
Steps Platform Methods

Import raw data
Agilent 1/2-color read.maimages from the limma R package[1]
Affimetrix justRMA from the affy R package [2]
Illumina Methylation read.metharray.exp from the minfi R package [3]

Quality Check
Agilent 1/2-color arrayQualityMetrics [4]
Affimetrix yaqc function from the yaqcaffy R package[5]
Illumina Methylation shinyMethyl [6]

Probe Quality Estimation

Agilent 1/2-color Custom function(); by using signal distribution of negative control probes
Affimetrix -
Illumina Methylation detectionP function from the minfi R package [3]

Diagnostics Plots
Agilent 1/2-color

Density plot, MDS plot, boxplotAffimetrix
Illumina Methylation

normalisation
Agilent 1/2-color Between array normalisation, quantile normalisation, VSN normalisation, cyclic loess normalisation available

in the R limma package [1];
Affimetrix Handled by justRMA [2] ;
Illumina preprocessRaw, SWAN normalisation [7], quantile normalisation [8], preprocessIllumina, Funnorm normalisation

[9], Noob normalisation [10];

Batch Effect Estimation
Agilent 1/2-color

confounding plot [11]; prince plot[11]; plotMDS [1]Affimetrix
Illumina Methylation

Batch Effect Mitigation
Agilent 1/2-color Known ComBat function from the R sva package[12]

Unknown sva function from the R sva package [13];
ComBat function from the R sva package [12]

Affimetrix
Illumina Methylation

Annotation
Agilent 1/2-color specific annotation from eArray
Affimetrix specific annotation from Brainarray
Illumina Methylation specific annotation from Bioconductor

Differential Analysis
Agilent 1/2-color

fitting linear models by means of the limma R package [1]:
Functions: makeContrasts, lmFit, eBayes, topTable

Affimetrix
Illumina Methylation

Data Exploration
Agilent 1/2-color

venn diagrams; upset plots;
volcano plots; heatmaps

Affimetrix
Illumina Methylation

Table S1: Main steps of the eUTOPIA preprocessing pipelines. eUTOPIA pipelines are available for the Agilent 1-color, Agilent 2-color, Affymetrix gene expression
platforms and Illumina Methylation platform.



eUTOPIA AGA shinyMethyl MeV O-miner Chipster Babelomics
Quality Check Yes No Yes No Yes Yes No
Probe Filtering Yes No Yes Yes Yes Yes No
normalisation Yes Yes Yes Yes Yes Yes Yes

Batch effect
Known variables Yes Automated No No Yes Yes No

Surrogate variables Yes Automated No No No Yes No
Differential expression Yes Yes No No Yes Yes Yes

Graphical User Interface Yes Yes Yes Yes Yes Yes Yes
Reporting Yes Yes Yes Yes Yes Yes Yes

Platforms

Agilent 2-color microarray Yes No No Yes Yes Yes Yes
Agilent 1-color microarray Yes No No Yes Yes Yes Yes
Affymetrix microarray Yes Yes No Yes Yes Yes Yes

Illumina methylation microarray Yes Yes Yes No Yes Yes No
Illumina expression microarray No No No No Yes Yes No

RNA-seq No Yes No Yes Yes Yes No
Technology R/Shiny R/Shiny R/Shiny Java HTML web service Java HTML

Table S2: Comparison of eUTOPIA to other existing tools.



Step Method More details

Data input Import excel file by using the
readxl R library

FunMappOne accepts gene symbols, Ensemble or
Entrez gene ID for Human, Mouse and Rat.

Enrichment
computation R package gProfilerR [14]; R

package gprofiler2 [15]
Enrichment is performed by means of the hy-
pergeometric test. P-values can be corrected by
means of the gSCS, FDR or Bonferroni methods
[16].

FunMappone

Creation A hierarchical structure of the
enriched term is used to organise
and summarise them in the plot.

Summarisation and annotation of the enriched
terms can be performed as the mean, median,
minimum or maximum value of the provided
modifications.

