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eMethods 1. UK Biobank Data Collection 
Analyses were conducted in the UK Biobank, a prospective cohort from the United Kingdom. Nine million 
individuals were invited to participate, of which 502 629 subjects were enrolled and surveyed at assessment centers 
across the UK from 2006-2010.1 Participants ranged in age from 40 to 69 years. Data collection included verbal 
interviews and touchscreen questionnaires to gather a multitude of lifestyle information, including alcohol 
consumption, physical activity, and vegetable intake. All subjects were genotyped using either the Affymetrix UK 
BiLEVE Axiom array (first 50 000 subjects) or the Affymetrix UK Biobank Axiom® array (remaining 450 000 
participants). Subjects also underwent blood, urine, and saliva samples for analysis. Blood biochemistry analyses 
were used to determine biomarker levels. Prevalent cardiovascular diseases were recorded at study entry through 
self-report confirmed in a verbal interview with a trained nurse, or via linked electronic health record data from the 
National Health Service (NHS). Incident diseases were defined, among those not meeting criteria at baseline, 
through the application of phenotype definitions to linked, in-patient hospital and death registry data. Participants 
were censored at whichever came first between disease diagnosis, date of death, or date of last follow-up. The date 
of last follow-up was February 9, 2016 for participants enrolled in Wales, February 16, 2016 for participants 
enrolled in England, and October 31, 2015 for participants enrolled in Scotland. Region-specific censor dates are 
available at https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=Data_providers_and_dates.  
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eMethods 2. Exclusions 
We excluded participants with unreliable data, which was defined – per centralized sample quality control 
performed by UK Biobank – as inferred sex unequal to reported sex, kinship not inferred, putative sex chromosome 
aneuploidy, withdrawn consent, or excessive heterozygosity or missingness in genetic data.2 For subjects of 2nd 
degree or closer relatedness, one subject was randomly removed to prevent individuals with similar lifestyle factors 
and genetics from skewing the data. We further limited analyses to participants of European genetic ancestry to 
minimize potential confounding of Mendelian randomization analyses by genetic ancestry. The remaining subjects 
(n=376 424) were subset to those without missingness in alcohol reporting data (n=371 463). All of these 
individuals had genetic data, alcohol data, data for the primary covariates (age, sex, genotyping array, and PCs), and 
data for the 6 disease outcomes (except for 150 individuals with missing heart failure values, who were excluded 
from analyses of heart failure). Of the primary continuous outcomes, 18 025 individuals had missing LDL-C values, 
24 532 had missing SBP values, 24 524 had missing DBP values, and 17 550 had missing GGT values; individuals 
with missing outcome data were excluded from those analyses. 
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eMethods 3. Alcohol Variables 
Participants self-reported their alcohol intake upon assessment by typing in answers on a touchscreen. Subjects were 
first asked roughly how frequently they consumed alcohol (e.g. daily/almost daily, 3-4 times a week, once or twice a 
week, one to three times a month, special occasions only, or never), and, based on whether they drank more than one 
to three times a month, were then asked to report their consumption for each drink (above) either per week (more 
than 1-3 times/month) or per month (1-3 times/month or less). We aggregated this data to construct the following 
variables: 
 
Weekly alcohol: A standardized variable of American measures of alcohol consumption per week, with 1 standard 
drink equivalent to 14 g of alcohol. The variable was created by calculating total alcohol content for each reported 
drink using British measurements (1 pint of beer or cider=16g, 1 standard glass of white/red wine=16.8g, 1 glass of 
fortified wine=14.08g, 1 shot of spirits or liquor=8g, 1 glass of other alcohol drinks (i.e. alcopops)=12g).3 4 Then, 
grams of alcohol were converted to American standard measures, with 14g equal to 1 measure (1 pint of beer or 
cider=1.14 measures, 1 standard glass of white/red wine=1.2 measures, 1 glass of fortified wine=1.01 measures, 1 
shot of spirits or liquor=0.57 measures, 1 glass of other alcohol drinks (i.e. alcopops)=0.86 measures).5  
 
Ln(weekly alcohol): Created by taking the natural log of weekly standard drinks added to one to prevent removal of 
nondrinker (0) values. This log transformation gave the data a more normalized distribution for statistical testing. 
 
Drinking group: Created as a categorical variable to batch subjects into five distinct groups using definitions 
derived from physicians’ categorization of alcohol use.6 By multiplying these daily limits by 7, groups were defined 
as: abstainers (0 drinks/week), light (0-8.4 drinks/week), moderate (8.4-15.4 drinks/week), heavy (15.4-24.5 
drinks/week) and abusive (>24.5 drinks/week). 
 
Current drinker status: Created as a binomial variable defined as 1 if the subject reported currently consuming 
alcohol (weekly alcohol > 0) or 0 if the subject did not (weekly alcohol = 0). 
 
Over weekly limits: Created as a binomial variable defined as 1 if the subject consumed alcohol over weekly limits, 
stratified by sex, or 0 if the subject did not. Weekly limits were calculated from the “Dietary Guidelines for 
Americans 2015-2020” by the U.S. Department of Health and Human Services and U.S. Department of Agriculture 
recommendations for low-risk drinking (<=14 standard drinks/week for men and <=7 drinks/week for women).5 
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eMethods 4. Continuous Variables 
For each trait, means and statistical differences were calculated after removing unreported values for the individual 
category. The variables were collected as follows. BMI was calculated from measured height and weight at 
assessment. Smoking was a self-reported categorical variable, defined as never smoked (0), previously smoked (1), 
or current smoker (2). Physical activity was a self-reported variable representing the average number of days per 
week during which the participant spent more than 10 minutes doing moderate physical activity. Vegetable intake 
was a self-reported variable representing the average number of heaped tablespoons of cooked vegetables that a 
subject would eat per day. Red meat was another self-reported variable calculated as the sum of the participant’s 
frequency of eating beef, lamb, or pork. Eating frequency was labeled as (0) never, (1) less than once a week, (2) 
once a week, (3) 2-4 times per week, (4) 5-6 times per week, or (5) once or more per day. Overall health was a self-
reported categorical variable of the participant’s rating of their own overall health defined as (1) excellent, (2) good, 
(3) fair, or (4) poor. BMI, biomarkers, and blood pressure were normalized to follow a normal distribution in 
traditional genetic analyses (analyses in which the focus was testing for significant association), but not for non-
linear genetic analyses (in which the focus was on clinically interpretable findings).  
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eMethods 5. Mass General Brigham Biobank 
The Mass General Brigham Biobank – a patient-based cohort based in the United States – was used as a secondary 
cohort to replicate select genetic analyses primarily conducted in the UK Biobank.7 The biobank consisted of 30,716 
individuals with genetic data, 14,412 of whom had self-reported alcohol consumption information and 28,179 of 
whom had blood pressure measurements. If a participant had more than one blood pressure measurement, the 
maximum value was used in analyses. Participants were asked to group their alcohol consumption patterns into 
categorizations ranging from “None, or less than 1 drink per month” to “More than 6 drinks per day”. In order to 
maximize power for analyses conducted in Mass General Brigham, only the primary genetic score (AUD-R) was 
used as the genetic instrument, and only continuous blood pressure measurements were used as the outcome. 
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eMethods 6. Genetic Instruments 
Genetic instruments were constructed using externally-derived summary statistics from a genome-wide association 
study (GWAS) of alcohol consumption in 274 424 subjects from the Million Veteran Program, focusing on analyses 
conducted in Eastern Europeans to reflect the UK Biobank study population.8 This study assessed genetic 
associations with Alcohol Use Disorder (AUD) and Alcohol Use Disorder Identification Test-Consumption 
(AUDIT-C), each used as a proxy for alcohol use. AUD is a medical diagnosis of severe overdrinking. AUDIT-C is 
a screening questionnaire meant to identify hazardous alcohol use; it is a three-question exam scored from 0-12 that 
asks (a) “how often do you have a drink containing alcohol?”, (b) “how many standard drinks do you have on a 
typical day”, and (c) “how often do you have six or more drinks on one occasion?”.9 From all significant loci for 
AUD (n=13), only independent SNPs after conditional analyses were chosen, with insertion/deletion polymorphisms 
removed (n=9 total SNPs remaining). From all significant loci in the AUDIT-C GWAS (n=19), only independent 
SNPs after conditional analyses were chosen; no insertion/deletion polymorphisms were among the lead associations 
(n=13 total SNPs remaining). 
 
