table S2.

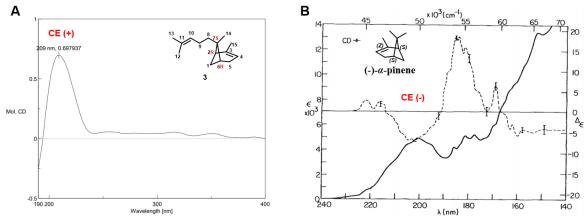


Figure S37. Comparison CD spectrum of 3 with that of (–)- α -pinene, related to Figure 2. (A) CD spectrum of 3 in *n*-hexane, 209nm, CE (+);

(B) The absorption and CD spectra of (-)- α -pinene in ref [The Journal of Chemical Physics 59(3):1092-1098], Fig2, Table 2, 202nm, CE (-).

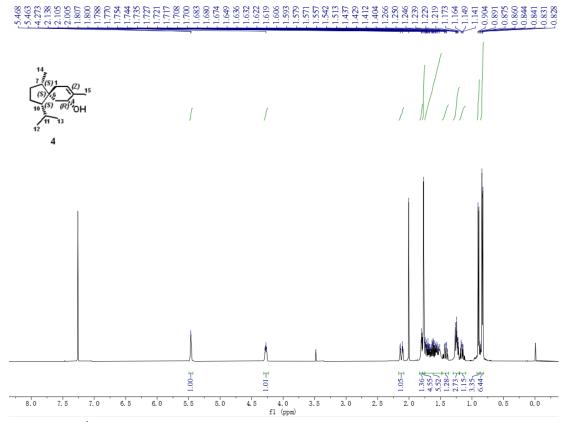
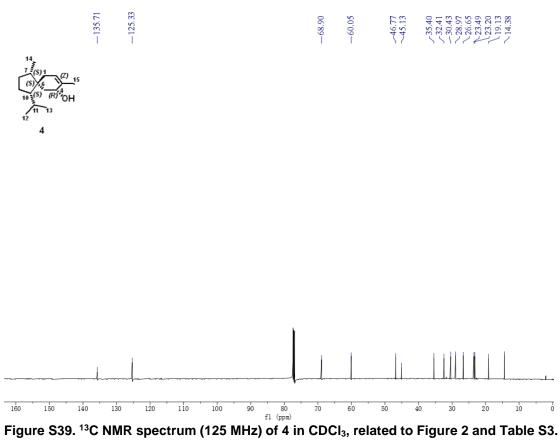



Figure S38. ¹H NMR spectrum (500 MHz) of 4 in CDCl₃, related to Figure 2 and Table S3.

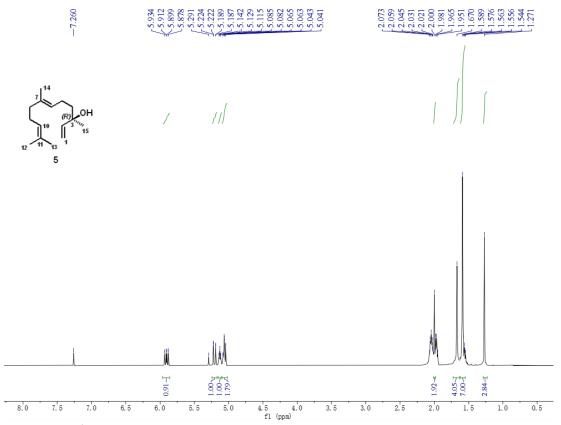
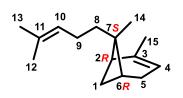
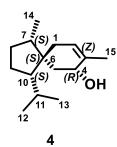


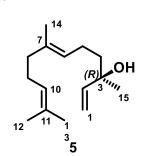
Figure S40. ¹H NMR spectrum (500 MHz) of 5 in CDCI₃, related to Figure 4 and Table S3.

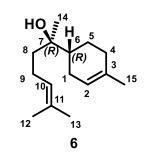


Supplementary Tables

Table S1. Crystal data and structure refinement for 1, related to Figure 1.				
Identification code	206_3_auto			
Empirical formula	$C_{15}H_{20}O_4$			
Formula weight	264.31			
Temperature/K	99.9(3)			
Crystal system	triclinic			
Space group	P1			
a/Å	7.22070 (10)			
b/Å	7.6941 (2)			
c/Å	13.1723 (3)			
α/°	93.095 (2)			
β/°	99.137 (2)			
γ/°	94.224 (2)			
Volume/Å3	718.96 (3)			
Z	2			
$\rho_{calc}g/cm3$	1.221			
µ/mm ⁻¹	0.717			
F(000)	284.0			
Crystal size/mm3	$0.11 \times 0.09 \times 0.03$			
Radiation	Cu K α (λ = 1.54184)			
2Θ range for data collection/°	6.812 to 148.786			
Index ranges	$-8 \leq h \leq 8, -9 \leq k \leq 9, -16 \leq 1 \leq 15$			
Reflections collected	26108			
Independent reflections	5336 [$R_{int} = 0.0238$, $R_{sigma} = 0.0159$]			
Data/restraints/parameters	5336/3/352			
Goodness-of-fit on F2	1.074			
Final R indexes [I>= 2σ (I)]	R1 = 0.0325, wR2 = 0.0889			
Final R indexes [all data]	R1 = 0.0334, wR2 = 0.0895			
Largest diff. peak/hole / e Å ⁻³	0.27/-0.15			
Flack parameter	0.01(6)			