Distance
matrix

computation

Jaccard index (JI)

Euclidean distance
a combination of the two If JI is used then the experimental conditions

are clustered together based on shared enriched
terms. If Euclidean distance is used then the clus-
tering is driven by the modification of the shared
enriched terms. A combination of the two meth-
ods will give results both based on the shared en-
riched terms, but also considering how similar are
the enriched terms with respect to their enrich-
ment p-value or summary statistic.

Clustering of

experiments Hierachical clustering with com-
plete, single or ward linkage
methods

Hierarchical clustering is applied on the FunMap-
pOne matrix. The heat map will be plotted by
arranging the columns according to the their clus-
tering membership.

Table S3: Main steps implemented in FunMappOne.



Feature/Tool FunMappOne g:profiler DAVID clusterProfiler Enrichr ToppGene Goplot BACA
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways yes yes yes yes yes yes yes

Reactome pathways yes yes yes yes yes yes
Gene Ontology (GO) yes yes yes yes yes yes yes yes

Graphical representation yes yes yes yes yes yes
Graphic User interface (GUI) yes yes yes yes
Hierachical summarization yes

Comparison of multiple experiments yes yes yes
Clustering based on functional redundancy yes

Mapping expression modification values on terms yes yes

Table S4: Comparison of FunMappOne to other existing tools.



Step Methods Description

Compute correlation matrix

Pearson correlation
Spearman correlation

Kendall correlation
Mutual information

Estimates pairwise gene correlations
based on their corresponding gene ex-
pression values.

Infer Gene co-expression network

Aracne [17]

CLR [18]

MRNET [19]

MRNETb [20]
From the correlation/mutual information
matrices gene co-expression networks are
inferred.

Combinations of inferred net-
works into a consensus network

BORDA [21]

The individual networks are combined
into an ensembl network. Each networks
edges are ranked based on their score and
combined via BORDA [21]. From the
combined ranking edges are selected un-
til each node of the network has received
at least one edge or the top n% of edges
can be selected.

Community Detection

Walktrap [22]

Springlass [23]

Louvain [24]

Greedy [25]
Communities on the constructed network
are computed.

Community evaluation & anno-
tation

Centrality scores

Over-representation

Jaccard Index

The detected communities are evaluated
on their significance and a gene enrich-
ment over GO terms is performed. Simi-
larity scores between the annotated com-
munities are computed.

Table S5: Description of INfORM steps and the implemented methods

Tool Language

Network
inference
from gene
expression
data

Ensemble
strategy

Community
detection

Annotation
of
communities

INfORM [26] R yes yes yes yes
WGCNA [27] R yes no yes yes
CoExp [28] R, ASP.NET yes no yes yes
GWENA [29] R yes no yes yes

Table S6: Comparison of INFORM to other similar tools.



Table S7: Description of VOLTA modules and methodologies.
Module Description Example of implemented method

Distance & Similarity

This module contains 4 sub-
modules, providing functions for
distance/similarity measures be-
tween networks on a global and
local scale. Combined the
sub-modules contain 53 exposed
functions.

On a global level networks can
be for example characterised and
compared based on their node/
edge centrality values as well as
their overall similarity in con-
tained nodes & edges. On a local
level small sub-graphs, so called
graphlets, can be computed and
compared between networks.

Pipeline Wrappers

This module contains 6 sub-
modules, which provide wrap-
per functions across the individ-
ual functions of the other mod-
ules in order to provide pre-
defined analysis pipelines for co-
expression networks.

Simplification

This module can be used to re-
duce the complexity of large net-
works, by for example reducing
the number of edges contained.
The module contains 7 exposed
functions.

Different methods for node and
edge removal are implemented,
such as edge removal based on
edge weight, edge modularity or
through the estimation of a span-
ning tree.

Community

This module provides several al-
gorithms to detect community
structures in a provided network
as well as metrics to evaluate the
partitioning. The module con-
tains 29 exposed functions.