Mendelian randomization assumes that a genetic instrument influences an exposure, and that the corresponding 
change in the exposure is the only way by which the instrument affects the outcome. Therefore, refined SNP lists 
were created by removing SNPs that had any significant associations with tested lifestyle or risk factors in lifelong 
abstainers. In lifelong abstainers – a population in which no one had ever consumed alcohol, and therefore 
associations could not be mediated by differential alcohol intake – any associations would therefore be due to 
pleiotropy in the instrument. Accordingly, insignificant associations with lifestyle/risk factors in lifelong abstainers 
was taken to demonstrate a lack of pleiotropy. The tested potential confounders were smoking, BMI, physical 
activity, vegetable intake, red meat intake, overall health rating, C-Reactive Protein, and total cholesterol. For the 
AUD SNP list (n=9), the Bonferroni p-value was Bonferroni p = 0.05/(9 SNPs * 8 confounders)=6.94E-04. For the 
AUDIT-C SNP list (n=13), the Bonferroni p-value was Bonferroni p = 0.05/(13 SNPs * 8 confounders)=4.801E-04. 
Four SNPs from the AUD and three SNPs from the AUDIT-C instruments were significantly associated with 
confounders and consequently removed for the refined SNP lists. From the AUD instrument, rs1260326 (GCKR), 
rs570436 (SIX3), rs13107325 (SLC39A8), and rs11075992 (FTO) were removed to create the AUD-R instrument. 
From the AUDIT-C instrument, rs1260326 (GCKR), rs13107325 (SLC39A8), and rs9937709 (FTO) were removed 
to create the AUDIT-C-R instrument. The remaining AUD-R SNP list contained 5 SNPs, and the remaining 
AUDIT-C-R SNP list contained 10 SNPs. 
 
Aggregated allele scores were constructed using PLINK software v2.0. Allele scores were normalized and then 
standardized to a 1-drink/day (7 standard drinks/week) increase using R software. Associations with allele scores 
and confounders, calculated using linear regression models in lifelong abstainers, were used to assess for pleiotropic 
effect in associations, and results are available in eTables 5-6. Genetic risk scores were validated for association 
with the exposure by regressing several alcohol phenotypes--both log-transformed and untransformed weekly 
alcohol intake, drinking group, current drinking status, and over limits drinking status--onto the score. Individual 
drinks, such as beer intake or wine intake, were also regressed onto the score for validation. For all continuous 
variables, linear regression was used. For all dichotomous variables, logistic regression was used. In this study, all 
regression models for the gene scores were adjusted for age at assessment, sex, genotyping array, and principal 
components 1-10. Genotyping array represented a dummy variable to account for the specific genotyping platform 
used for each subject (Affymetrix UK BiLEVE Axiom array or the Affymetrix UK Biobank Axiom® array). 
Adjusting for principal components accounts for population stratification according to ancestral background.10  
 
While both AUD-R and AUDIT-C-R scores were not associated with confounders in lifelong abstainers, 2SMR 
analyses between the AUDIT-C-R score and CVD phenotypes revealed significant MR-Egger intercepts for multiple 
associations (eTable S9), whereas these intercepts were insignificant when the AUD-R score was used (Table 2); 
MR-PRESSO tests for horizontal pleiotropy were also inflated for the AUDIT-C-R, but not AUD-R, instrument 
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(eTable S10). As noted below (Two-Sample MR Analyses section), MR-Egger intercepts are used to assess for 
pleiotropic effects in two sample MR analyses. Two sample MR analyses determine the association between 
exposure and outcome by assessing for a linear relationship between, for each SNP, association dosage with 
exposure and association dosage with the outcome. A significant y-intercept – assessed via MR-Egger analyses – 
implies that there is an association with the outcome that is independent of the exposure; in other words, some of the 
association is not mediated by alcohol intake. Nominally significant MR-Egger intercepts using AUDIT-C-R 
suggested a potential bias in the instrument.11 One source for potential residual pleiotropy in the AUDIT-C-R 
instrument could have been the SNPs rs4794018 and rs35572189, which both reached nominal, but not Bonferroni-
level, significance for associations with BMI in lifelong abstainers (both p = 0.002). Given these potential biases that 
were present in the AUDIT-C-R instrument but not in the AUD-R instrument, the AUD-R instrument was selected 
to be the primary instrument for this study, with the AUDIT-C-R used for secondary analyses.  
 