 Table S1. Crystal data and structure refinement for 1, related to Figure 1.


Table S2. The ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data of 3 in CDCI₃, related to Figure 2, Figures S35–37.



No	$\delta_{\rm H}$ mult. (<i>J</i> in Hz)	δc
1a	1.17, d (8.5)	31.7
1b	2.31, m	
2	2.01, m	45.5
3		144.7
4	5.20, brs	116.6
5	2.13, m, 2.25, m	31.4
6	2.15, m	39.1
7		41.3
8	1.66, m (2H)	38.8
9	1.98, m (2H)	23.89
10	5.17, t (6.0)	125.4
11		131.2
12	1.63, s (3H)	17.7
13	1.70, s (3H)	25.9
14	0.83, s (3H)	17.6
15	1.66, s (3H)	23.2

Table S3. The ¹³C NMR (125 MHz) data of 4–6 in CDCI₃, related to Figure 2 and Figure 4.

No	4	5	6
1	35.4	111.8	27.0
2	125.3	145.2	120.6
3	135.7	73.6	134.3
4	68.9	42.1	31.1
5	32.4	26.7	22.2
6	45.1	124.3	43.0
7	46.8	135.7	74.5
8	29.0	39.8	40.2
9	26.7	28.0	23.3
10	60.0	124.4	124.7
11	30.4	131.6	131.9
12	23.5	16.1	17.8
13	23.2	22.8	25.9
14	14.4	17.8	23.5
15	19.1	25.8	23.4

Protein	Size (aa)	homology (swissprot)	Identities/ Positives	Conserved domains
NecA	358	Quinone oxidoreductase PIG3	36/52 %	PIG3 p53-inducible quinone oxidoreductase
NecB	525	Tryprostatin B 6-hydroxylase	43/61 %	CYP67-like (hydroxylation)
NecC	494	CYP450 monooxygenase AMT3	38/60 %	CYP60B-like (hydroxylation)
NecD (NsBERS)	435	Terpene cyclase aneC	24/44 %	Non-plant terpene cyclases
NecE	520	Ent-kaurene oxidase	29/51 %	CYP503A1-like (three successive oxidations / demethylation)

Table S4. Homologues and conserved domains of the proteins in the *nec* cluster, relatedto Figure 2.

Table S5. Predicted functions and conserved domains of the proteins in the *lach* cluster,related to Figure 2.

Protein	Accession number	Size(aa)	Predicted functions	Conserved domains
LachA	TVY81922.1	355	NAD(P)H quinone oxidoreductase	PIG3 p53-inducible quinone oxidoreductase
LachB (LsBERS)	TVY81921.1	444	Terpene Synthase	Non-plant terpene cyclases
LachC	-	442	Cytochrome P450	CYP503A1-like (three successive oxidations / demethylation)
LachD	TVY81920.1	537	Cytochrome P450	CYP67-like (hydroxylation)
LachE	TVY81918.1	384	Cytochrome P450	CYP503A1-like (three successive oxidations / demethylation)