Algorithms for unweighted
graphs, such as the walktrap
algorithm, methods for weighted
graphs, such as the Louvain
algorithm and algorithms for
overlapping communities, such
as Angel are implemented.

Clustering

This module uses pairwise com-
puted distances between a group
of networks, such as can be es-
timated with the metrics imple-
mented in the Distance & Simi-
larity module to cluster a group
of networks. The module con-
tains 9 exposed functions.

For example different clustering
algorithms, such as hierarchical
clustering, k-mediod clustering
or affinity clustering as well as
consensus strategies and evalua-
tion metrics are provided.

Common Sub-patterns

This module aims at identifying
common sub-structures or statis-
tical over-represented structures
in a group of networks. The
module contains 7 exposed func-
tions.

This module aims at identifying
common sub-structures or statis-
tical over-represented structures
in a group of networks. The
module contains 7 exposed func-
tions.

Plotting

This module provides different
functions to visualise the net-
works, their community struc-
tures, the clustering results and
other values estimated in the
other modules. The module con-
tains 7 exposed functions.



Tool Language
Exposing of
individual
functions

File format
restrictions

Community
functions

Network
similarities
&
Network
clustering

Identification of
common
sub-structures

Network
simplification

Network
metrics

VOLTA [30] Python yes no yes yes yes yes yes
NetworkX [31] Python yes no some no no yes yes
iGraph [32] R / Python yes no yes no no yes yes
CDLIB [33] Python yes no yes no no no no
BioNetStat [34] R no yes no some no some some
InfORM [26] R no yes some no no some some

CoNekT [35]
Python/
JavaScript

no yes some some some N/A some

CompNet [36] Perl/ R no yes some yes yes N/A some
NetSimile [37] N/A N/A N/A no yes no no yes
WGCNA [27] R yes yes yes no some N/A yes

Table S8: Comparison of VOLTA to other existing similar tools, packages & software applications.



Step Method Description

Data
ENM from the Nanominer database [38].
Drugs from the CMAP database [38]

Chemicals from the CTD database [39].
Diseases from the CTD database [39].

Representation
ENM rank of genes
Drugs rank of genes

Diseases Sets of associated genes
Chemicals Sets of associated genes

Similarity
Jaccard Index Between sets of genes

GSEA Between rank and set of genes
Kendall Tau Between ranks of genes

Other similarity
Drugs vs. Drugs Targets, Smiles

Drugs vs. Diseases Medical prescription
Drugs vs. Chemicals Smiles
Diseases vs. Diseases Symptoms
Chemical vs. Chemical Smiles
Diseases vs. Chemicals Downloaded from CTD [39]

Validation Mantel test [40] Used to compare transcriptomic based similarity
and the other similarity

Integration Similarity Network Similarity scores where normalised by means of
the cumulative function and used as edge weights
to connect pairs of phenotypic entities

Contextualisation Clique Search all possible cliques, rank them by their
association strength and prioritise those with
known connections

Table S9: Method used in INSIdE NANO for the contextualisation of engineeredx nanomaterials (ENM)



Step Method More Details

Gene Filtering
Anova Fit an analysis of variance model [41] as implemented

in the stats R package [42]

Trend test The Mann-Kendall trend test [43, 44] is performed
as implemented in the trend R package [45].

Model Fitting and Selection
Models Linear, Polynomial (2nd and 3rd order), Hill

(Kd=10, n=(0.5,1,2,3,4,5), Power (d=2,3,4), Expo-
nential,
Log-logistic*, Weibull*, Brain-Counsen*, Asymp-
totic*, Michaelis-Mentel*
*Available from the drc R package [46]

Lack-of-fit Models with lack-of-fit pvalue lower than a threshold
are filtered. Default: p < 0.1

AIC For the same gene, the optimal model is selected as
the one with lowest Akaike Information Criteria [47]
computed with the R stats package [42]