Using the AUD-R primary instrument, a test for trend indicated that the genetic association with alcohol was not 
significantly different in categories of alcohol consumption (p=0.311), and genetically predicted alcohol values 
ranged from 1.65 to 14.08 drinks/week. 
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eMethods 7. Observational Analysis 
We focused on six cardiovascular disease phenotypes: hypertension, coronary artery disease, myocardial infarction, 
stroke, heart failure, and atrial fibrillation. We assessed the prevalence and hazards of cardiovascular diseases within 
each drinking group, the latter estimated by cox proportional hazards using abstainers as reference and incident 
disease as the outcome. Analyses were conducted using the cox proportional hazards function in R from the 
‘Survival’ package. Abstainers who reported formerly drinking (n=12,977) were removed from analyses as they 
may exhibit the residual health effects of alcohol. We then evaluated other behavioral and lifestyle factors by 
drinking category to assess whether light to moderate alcohol consumption correlates with a healthier overall 
lifestyle. Six specific lifestyle measures were assessed--smoking frequency, normalized BMI, self-reported physical 
activity, cooked vegetable intake, red meat consumption, and self-reported health. Though BMI can be influenced 
by alcohol, this study followed the precedent set by others that have labeled BMI as a lifestyle factor rather than an 
outcome.12 13 Adjusting for these six lifestyle factors, we re-estimated hazards of CVD by drinking group to assess 
for a change in the shape of observational associations due to possible confounding. In secondary analyses, we re-
ran adjusted models without self-reported health, and also trialed sex-stratified models. Secondary analyses were 
performed for hypertension only, the most prevalent of all cardiovascular phenotypes assessed.  
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eMethods 8. Two-Sample MR Analyses 
Two sample Mendelian randomization was conducted using the R packages 'Mendelian Randomization' and 
'TwoSampleMR'. Summary statistics from an alcohol consumption GWAS in MVP (Kranzler et. al) provided beta 
coefficients and standard errors between each SNP and the exposure.8 Regression models of each SNP in the gene 
score with the outcome of interest were used to calculate the beta coefficient and standard error between each SNP 
and the exposure. These datasets were combined and used for the two sample Mendelian randomization.  
 
Inverse variance weighted (IVW) meta-analyses of the SNP-specific associations with the exposure and outcome 
provide a weighted average of the slope estimates from the origin to each point. For each SNP, the association with 
the exposure (alcohol) and the association with the outcome (CVD) are compared. If the exposure is causally 
associated with a greater risk of the outcome, SNPs associated with a greater change in exposure should be 
associated with a greater risk in the outcome (proportionality/linearity of exposure-associations and outcome-
associations for each SNP). IVW tests the significance of the relationship between the two associations and provides 
an estimate of the effect of the exposure on the outcome. Weighted median analyses, which use similar calculations 
with only the median SNPs, provide an estimate that is less likely to be biased by outlier SNPs. MR-Egger analyses, 
which are similar to previous analyses but allow for a non-zero intercept in analysis, were used to check for 
pleiotropy. IVW and weighted median methods rely on the assumption that there is no y-intercept; in other words, 
that the relationship with the outcome of each SNP in the dataset is directly proportional to its association with the 
exposure, and that there is no inflation due to associations with confounders or the outcome itself. MR Egger models 
allow for a non-zero intercept in order to check if the pleiotropy condition is being violated. MR-PRESSO analyses, 
conducted using the MRPRESSO package in R, were employed to assess and correct for horizontal pleiotropy by 
removing outliers. Associations using these methods were primarily tested using outcome statistics in current 
drinkers and checked for pleiotropy by calculating outcome statistics in nondrinkers. 
 
Using traditional two-sample MR methods to assess for potential causal associations, we investigated genetic 
associations of alcohol consumption with the six aforementioned cardiovascular diseases, and also with ten 
continuous traits: systolic and diastolic blood pressure, LDL cholesterol, HDL cholesterol, total cholesterol, 
triglycerides, apolipoproteins A and B, gamma-glutamyl transferase, and C reactive protein. For each instrument-
outcome association, we pursued an IVW random-effects meta-analysis of the effect of each SNP on the outcomes 
divided by the effect of the same SNP on alcohol consumption. We also pursued weighted median and MR-Egger 
regression analyses to address potential invalid instruments and directional pleiotropy. For continuous traits, we 
considered significant any association surpassing a Bonferroni-corrected threshold of p < 0.005 [0.05/10 traits], and 
for cardiovascular diseases, a threshold of p < 0.008 [0.05/6 diseases]. 
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eMethods 9. Allele Score Analyses 
Given individual-level data in the UK Biobank, we also constructed externally weighted allele scores for each 
participant by multiplying the dosage of the allele for increased alcohol consumption by the variant’s reported beta 
coefficient from the Million Veteran Program discovery GWAS and summing across all variants. We then used 
logistic and linear regression to test for associations with the six aforementioned cardiovascular diseases and a full 
complement of 31 continuous traits (including those from 2SMR). Regression models were run in current alcohol 
users and adjusted for age, sex, top 10 principle components of ancestry and genotyping array. Regression models 
were also run in all subjects to verify associations, and in lifelong abstainers to check for pleiotropy. Statistical 
significance for the disease and continuous phenotypes were denoted as Bonferroni-corrected threshold of p < 0.008 
[0.05/6 disease phenotypes] and p < 0.002 [0.05/31 traits], respectively.  
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eMethods 10. Nonlinear MR 
Whereas Mendelian randomization has been employed to assess for a potential causal association in the absence of a 
randomized controlled trial, traditional approaches often presume linearity.14,15 A non-linear model may be fit to the 
data, but – for a non-linear association to be detected – instrumental variables must capture an appreciable portion of 
the exposure, which genetic instruments often fail to do; consequently, recent studies have employed unique 
approaches to increase the variance explained by an instrument. For example, to mitigate these limitations, one study 
utilized a combination of genetics and study area (in conjunction with sex-specific differences in alcohol intake) as 
proxies for alcohol intake, but still arrived at linear relationships between alcohol intake and cardiovascular disease 
risk.16 Here, we applied methods to formally assess for non-linear associations between alcohol intake and 
cardiovascular disease. To statistically test for non-linear associations – and assess for differential risks at different 
levels of intake – genetic associations with the outcome may be tested in quantiles of the exposure. However, the 
genetic instrument itself influences the exposure, subjecting the study to potential collider bias; by extension, 
stratified allele score analyses should be taken as secondary to more comprehensive non-linear Mendelian 
randomization. The methods outlined below test genetic associations in conditioned quantiles of residualized 
exposure (that is, reported alcohol intake minus the influence of the genetic instrument) in order to overcome these 
limitations and comprehensively assess potential non-linear effects.14,15,17 
 
To test the shape of each potential causal association, genetic associations were tested in deciles of residual alcohol 
intake, a measurement of the exposure devoid of the genetic instrumental variable (IV-free exposure). Specifically, 
residual alcohol intake was calculated by subtracting genetically predicted alcohol intake from reported alcohol 
intake (as done previously), and associations were tested in deciles of the residual alcohol intake variable.17 
Residualization was required before partitioning the cohort by amount of alcohol intake in order to avoid 
overadjustment and collider biases, as the genetic score affects reported alcohol intake. Instead, by stratifying on 
residual alcohol intake, which defines a participant’s alcohol intake if all participants had the same genotype, no 
such biases are introduced as this variable is unaffected by the genetic score. 
 