Description	Strain	coverage	Identity	Accession
D. CTC/A 1	Metarhizium majus	91%	65.95%	KID93366.1
BcSTC4, sesquiterpene cyclase	ARSEF 297			
BcSTC4, sesquiterpene cyclase	Metarhizium	91%	65.78%	KID81896.1
BCS1C4, sesquiterpene cyclase	guizhouense ARSEF 977	9170		
hypothetical protein LSUE1_G003745	Lachnellula suecica	91%	62.09%	TVY81921.1
hypothetical protein EAE99_001473	Botrytis elliptica	92%	56.62%	KAF7939668.1
putative sesquiterpene cyclase protein	Botrytis cinerea BcDW1	93%	54.74%	EMR81374.1
BcSTC4, similar to sesquiterpene cyclase	Botrytis cinerea T4	93%	54.74%	CCD49915.2
hypothetical protein GJ744_011298	Endocarpon pusillum	91%	56.78%	KAF7513032.1
Bcstc4	Botrytis cinerea B05.10	93%	54.50%	XP_001546971
uncharacterized protein EAE98_003830	Botrytis deweyae	92%	55.88%	XP_038811923
hypothetical protein EV356DRAFT_562544	Viridothelium virens	89%	55.36%	KAF2228525.1
hypothetical protein COCHEDRAFT_1083047	Bipolaris maydis C5	88%	55.93%	EMD94346.1
hypothetical protein COCC4DRAFT_58253	Bipolaris maydis ATCC	88%	55.78%	XP_014081267.
hypothetical protein COCC+DKAI 1_38233	48331	0070		
hypothetical protein COCMIDRAFT_37699	Bipolaris oryzae ATCC	84%	56.60%	XP_007689029
nypolieliea piolein cociviibicati 1_57077	44560	0470		
uncharacterized protein EAF02_006039	Botrytis sinoallii	98%	53.01%	XP_038758304.
hypothetical protein BELL_0648g00110	Botrytis elliptica	92%	54.41%	TGO70911.1
hypothetical protein EAF03_005474	Botryotinia squamosa	92%	54.17%	KAF7866352.1
hypothetical protein BGAL_0106g00160	Botrytis galanthina	87%	52.58%	THV51576.1
hypothetical protein IFR05_015310	Cadophora sp. M221	99%	45.49%	KAG4429207.1
hypothetical protein KY384_006558	Bacidia gigantensis	88%	48.97%	KAG8528869.1
putative sesquiterpene cyclase protein	Botrytis fragariae	64%	60.92%	XP_037188555.
hypothetical protein BOTCAL_0446g00010	Botryotinia calthae	79%	52.11%	TEY39953.1

Table S6. Homology search of NsBERS in NCBI, related to Figure 3.

Primer name	Primer sequence (5'→3')		
pYTU-Nec04-F	CTTCATCCCCAGCATCATTACACCTCAGCAATGGCTTCCGTCAGCACC		
pYTU-Nec04-R	GGGATCCACTAGTTCTAGAGCGGCCGCCTCAGCTCGGGGGTCGGGAATAATTC		
pYTU-NecD-F	CTTCATCCCCAGCATCATTACACCTCAGCAATGAAAAGCTTCCTGTACTGG		
pYTU-NecD-R	GGGATCCACTAGTTCTAGAGCGGCCGCCCCCTGACGATTCCATCGAG		
pYTU-Nec26-F	CTTCATCCCCAGCATCATTACACCTCAGCAATGTATAACACGGGGAGCC		
pYTU-Nec26-R	<u>GGGATCCACTAGTTCTAGAGCGGCCGCC</u> GAGCAACATGCAAGGGAGAC		
U-F	GAAGTGGTTGGTCGGGGTTC		
U-R	CTGACTTCAACACAGTGG		
pESC-URA-NsBERS-F	CAAGGAGAAAAAACCCCGGATCCATGAAAAGCTTCCTGTACTGG		
pESC-URA-NsBERS-R	GAAATCAACTTCTGTTCCATGTCGACTTACCACGAGGGGTCAATAG		
pET28a-MBP-NsBERS-F	GCCATCATCATCATCACGGATCCATGAAAAGCTTCCTGTACTGG		
pET28a-MBP-NsBERS-R	GTGGTGGTGCTCGAGTGCGGCCGCTTACCACGAGGGGTCAATAG		
pET28a-MBP-LsBERS-F	GCCATCATCATCATCACGGATCCATGAGTCTGCCCAGCTTC		
pET28a-MBP-LsBERS-R	GTGGTGGTGCTCGAGTGCGGCCGCTCAACTAGTGTACTGTGG		
pET28a-BcBOS-F	CAGCAAATGGGTCGCGGATCCATGGCTCAAATTATGACTTCAGCTG		
pET28a-BcBOS-R	GTGGTGGTGCTCGAGTGCGGCCGCCTACGTCAGCTTGGCAG		

 Table S7. Primers used for this study, related to STAR Methods.

Plasmid name	Genes	Aim
pYTU-Nec04	nec04 from gDNA	A. nidulans overexpression
pYTU-NecD	necD from gDNA	A. nidulans overexpression
pYTU-Nec26	nec26 from gDNA	A. nidulans overexpression
pESC-URA-NsBERS	necD from cDNA	S. cerevisiae overexpression
pESC-URA-LsBERS	lachB from synthesized sequence	S. cerevisiae overexpression
pESC-URA-BcBOS	bcbos from synthesized sequence	S. cerevisiae overexpression
pET28a-MBP-NsBERS	necD from cDNA	E. coli overexpression
pET28a-MBP-LsBERS	lachB from synthesized sequence	E. coli overexpression
pET28a-BcBOS	bcbos from synthesized sequence	E. coli overexpression

 Table S8. Plasmids used for this study, related to STAR Methods.