Doses estimation BMD, BMDL, BMDU es-
timated from the optimal
fitting model

The user need to specify:
• the BMR factor
• if the assumption of constant variance is true
• the confidence interval used to compute BMDL and
BMU

Functional Annotation FunMappOne The FunMappOne functionalities are embedded into
the BMDx tool

Table S10: Methods implemented in the BMDx tool



Software Platform Models Multiple Ex-
periments

Transcriptomics
based

Normalisation Functional
Analysis

Comparative
Visualiza-
tion

BMDx R/Shiny Linear
Polynomial
Hill
Power
Exponential
Log-logistic*
Weibull*
Brain-Counsen*
Asymptotic*
Michaelis-Mentel*

Yes** Yes No*** Yes**** Yes

FastBMD Web Linear
Polynomial
Hill
Power
Exponential

No Yes Yes Yes Yes

BMDExpress2 Locally
installed

Linear
Polynomial
Hill
Power
Exponential

Yes Yes No Yes Yes

DROmics R, Web Linear
Hill
Exponential
Gauss-probit
Log-Gauss-probit

No Yes Yes No No

BMDS Locally
installed

Linear
Polynomial
Hill
Power
Exponential

No No No No No

Table S11: Comparison of BMDx to other existing tools
*: available from the R drc package
**: Specifically designed for the comparisons of multiple chemical exposures and/or multiple time-points
***: assumes that the data are already pre-processed and normalised. This can be done with the eUTOPIA tool
****: The FunMappOne tool is included into the BMDx graphical interface



Step Method More Details

Gene Filtering
Anova Fit an analysis of variance model [41] as implemented

in the stats R package [42]

Model Fitting and selection
Models Linear, 2nd and 3rd order polynomial

ANOVA The best-fitting model is selected performing a
nested model hypothesis test [48]

Responsive Area Contour Plots The selected model is used to predict the gene dereg-
ulation values in a a continuous map

Active region Thresholding The active region is identified on the contour map as
the one above a certain activity threshold selected
by the user.

POD estimation Based on the position of the active region on the
map, the gene is labelled as an early, middle or late,
with respect to time, and as sensitive, intermediate
or resilient, with respect to the dose.

Table S12: Methods implemented in the TinderMIX tool



Module Method Description
Fuzzy patterns R package DFP [49] This module is used to extract the fuzzy pat-

terns from the input gene expression data.
Feature Prioriti-
sation

Random Forest [50] This module is used to train a Random For-
est model on the fuzzy patterns data

Feature Ranking Mean Decrease Accuracy This module is used to compute the retrieve
the most important variables estimated by
the Random Forest

Table S13: Main steps of the FPRF method

Tool Language Features Feature Importance Model
FPRF [51] R Fuzzy patterns Feature permutation Random Forest
Boruta [52] R Input features Feature permutation Random Forest
varSelRF [53] R Input features Recursive elimination Random Forest
PIMP [54] R Input features Label permutation Random Forest
GRRF [55] R Input features Regularised Information Gain Regularised Random Forest

L1-eSVM [56] - Linear Kernel Bootstrapped stability score Support Vector Machines

Table S14: Comparison of FPRF to other existing tools.



Operator Description
Chromosome of variable length This allows encoding admissible solutions more efficiently compared

to the fixed binary representation. This reduces computation re-
quirements during evolution

Dynamic genetic operators Mutation, selection, and cross-over operators adjust their be-
haviours dynamically to enforce gene elitism and gene set size op-
timisation. Adjustments are performed by a fuzzy logic controller
which reacts to the different situations that happen during evolu-
tion

Isolated populations and migration To allow the emergence of multiple equally optimal solutions, multi-
ple isolated populations are generated throughout evolution. How-
ever, very fit individuals have a chance to migrate to other popu-
lations, increasing the chances of reproduction of the high ranking
individuals

Fitness evaluation The fitness of each individual is scored using a 3-fold cross-validated
performances of a random forest trained on the feature set encoded
in the chromosome of the individuals