Residual alcohol intake was split into deciles – in order to maximize power for stratified analyses – and any outlying 
values >Q3+1.5*IQR were removed. The association between the genetic score and each cardiovascular outcome 
was tested within deciles of residual alcohol intake using linear or logistic regression adjusting for genotyping array, 
sex, age at assessment, and principal components 1-10. In order to standardize effects to a 1 drink per day increase, 
the decile-specific regression coefficient for the genetic score and the outcome was divided by the regression 
coefficient for the genetic score and the exposure (alcohol). The resultant association estimate – based on this 
standardized ratio of coefficients – was referred to as a localized average causal effect (LACE) estimate, as per 
Staley et al.14 Interval-specific LACE values were determined and then subsequently used to reconstruct the overall 
association between alcohol and each tested cardiovascular phenotype using either the “piecewise linear” or 
“fractional polynomial” method, as described below. In both cases, 0 standard drinks per week was used as the 
reference value, and abstainers who were former drinkers were excluded as they would be grouped in low categories 
of intake but could still demonstrate effects of increased alcohol intake. Because all non-linear comparisons are 
conducted within separate strata of residualized alcohol intake, it is encouraged to focus on the relative slopes of the 
association rather than absolute risks across the range of the exposure.13 

 
For piecewise non-linear MR, the association between alcohol and each outcome – reported as the relative beta 
coefficient (for continuous traits) or relative odds ratio (for dichotomous traits) – was reconstructed using LACE 
estimates as the gradient for the corresponding value of reported alcohol intake. LACE values reflect the change in 
relative beta coefficient or odds ratio for every 1 drink per week increase within each strata of residual alcohol 
intake. A trend test indicated that exposure associations did not significantly vary in strata of alcohol intake – except 
for the top and bottom two quantiles – and so a constant exposure association estimate was used in all strata, as in 
previous studies.17  
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For fractional polynomial non-linear MR, the strata-specific relationships between mean alcohol intake and LACE 
values were meta-analyzed. Using the standard powers for fitting fractional polynomial models, −2, −1, −0.5, 0 (log 
function), 0.5, 1, 2, and 3, the best fit models of both degree 1 and 2 were chosen.14,18 The cutoff for choosing the 
best fitting model of degree 2 over that of degree 1 was p=0.05, as judged by the maximum likelihood test; however, 
even best fitting polynomials of degree 2 demonstrated consistently risk increasing estimates for all primary 
analyses. The association between the exposure (alcohol) and the outcome was then mathematically reconstructed as 
the derivative of the fractional polynomial model. Code was derived from 
https://github.com/jrs95/nlmr/tree/master/R, as validated and published previously.14,17 
 
This adapted code was also used to calculate several tests to assess fit for disease phenotypes. Three tests of non-
linearity were reported: fractional polynomial non-linearity tests, quadratic tests, and Cochran Q tests.14 The 
fractional polynomial test involves testing the best fit model against a linear model to determine whether a non-
linear model better fits the data. The quadratic test between exposure and outcome is the same as a trend test 
between exposure and LACE values – i.e. determining if genetic associations vary in different strata of the exposure 
by meta-regressing LACE values against mean exposure in each strata.A heterogeneity test using Cochran’s Q 
statistic determines whether the difference in LACE values is more than expected by chance. Powers of best-fit 
disease models (p1 for models of degree 1, and p1 and p2 for models of degree 2) were also recorded with 
corresponding p-values of fit. 
 
Non-linear MR analyses were performed using the AUD-R allele score as the primary instrument to determine the 
shape of genetic associations with disease. Secondary analyses were conducted using the AUDIT-C-R allele score as 
well as a single-SNP instrument comprising the number of alcohol-increasing alleles of rs1229984 at ADH1B (a 
well-established gene for which association with alcohol is known to be mediated by alcohol dehydrogenase). Non-
linear MR methods were also used to assess potential causal associations with the ten continuous traits tested with 
2SMR techniques, calculating relative beta coefficients rather than odds ratios. Non-linear MR analyses were 
focused on those disease phenotypes and continuous traits with strong evidence of association with alcohol intake 
from 2SMR analyses (specifically, Bonferroni significant IVW association, strong weighted median and MR-Egger 
associations, and no evidence of pleiotropy from MR-Egger intercept or IVW association in lifelong abstainers): 
hypertension, CAD, systolic and diastolic blood pressure, LDL cholesterol, and gamma glutamyltransferase. 
Furthermore, as an important sensitivity analysis, we reapplied primary analyses excluding abstainers, as done in 
previous epidemiological studies.19 As previously noted, the genetic instrument is not associated with alcohol 
consumption in this population, because these individuals do not drink alcohol; nonetheless, abstainers have been 
previously shown to be an overall healthier population than light to moderate drinkers. Thus, in non-linear 
Mendelian randomization analyses, the genetic instrument may not as accurately reflect the differential alcohol 
consumption of abstainers vs. light drinkers and therefore non-linear Mendelian randomization results at low levels 
of intake could be biased by the inclusion of this abstainer population. We also pursued, as a sensitivity analysis, 
non-linear Mendelian randomization of medication-corrected blood pressure readings, following previously outlined 
methods.20 

 
Lastly, to further assess for residual pleiotropy, and given prior evidence of genetic correlation between alcohol use 
and smoking initiation, BMI, and depression we conducted multivariable non-linear Mendelian randomization as 
outlined previously.21–23  Genetic instruments for BMI and smoking were both derived from GWAS external to the 
study populations; the genetic instrument for depression was constructed from a meta-analysis that included the UK 
Biobank, but we included only SNPs that also reached genome-wide significance in externally replication.24-26 In 
calculating strata-specific estimates for alcohol use, we adjusted for genetically-proxied BMI and smoking; these 
estimates were then integrated into non-linearity assessments as outlined above.  
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eTable 1. Single-Nucleotide Variants Included in Genetic Instruments 
(A) AUD Genetic Instrument 

rsid Locus Chromosome Effect_allele Ref_allele Effect_freq Beta_exposure SE_exposure 

rs1260326 GCKR 2 C T 0.591 0.072 0.009 

rs570436 SIX3 2 T C 0.577 0.056 0.009 

rs1229984 ADH1B 4 C T 0.970 0.555 0.031 

rs1154433 ADH1C 4 G A 0.404 0.069 0.009 

rs13107325 SLC39A8 4 C T 0.921 0.125 0.016 

rs4715221 MDFC1 10 A G 0.698 0.053 0.009 

rs17125651 N/A 10 C T 0.134 0.071 0.012 

rs4936277 DRD2 11 A G 0.560 0.057 0.009 

rs11075992 FTO 16 T C 0.605 0.055 0.009 

 
(B) AUDIT-C Genetic Instrument 

rsid Locus Chromosome Effect_allele Ref_allele Effect_freq Beta_exposure SE_exposure 