Table S15: Key points of the GARBO method

Tool Language Method Quality evaluation Multiple
features
sets

Enforce
minimal
sets size

GARBO [57] Python GA (wrapper) predictive performance yes yes
OptSelect [58] R PSO (wrapper) predictive performance no no
Wang et al. [59] MATLAB Markov Blanket

(wrapper)
predictive performance no no

Sun et al. [60] MATLAB Lagrange Multi-
pliers (filter)

minimum redundancy max-
imum relevance

no yes

Saeys et al. [61] Java Ensemble (filter,
embedded)

Symmetric uncertainty +
RF variable importance

no no

Table S16: Comparison of GARBO to similar tools.



Module Description
Multi-niche population The population of candidate descriptors is partitioned into a number of disjoint

sets that evolve independently to allow an efficient exploration of the solution
space. Regular interactions among the niches ensures that the components of
the best solutions are represented in the population.

Genetic operators Mutation and cross-over genetic operators perturb the most promising solu-
tions to explore different descriptor sets trading-off exploration and exploita-
tion of the current best.The non-dominant selection operator finds at each
iteration the individuals with the best trade-offs among the multiple objective
criteria to be optimised

Fitness functions Multiple criteria are evaluated to estimate the fitness of each individual. These
criteria encompass many QSAR quality assessment measures including such as
RMSE, R2,Q2, Q2

F1
,Q2

F2
, Q2

F3
, CCC [62]. Moreover, the number of molecular

descriptors used is considered, and the applicability domain of the fitted model.
Applicability domain is computed by means of the Williams Plot [63]

Model training Different categories of trainable models are offered including regression model
[64], support vector regression [65] and k-nearest neighbours (kNN) for regres-
sion [66]

Table S17: Key points of the MANGA methodology.

Tool Language Features Feature
Selection

Model Validation Applicability
domain

MaNGA [62] Python Molecular
descriptors

Multi-
objective
Genetic
Algorithm

Linear,
kNN, SVM

Internal /
external

Williams plot

hyQSAR [67] R Molecular
descriptors,
mechanism
of action

LASSO Linear,
non-linear
with feature
transforms

Internal /
external

Williams plot

CORAL [68] - SMILES
based opti-
mal descrip-
tors

- Univariate,
Linear

- -

QSAR-Co [69] Java Molecular
descriptors

Filter, Ge-
netic Algo-
rithm

Linear,
Random
Forest

Internal /
external

Standardisation
method, Con-
fidence estima-
tion

QSARINS [70] - Molecular
descriptors

Filter,
Genetic
Algorithm,
Forward
feature
selection

Linear Internal /
external

Williams plot

Table S18: Comparison of QSAR tools.



Module Description
Feature transformation In some cases, a power transformation of the input features may help improve

the correlation with the response variable. For this reason, hyQSAR allows
the estimation of a power transform if it improves the error estimates of the
model.

Parameter Tuning Feature transform parameters are tuned during training using a grid search
based on a random split validation algorithm in which a fraction of the samples
are repeatedly selected at random as a validation set while the rest is used to
train the model.

Model Training The main assumption of hyQSAR is that the response variable is dependent on
a reduced set of features, therefore the model trained is a LASSO regression of
the response variable in which the vector of coefficients is constrained to have
as few non-zero entries as possible.

Model Validation Both measures based on the predictive error of the model, as well as measures
based on the applicability domain of the models, are verified to assess the
quality of the model fit.

Table S19: Description of the hyQSAR methodology.

Step Description
Preprocessing Omic features with low variance are removed from each data layer
Omic feature Clustering To reduce the dimensionality of the data, the omic features are clustered in

each data layer. For each cluster, a prototype is identified and used for further
steps. Clustering algorithms available are: Pvclust [71], SOM [72], hierarchical
clustering with Ward’s method,[73] K-means [74], Partitional Around Medoids
[75] and Spectral clustering [76]. Clustering goodness is evaluated employing
a score (ranging from 0 to 1) that considers sample correlation cohesion, the
number of singletons, and the compression rate.

Prototype Selection In the case of the supervised approach, the cluster prototypes are ranked based
on their class separability performances. Feature ranking can be performed us-
ing the CAT-score [77] and/or the Mean Decreasing Accuracy index calculated
by Random Forests [50].

Sample Clustering In each data layer, samples are clustered by using only the cluster prototype
from previous steps. Clustering algorithms available are the same as the Omic
feature clustering.

Multi-view clustering The sample clusterings from the individual data layer are merged in a late
integration fashion. Two integrative approaches are available: a matrix fac-
torisation strategy [78] and a general model for multi-view integration [79]

Table S20: Description of the MVDA methodology.



Tool Language Integration type Integration Method Learning type

MVDA [80] R Late integration Matrix factorization
Unsupervised

or semi-supervised
SNF [81] R, Matlab Intermediate integration Network fusion Unsupervised

mixKernel [82] R Intermediate integration Multiple kernel learning Unsupervised
iCluster [83] R Intermediate integration Matrix factorization Unsupervised

Table S21: Comparison of MVDA to other existing tools.

Module Description
Network Generation This module is used to generate a regulatory network comprised of

mRNA, transcription factors and miRNAs
Experiment Simulation This module is used to simulate a transcriptomics experiment given

a generated regulatory network. Two levels of noise are added to
the experiment to simulate real experimental data.

Table S22: Description of the MOSIM methodology

Tool Language Network Topolo-
gies

Network
Motifs

Regulation
type

Regulators
interaction

Modelled
Entities

Network
Simulation

MOSIM [84] R hierarchical modu-
lar

yes activation,
inhibition

cooperation,
synergy,
antagonism

mRNA,
miRNA, TF

Built-in

AGN [85] C++, SAS,
PERL

small-world, scale-
free, random net-
work

no activation synergy mRNA, TF External tool

SynTReN [86] JAVA Sub-sample of real
network

yes activation,
inhibition

cooperation,
synergy,
antagonism

mRNA, TF External tool

netsim [87] R hierarchical modu-
lar

yes activation,
inhibition

cooperation,
synergy,
antagonism

mRNA, TF Built-in

GRENDEL
[88]

C++ scale-free no activation,
inhibition

synergy mRNA, TF External tool

RENCO [89] C++ scale-free no activation cooperation,
synergy

mRNA, TF External tool

GeNGe [90] Web appli-
cation

scale-free, random
network, modular

yes activation,
inhibition

cooperation,
synergy,
antagonism

mRNA, TF External tool

Table S23: Comparison of MOSIM to other existing tools.
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Figure S1: Example application of the characterisation of the MWCNT MOA employing Fun-
MappOne. (A) eUTOPIA was used to preprocessing the raw data and to perform differential analysis. The
spreadsheet file, containing the lists of differentially expressed genes, can be exported from eUTOPIA in a
format that is ready-to-use for FunMappOne. (B) The enrichment analysis with respect to the KEGG human
pathways was performed. The FunMappOne map is coloured by the genes modification value (their log-fold-
change) aggregating by means of the mean function. (C) The output was interpreted for MOA characterisation
of MWCNT exposures at different doses and time points.