rs1260326 GCKR 2 C T 0.591 0.045 0.005 

rs2717071 VKR2 2 A G 0.628 0.034 0.006 

rs12639940 KLB 4 A G 0.614 0.033 0.006 

rs1229984 ADH1B 4 C T 0.970 0.340 0.016 

rs1229978 ADH1C 4 C T 0.403 0.042 0.006 

rs13107325 SLC39A8 4 C T 0.921 0.103 0.010 

rs62339861 DCLK2 4 C T 0.792 0.037 0.007 

rs2961817 ISL1 5 A G 0.657 0.033 0.006 

rs185177474 KCTD16 5 A C 0.031 0.089 0.016 

rs12425096 SCN8A 12 A C 0.775 0.035 0.006 

rs9937709 FTO 16 A G 0.587 0.044 0.005 

rs4794018 IGF2BP1 17 C T 0.337 0.032 0.006 

rs35572189 BAHCC1 17 A G 0.368 0.035 0.006 
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eTable 2. Definitions of Cardiovascular Disease Phenotypes in the UK Biobank 

Disease Definition 

Hypertension Self-reported history of hypertension, essential 
hypertension or high blood pressure during verbal 
interview with trained nurse; or hospitalization with 
or death due to ICD-10 code for essential 
hypertension, hypertensive heart disease, 
hypertensive renal disease, or secondary 
hypertension (I10, I11, I12, I13, I15); or 
hospitalization with ICD-9 code for essential 
hypertension, hypertensive heart disease, 
hypertensive renal disease, or secondary 
hypertension (401, 402, 403, 404, 405) 

Coronary artery disease Self-reported history of myocardial infarction (MI), 
coronary artery bypass grafting, coronary artery 
angioplasty or triple heart bypass during verbal 
interview with trained nurse; or hospitalization with 
or death due to ICD-10 code for acute or 
subsequent myocardial infarction (I21, I22, I23, 
I24.1, I25.2); or hospitalization with ICD-9 code for 
myocardial infarction (410, 411, 412); or 
hospitalization with OPCS-4 code for coronary 
artery bypass grafting (K40, K41, K45) or coronary 
angioplasty ± stenting (K49, K50.2, K75) 

Myocardial infarction Self-reported history of myocardial infarction (MI) 
during verbal interview with trained nurse (field 
20002, Code 1075); or ICD-9 or ICD-10 code for 
hospitalization for acute or subsequent myocardial 
infarction prior to baseline interview 
(http://biobank.ctsu.ox.ac.uk/crystal/docs/alg_outc
ome_mi.pdf) 

Stroke Self-reported history of stroke during verbal 
interview with trained nurse; or hospitalization with 
or death due to ICD-10 code for nontraumatic 
subarachnoid hemorrhage, nontraumatic 
intracerebral hemorrhage, cerebral infarction, or 
unspecified stroke (I60-64); or hospitalization with 
or death due to ICD-9 code for subarachnoid 
hemorrhage, intracerebral hemorrhage, occlusion 
of cerebral arteries, or acute cerebrovascular 
disease (430, 431, 434, 436), as adjudicated 
centrally by the UK Biobank 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=4
62) 

Heart failure Self-reported history of heart failure or 
cardiomyopathy during verbal interview with 
trained nurse; or hospitalization with or death due 
to ICD-10 code for hypertensive heart disease, 
cardiomyopathy or heart failure (I11.0, I13.0, 
I13.2, I25.5, I42.0, I42.5, I42.8, I42.9, I50.0, I50.1, 
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I50.9); or hospitalization with ICD-9 code for heart 
failure or other primary cardiomyopathies (4254, 
4280, 4281, 4289); excluding individuals with 
history of hypertrophic cardiomyopathy during 
verbal interview with trained nurse, or 
hospitalization with or death due to ICD-10 code 
for hypertrophic cardiomyopathy (I42.1, I42.2) 

Atrial fibrillation Self-reported history of atrial fibrillation, atrial 
flutter, or cardioversion during verbal interview 
with trained nurse; or hospitalization with or death 
due to ICD-10 code for atrial fibrillation or atrial 
flutter (I48); or hospitalization with ICD-9 code for 
atrial fibrillation or atrial flutter (4273); or 
hospitalization with OPCS-4 code for 
percutaneous transluminal ablation (K57.1, K 
62.1, K62.2, K62.3, K62.4) 
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eTable 3. Mean Weekly Standard Measures (1 measure, 14 g) in Drinking 
Categories and Beverage Composition of Alcohol Consumption 
For each drinking category, composition is represented as the percentage of total standard measures of 
alcohol accounted for by each beverage. 
 

 

Mean Weekly 
Alcohol 

Consumption  Beer Red Wine 
Champagne
/White Wine Spirits 

Fortified 
Wine Other 

Light 
Drinkers 4.92  37.72% 29.24% 23.79% 5.94% 2.80% 0.19% 

Moderate 
Drinkers 12.77  38.12% 26.49% 26.33% 6.91% 2.07% 0.07% 

Heavy 
Drinkers 21.15  38.46% 24.47% 28.40% 7.12% 1.51% 0.05% 

Abusive 
Drinkers 37.00  34.69% 21.78% 29.70% 12.33% 1.44% 0.06% 
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eTable 4. Assessments for Pleiotropy in Single-Nucleotide Variants in Lifelong 
Abstainers 
(A) AUD Genetic Instrument 

SNP Gene Smoking BMI 
Phys 
Act 

Vegetabl
e intake 

Red 
meat 

intake 

Overall 
health 
rating 

C 
reactive 
protein 

Cholest
erol 

Included in 
refined 

instrument 

rs1260326 GCKR 0.156 0.923 0.571 0.145 0.062 0.847 3.11E-36 1.12E-32 No 

rs570436 SIX3 2.45E-04 0.783 0.567 0.073 0.081 0.380 0.278 0.540 No 

rs1229984 ADH1B 0.729 0.153 0.095 0.783 0.260 0.005 0.455 0.458 Yes 

rs1154433 ADH1C 0.955 0.072 0.115 0.708 0.302 0.283 0.116 0.060 Yes 

rs13107325 
SLC39A

8 0.831 
7.99E-

06 0.697 0.071 0.782 0.183 0.871 0.007 No 

rs4715221 MDFC1 0.419 0.695 0.704 0.853 0.025 0.015 0.843 0.538 Yes 

rs17125651 N/A 0.517 0.146 0.472 0.270 0.611 0.566 0.872 0.819 Yes 

rs4936277 DRD2 0.796 0.758 0.891 0.474 0.975 0.003 0.455 0.021 Yes 

rs11075992 FTO 0.426 
2.79E-

64 0.068 0.058 0.616 0.022 1.69E-06 2.52E-05 No 

 
 