1 Supplementary Methods

1.1 Interoperability of Nextcast data formats with external tools

Gene expression matrices obtained from eUTOPIA are saved as tab-delimited text files with the genes in
the rows and the samples in the columns; These matrices can be easily uploaded into the MORPHEUS tool
(https://software.broadinstitute.org/morpheus) for dynamic visualisation and clustering. Moreover, they
can be imported into R or python for more advanced data visualisation such as data projection with t-SNE [91]
and UMAP [92] or to identify coherent groups of genes or samples employing clustering analysis. The results
of the differential expression analysis can be exported as a spreadsheet file. The results are provided in the
format adopted by the Bioconductor limma package [1]. The file contains a list of genes, log2-fold changes, and
p-values computed for each one of the comparisons performed during the analysis. These lists can be easily
provided to online tools for functional annotation such as WebGestalt [93] or Enrichr [94]. Moreover, network-
based enrichment analysis can be performed by passing the set of genes to online tools like PathwAX [95].
The output of the enrichment analysis performed with FunMappOne can be exported in a spreadsheet format.
The file contains as many sheets as the number of experimental conditions compared in the FunMappOne
module. When performing the enrichment with respects to the Gene Ontology database, the resulting lists
of enriched terms and their associated p-values resulting can be provided as input to the online REVIGO
tool (http://revigo.irb.hr/) for summarization and to study their interactions. The networks generated
by INfORM can be exported in multiple standardised formats, such as a text file containing a tab-delimited
adjacency matrix or edge list, or as GraphML format. These are commonly accepted format for many network
visualisation and analysis tools such as Cytoscape [96] and Gephy [97]. The list of differentially expressed
genes identified with eUTOPIA or the sets of genes in specific modules of co-expression networks identified
with INfORM, can be further investigated through the Ingenuity Pathway Analysis tool as shown in [98, 99].
Moreover, the relationships between the genes can also be studied by using the STRING analysis engine and
retrieving connections between the proteins whose genes are mapped to [100].

1.2 Example of application of the Nextcast pipelines on real data

1.2.1 Preprocessing and differential analysis with eUTOPIA

First, the raw data were uploaded to eUTOPIA together with the metadata table describing both experimental
and technical variables relevant for the process. The preprocessing was then performed following the guided
interface of the tool [101]. Shortly, probes with intensities higher than the 75% quantile of the negative control
probes in at least 85% of the samples were retained for further preprocessing. The data were then quantile-
normalised between arrays. Observed batch effects, particularly those associated with variables “dye”, “slide”,
and “row” were corrected using the ComBat method [102]. The probes were then annotated to gene symbols
and aggregated by the median expression values of the probes mapped to the same entity. Finally, differential
expression between sample groups was evaluated with limma [1] using the corrected batches as covariates for the
model. The combination of three exposure doses (5, 10, and 20 µg) and three time points (24, 48 and 72 hours)
yields a total of nine comparisons when each dose-time point combination is compared to its corresponding
control samples. Genes were considered significantly differentially expressed with an absolute log2-fold change
> 0.58 and Benjamini & Hochberg adjusted p-value < 0.05. The preprocessed and aggregated gene expression
data and the results of the differential analysis were exported from eUTOPIA. Additionally, the data were
exported in a format that is ready to use for the basic usage of the FunMappOne and BMDx tools. The
following sections will describe the further analytical pipelines using this data in the context of the suggested
pipelines in Figure 2 and Figure 3, respectively.

1.2.2 MOA characterisation with INfORM and FunMappOne

In order to select the most relevant genes for each MWCNT exposure, individual gene co-expression networks for
each pairwise comparison resulting from the differential expression analysis were generated. This experimental
design required the conversion of the expression matrix and differential expression analysis results into nine
different inputs for the analysis with INfORM. This transformation was performed by using a custom R script.
To make a fair comparison between the 9 different sets of genes and to maximise the differences across the
exposures, we imposed all the networks to share the same nodes and ranked the genes based on how many
times they were differentially expressed across the nine conditions. Only the top 1,000 genes of this rank were
used to build the gene co-expression networks, so that all the exposures shared the same genes while preserving
the more frequently deregulated ones. The networks were inferred using default parameters in INfORM. The
individual gene-rank scores were used for prioritisation. Lastly, to fully characterise and compare the MOA of
each exposure, the top 200 genes of each network rank were functionally annotated with FunMappOne. The
selection of the top ranked genes in each of the nine network and their combination in the expected format



by FunMappOne was performed by means of a custom script. KEGG enrichment analysis was performed
with FunMappOne by using all default parameters. The summarised results were plotted as a heatmap and
annotated with the second level of the KEGG hierarchy. The R scripts used in this example are available at
https://github.com/fhaive/nextcast.

1.2.3 Benchmark dose analysis with BMDx

The preprocessed and aggregated gene expression matrix and the metadata table were exported from eUTOPIA
in a format compatible with BMDx. The BMD analysis was then performed under the assumption of constant
variance with the benchmark response (also called BMR factor) of 1.349. The confidence interval was set as
0.95 and the lack-of-fit threshold as 0.1. Further filters for the results were defined based on the exposure
doses. Namely, genes with BMD or BMDU values extrapolated higher than the highest exposure dose (20µg)
were removed. Also, genes whose predicted values have high ratio (BMD/BMDL> 20, BMDU/BMD> 20,
and BMDU/BMDL> 40) were filtered from the analysis. Finally, multiple models (linear, quadratic, power2,
exponential, hill05, hill1,hill2) were fit to each gene and the optimal model was selected based on the combination
of the Akaike Information Criterion and the filtering criteria defined above. The genes that fit a model according
to these criteria were considered dose-dependent. The results can be investigated at the level of individual
genes, and their independent BMD values can be explored visually, or in the spreadsheet files that can be
exported for further analysis and interpretation. However, BMDx contains an integrated implementation of the
functional enrichment tool FunMappOne. Hence, the functional enrichment of the results can be performed
and investigated as part of the same run. Alternatively, the BMD analysis results in the spreadsheet file can be
easily transformed into the input for the stand-alone version of FunMappOne, allowing the user to come back
to the results of the functional enrichment at another time. Here, the functional enrichment was performed
against KEGG pathways (p-values were FDR corrected and considered significant when lower than 0.001 using
all annotated genes as the background). The colour of the cell represents the mean BMD values of the genes
enriching the pathway. Alternatively, the cell can be coloured based on the minimum BMD value of the genes
resulting in a more conservative estimation. The results of the functional enrichment can be downloaded as a
spreadsheet file containing all enriched terms and the genes enriching them at each time point. Additionally,
the enrichment heatmap can be downloaded as a PDF file.
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[48] T. Teräsvirta, I. Mellin, Model selection criteria and model selection tests in regression models, Scandi-
navian Journal of Statistics (1986) 159–171.
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[67] A. Serra, S. Önlü, P. Coretto, D. Greco, An integrated quantitative structure and mechanism of action-
activity relationship model of human serum albumin binding, Journal of cheminformatics 11 (2019) 1–10.

[68] E. Benfenati, A. A. Toropov, A. P. Toropova, A. Manganaro, R. Gonella Diaza, Coral software: Qsar for
anticancer agents, Chemical biology & drug design 77 (2011) 471–476.

[69] P. Ambure, A. K. Halder, H. Gonzalez Diaz, M. N. D. Cordeiro, Qsar-co: An open source software
for developing robust multitasking or multitarget classification-based qsar models, Journal of chemical
information and modeling 59 (2019) 2538–2544.

[70] P. Gramatica, N. Chirico, E. Papa, S. Cassani, S. Kovarich, Qsarins: A new software for the development,
analysis, and validation of qsar mlr models, 2013.

[71] R. Suzuki, H. Shimodaira, Pvclust: an r package for assessing the uncertainty in hierarchical clustering,
Bioinformatics 22 (2006) 1540–1542.

[72] J. Vesanto, E. Alhoniemi, Clustering of the self-organizing map, IEEE Transactions on neural networks
11 (2000) 586–600.

[73] J. H. Ward Jr, Hierarchical grouping to optimize an objective function, Journal of the American statistical
association 58 (1963) 236–244.

[74] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the royal
statistical society. series c (applied statistics) 28 (1979) 100–108.

[75] L. Kaufman, P. J. Rousseeuw, Clustering by means of medoids. statistical data analysis based on the
l1–norm and related methods, edited by y. dodge, 1987.

[76] A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in
neural information processing systems, 2002, pp. 849–856.
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