(B) AUDIT-C Genetic Instrument 

SNP Gene 
Smokin

g BMI 
Phys 
Act 

Vegetabl
e intake 

Red 
meat 

intake 

Overall 
health 
rating 

C 
reactive 
protein 

Cholest
erol 

Included in 
refined 

instrument 

rs1260326 GCKR 0.156 0.923 0.571 0.145 0.062 0.847 3.11E-36 
1.12E-

32 No 

rs2717071 VKR2 0.099 0.408 0.821 0.548 0.893 0.340 0.129 0.428 Yes 

rs12639940 KLB 0.247 0.246 0.095 0.133 0.004 0.218 0.996 0.155 Yes 

rs1229984 ADH1B 0.729 0.153 0.095 0.783 0.260 0.005 0.455 0.458 Yes 

rs1229978 ADH1C 0.958 0.070 0.115 0.705 0.323 0.270 0.113 0.061 Yes 

rs13107325 
SLC39A

8 0.831 7.99E-06 0.697 0.071 0.782 0.183 0.871 0.007 No 

rs62339861 DCLK2 0.051 0.005 0.013 0.846 0.264 0.445 0.761 0.046 Yes 

rs2961817 ISL1 0.934 0.615 0.200 0.180 0.099 0.433 0.019 0.235 Yes 

rs185177474 KCTD16 0.297 0.934 0.272 0.849 0.120 0.470 0.112 0.278 Yes 

rs12425096 SCN8A 0.066 0.383 0.323 0.740 0.286 0.382 0.807 0.463 Yes 

rs9937709 FTO 0.557 2.14E-60 0.073 0.073 0.871 0.012 5.62E-06 
1.12E-

05 No 

rs4794018 IGF2BP1 0.012 0.002 0.874 0.189 0.934 0.620 0.246 0.599 Yes 

rs35572189 BAHCC1 0.008 0.002 0.127 0.161 0.311 0.367 0.981 0.929 Yes 
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eTable 5. Assessments of MR Assumptions in Primary Genetic Instrument 
(A) AUD-R allele score associations with traditional alcohol phenotypes 

Phenotype Beta 95% Lower Bound 95% Upper Bound P-Value F Statistic 

Ln Alcohol 0.824 0.769 0.878 2.34E-169 834.1 

Weekly 
Alcohol 7.000 6.604 7.396 1.39E-174 778.7 

Drinking 
Group 0.748 0.696 0.800 5.18E-174 759.2 

      

Phenotype Odds Ratio 
95% Lower Bound 

Odds 
95% Upper Bound 

Odds P-Value  

Drinker 2.740 2.454 3.062 3.16E-71  

Overlimits 4.272 3.856 4.733 6.70E-170  

 
(B) AUD-R allele score associations with individual alcoholic beverages 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Weekly Alcohol 7.000 6.604 7.396 1.39E-174 

Weekly Beer 1.835 1.622 2.049 1.16E-63 

Weekly Red 
Wine 2.130 1.890 2.370 7.56E-68 

Weekly 
Champagne/Wh

ite Wine 1.449 1.250 1.647 2.65E-46 

Weekly Spirits 0.838 0.625 1.050 1.17E-14 

Weekly Fortified 
Wine 0.138 0.087 0.190 1.18E-07 

 
(C) AUD-R allele score associations with possible confounders (tested in lifelong abstainers only) 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Smoking -0.085 -0.170 0.001 0.052 

BMI 0.269 -0.481 1.018 0.482 

Phys Act 0.308 -0.054 0.670 0.095 

Vegetable 
intake 0.020 -0.330 0.371 0.909 

Red meat intake -0.150 -0.398 0.097 0.234 

Overall health 
rating 0.078 -0.029 0.185 0.154 
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eTable 6. Assessments of MR Assumptions in Secondary Genetic Instruments 
(A) AUDIT-C-R allele score associations with traditional alcohol phenotypes 

Phenotype Beta 95% Lower Bound 95% Upper Bound P-Value F Statistic 

Ln Alcohol 0.817 0.769 0.865 1.31E-213 1012 

Weekly 
Alcohol 7.000 6.569 7.431 1.06E-221 955.2 

Drinking 
Group 0.739 0.693 0.786 3.30E-216 911.5 

      

Phenotype Odds Ratio 
95% Lower Bound 

Odds 
95% Upper Bound 

Odds P-Value  

Drinker 2.829 2.562 3.122 1.73E-94  

Overlimits 4.005 3.661 4.383 1.09E-200  

 
(B) AUDIT-C-R allele score associations with individual alcoholic beverages 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Weekly Alcohol 7.000 6.569 7.431 1.06E-221 

Weekly Beer 1.870 1.681 2.060 1.43E-83 

Weekly Red 
Wine 2.081 1.869 2.294 4.74E-82 

Weekly 
Champagne/Whi

te Wine 1.463 1.287 1.639 1.40E-59 

Weekly Spirits 0.911 0.723 1.100 2.67E-21 

Weekly Fortified 
Wine 0.101 0.056 0.146 1.32E-05 

 
(C) AUDIT-C-R allele score associations with possible confounders (tested in lifelong abstainers only) 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Smoking -0.029 -0.106 0.049 0.467 

BMI -0.089 -0.770 0.591 0.797 

Phys Act 0.248 -0.081 0.576 0.140 

Vegetable 
intake -0.043 -0.361 0.275 0.790 

Red meat intake -0.201 -0.426 0.024 0.079 

Overall health 
rating 0.048 -0.050 0.145 0.337 

 
(D) AUD allele score associations with traditional alcohol phenotypes 

Phenotype Beta 95% Lower Bound 95% Upper Bound P-Value F Statistic 

Ln Alcohol 0.806 0.762 0.851 2.84E-244 1157 

Weekly 
Alcohol 7.000 6.604 7.396 5.60E-262 1113 

Drinking 0.742 0.700 0.784 3.18E-257 1073 
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Group 

      

Phenotype Odds Ratio 
95% Lower Bound 

Odds 
95% Upper Bound 

Odds P-Value  

Drinker 2.759 2.519 3.022 6.89E-106  

Overlimits 4.000 3.683 4.345 1.55E-236  

 
(E) AUD allele score associations with individual alcoholic beverages 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Weekly Alcohol 7.000 6.604 7.396 5.60E-262 

Weekly Beer 1.981 1.807 2.155 2.64E-110 

Weekly Red 
Wine 2.054 1.859 2.250 2.61E-94 

Weekly 
Champagne/Wh

ite Wine 1.466 1.304 1.628 1.90E-70 

Weekly Spirits 0.715 0.542 0.889 5.93E-16 

Weekly Fortified 
Wine 0.105 0.064 0.147 7.70E-07 

 
(F) AUD allele score associations with possible confounders (tested in lifelong abstainers only) 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Smoking -0.068 -0.140 0.003 0.062 

BMI -0.802 -1.432 -0.172 0.013 

Phys Act 0.186 -0.118 0.490 0.231 

Vegetable 
intake -0.142 -0.436 0.152 0.344 

Red meat intake -0.146 -0.354 0.062 0.169 

Overall health 
rating 0.019 -0.071 0.109 0.675 

 
(G) AUDIT-C allele score associations with traditional alcohol phenotypes 

Phenotype Beta 95% Lower Bound 95% Upper Bound P-Value F Statistic 

Ln Alcohol 0.806 0.764 0.848 1.02E-268 1240 

Weekly 
Alcohol 7.000 6.621 7.379 2.32E-286 1193 

Drinking 
Group 0.736 0.695 0.776 1.31E-276 1130 

      

Phenotype 
Odds 
Ratio 

95% Lower Bound 
Odds 

95% Upper Bound 
Odds P-Value  

Drinker 2.838 2.601 3.098 8.88E-121  

Overlimits 3.820 3.532 4.132 3.25E-245  

 
(H) AUDIT-C allele score associations with individual alcoholic beverages 
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 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Weekly Alcohol 7.000 6.621 7.379 2.32E-286 

Weekly Beer 2.001 1.834 2.167 7.70E-123 

Weekly Red Wine 1.968 1.781 2.155 1.21E-94 

Weekly 
Champagne/White 

Wine 1.523 1.368 1.678 7.85E-83 

Weekly Spirits 0.766 0.600 0.931 1.36E-19 

Weekly Fortified 
Wine 0.093 0.053 0.133 5.52E-06 

 
(I) AUDIT-C allele score associations with possible confounders (tested in lifelong abstainers only) 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Smoking -0.048 -0.118 0.022 0.176 

BMI -1.193 -1.805 -0.581 1.33E-04 

Phys Act 0.136 -0.159 0.431 0.366 

Vegetable 
intake -0.142 -0.428 0.144 0.330 

Red meat intake -0.147 -0.349 0.055 0.155 

Overall health 
rating -0.002 -0.089 0.086 0.968 

 
 
  



© 2022 Biddinger KJ et al. JAMA Network Open. 

eTable 7. Primary Genetic Associations Between Alcohol and Continuous Traits 
Outcome statistics were derived in current drinkers unless otherwise specified. 
(A) 2SMR Associations using AUD-R genetic instrument 

 

Current 
Drinkers IVW 

Odds Ratio (P-
value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-value) 

Current Drinkers 
MR Egger Odds 
Ratio (P-value) 

Current Drinkers 
MR Egger 

Intercept (P-
value) 

Lifelong 
Abstainers IVW 
Odds Ratio (P-

value) 

SBP 0.133 (3.03E-14) 0.141 (2.37E-15) 0.151 (1.32E-10) -0.003 (0.264) 0.052 (0.058) 

DBP 0.096 (4.39E-04) 0.091 (3.56E-07) 0.064 (0.064) 0.005 (0.182) 0.034 (0.175) 

HDL Cholesterol -0.048 (0.091) -0.042 (0.009) -0.047 (0.329) 
-1.09E-04 

(0.983) -0.061 (0.022) 

Apolipoprotein A -0.075 (0.036) 
-0.072 (1.70E-

05) -0.089 (0.114) 0.002 (0.725) -0.086 (0.001) 

LDL Cholesterol 0.151 (4.44E-16) 0.165 (1.36E-04) 0.205 (5.28E-06) -0.008 (0.085) -0.018 (0.553) 

Apolipoprotein B 0.084 (0.010) 0.086 (9.75E-07) 0.105 (0.033) -0.003 (0.547) -0.041 (0.258) 

Triglycerides -0.006 (0.794) -0.012 (0.472) -0.018 (0.602) 0.002 (0.611) 0.025 (0.280) 

Total Cholesterol 0.103 (2.88E-06) 0.117 (2.22E-11) 0.138 (4.40E-12) -0.005 (0.010) -0.041 (0.224) 

Gamma glutamyl 
transferase 0.087 (9.56E-05) 0.072 (3.22E-05) 0.067 (0.034) 0.003 (0.366) 0.034 (0.170) 

C reactive 
protein 0.085 (0.011) 0.084 (1.90E-06) 0.081 (0.132) 0.001 (0.901) -0.006 (0.788) 

 
(B) Allele score associations using AUD-R genetic instrument 

 
Current Drinkers 

Beta [95% CI] 
Current Drinkers P-

Value 
Abstain NFD Beta 

[95% CI] 
Abstain NFD P-

Value 

Alanine 
aminotransferase 0.043 [-0.017; 0.103] 0.159 

-0.197 [-0.343; -
0.051] 0.008 

Albumin 0.114 [0.055; 0.173] 1.52E-04 -0.141 [-0.294; 0.012] 0.071 

Alkaline phosphatase 0.288 [0.228; 0.348] 4.23E-21 0.108 [-0.036; 0.251] 0.143 

Apolipoprotein A 
-0.152 [-0.209; -

0.094] 2.28E-07 -0.159 [-0.32; 0.001] 0.052 

Apolipoprotein B 0.171 [0.111; 0.23] 1.99E-08 -0.089 [-0.239; 0.06] 0.241 

Aspartate 
aminotransferase 0.053 [-0.007; 0.112] 0.082 -0.046 [-0.193; 0.1] 0.536 

C reactive protein 0.173 [0.113; 0.232] 1.46E-08 -0.093 [-0.241; 0.055] 0.218 

Calcium 0.122 [0.062; 0.181] 6.05E-05 -0.097 [-0.248; 0.055] 0.210 

Cholesterol 0.208 [0.149; 0.267] 4.83E-12 -0.085 [-0.237; 0.067] 0.274 

Creatinine 
-0.147 [-0.207; -

0.088] 1.21E-06 -0.122 [-0.267; 0.023] 0.099 

Cystatin C 0.100 [0.04; 0.16] 0.001 0.030 [-0.114; 0.174] 0.682 

Direct bilirubin 0.058 [0; 0.117] 0.049 0.028 [-0.123; 0.179] 0.716 

Gamma 
glutamyltransferase 0.176 [0.116; 0.235] 7.28E-09 -0.018 [-0.168; 0.132] 0.817 
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HDL Cholesterol 
-0.097 [-0.154; -

0.039] 0.001 -0.142 [-0.305; 0.021] 0.088 

Insulin-like growth 
factor 1 

-0.338 [-0.397; -
0.279] 2.24E-29 -0.188 [-0.34; -0.035] 0.016 

LDL Cholesterol 0.306 [0.247; 0.366] 8.36E-24 -0.054 [-0.202; 0.094] 0.472 

Lipoprotein A -0.022 [-0.083; 0.038] 0.467 0.009 [-0.14; 0.159] 0.904 

Oestradiol -0.016 [-0.073; 0.042] 0.597 -0.004 [-0.146; 0.138] 0.955 

Phosphate 0.074 [0.015; 0.134] 0.014 -0.033 [-0.185; 0.119] 0.673 

Rheumatoid factor 0.028 [-0.032; 0.088] 0.362 0 [-0.149; 0.148] 0.998 

SHBG 
-0.112 [-0.171; -

0.053] 1.94E-04 0.013 [-0.141; 0.167] 0.870 

Testosterone 0.009 [-0.049; 0.067] 0.759 -0.007 [-0.165; 0.151] 0.929 

Total bilirubin 0.072 [0.014; 0.131] 0.016 -0.095 [-0.246; 0.057] 0.221 

Total protein 0.189 [0.129; 0.248] 5.00E-10 0.001 [-0.147; 0.15] 0.985 

Triglycerides -0.012 [-0.072; 0.049] 0.703 0.045 [-0.097; 0.187] 0.532 

Urate 
-0.185 [-0.245; -

0.126] 1.02E-09 -0.146 [-0.296; 0.005] 0.057 

Urea 
-0.211 [-0.271; -

0.152] 3.53E-12 -0.068 [-0.216; 0.079] 0.363 

Vitamin D 
-0.086 [-0.146; -

0.027] 0.004 -0.143 [-0.301; 0.015] 0.077 

BMI 0.236 [0.179; 0.293] 5.21E-16 -0.028 [-0.19; 0.135] 0.740 

SBP 0.269 [0.21; 0.329] 7.31E-19 0.099 [-0.055; 0.253] 0.206 

DBP 0.194 [0.135; 0.253] 1.38E-10 0.056 [-0.096; 0.208] 0.472 
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eTable 8. Secondary Genetic Associations Between Alcohol and Continuous 
Traits 
Outcome statistics were derived in current drinkers unless otherwise specified. 
(A) 2SMR Associations using AUDIT-C-R genetic instrument 

 

Current 
Drinkers IVW 

Odds Ratio (P-
value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-value) 

Current 
Drinkers MR 
Egger Odds 

Ratio (P-value) 

Current 
Drinkers MR 

Egger 
Intercept (P-

value) 

Lifelong 
Abstainers 
IVW Odds 

Ratio (P-value) 

SBP 0.149 (0.022) 
0.241 (3.31E-

16) 0.272 (0.003) -0.008 (0.077) 0.012 (0.811) 

DBP 0.124 (0.019) 
0.121 (1.10E-

05) 0.149 (0.085) -0.002 (0.708) -0.018 (0.715) 

HDL 
Cholesterol -0.038 (0.310) -0.062 (0.017) -0.096 (0.089) 0.004 (0.182) -0.063 (0.172) 

Apolipoprotein 
A -0.069 (0.135) -0.077 (0.011) -0.160 (0.012) 0.006 (0.061) -0.090 (0.068) 

LDL Cholesterol 
0.191 (4.40E-

04) 
0.246 (3.25E-

10) 
0.323 (1.16E-

06) -0.009 (0.010) 0.002 (0.966) 

Apolipoprotein 
B 0.112 (0.003) 

0.132 (2.67E-
06) 0.167 (0.003) -0.004 (0.213) -0.014 (0.741) 

Triglycerides 0.021 (0.599) -0.021 (0.454) -0.040 (0.509) 0.004 (0.188) 0.044 (0.225) 

Total 
Cholesterol 

0.144 (1.78E-
05) 

0.172 (3.75E-
09) 

0.213 (2.56E-
06) -0.005 (0.046) -0.020 (0.652) 

Gamma 
glutamyl 

transferase 0.156 (0.031) 
0.116 (2.92E-

05) 0.097 (0.404) 0.004 (0.511) 0.045 (0.204) 

C reactive 
protein 0.105 (0.026) 

0.121 (7.52E-
06) 0.136 (0.076) -0.002 (0.595) -0.016 (0.712) 

 
(B) Allele score associations using AUDIT-C-R genetic instrument 

 
Current Drinkers 

Beta (95% CI) 
Current Drinkers P-

Value 
Abstain NFD Beta 

(95% CI) 
Abstain NFD P-

Value 

Alanine 
aminotransferase 0.073 [0.021; 0.126] 0.006 

-0.154 [-0.287; -
0.022] 0.023 

Albumin 0.106 [0.054; 0.158] 6.93E-05 
-0.136 [-0.275; 

0.004] 0.056 

Alkaline 
phosphatase 0.242 [0.189; 0.295] 2.52E-19 0.126 [-0.005; 0.257] 0.059 

Apolipoprotein A 
-0.088 [-0.139; -

0.038] 6.30E-04 
-0.142 [-0.288; 

0.004] 0.057 

Apolipoprotein B 0.149 [0.096; 0.201] 3.08E-08 
-0.062 [-0.198; 

0.074] 0.373 

Aspartate 0.041 [-0.011; 0.094] 0.124 -0.030 [-0.163; 0.658 
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aminotransferase 0.103] 

C reactive protein 0.140 [0.088; 0.193] 1.77E-07 
-0.047 [-0.181; 

0.088] 0.497 

Calcium 0.118 [0.065; 0.17] 1.05E-05 
-0.099 [-0.236; 

0.039] 0.160 

Cholesterol 0.192 [0.14; 0.244] 4.73E-13 
-0.090 [-0.228; 

0.048] 0.201 

Creatinine 
-0.083 [-0.135; -

0.03] 0.002 
-0.067 [-0.199; 

0.065] 0.321 

Cystatin C 0.114 [0.061; 0.167] 2.31E-05 0.049 [-0.082; 0.18] 0.467 

Direct bilirubin 0.069 [0.018; 0.121] 0.008 0.053 [-0.084; 0.19] 0.451 

Gamma 
glutamyltransferase 0.210 [0.158; 0.263] 4.46E-15 -0.004 [-0.14; 0.133] 0.957 

HDL Cholesterol 
-0.046 [-0.097; 

0.004] 0.072 
-0.126 [-0.274; 

0.023] 0.098 

Insulin-like growth 
factor 1 

-0.218 [-0.27; -
0.166] 1.77E-16 

-0.154 [-0.293; -
0.016] 0.029 

LDL Cholesterol 0.256 [0.203; 0.308] 1.75E-21 
-0.062 [-0.197; 

0.073] 0.367 

Lipoprotein A 0.011 [-0.042; 0.064] 0.693 
-0.062 [-0.198; 

0.074] 0.372 

Oestradiol 
-0.043 [-0.093; 

0.008] 0.101 0.031 [-0.098; 0.16] 0.639 

Phosphate 0.088 [0.035; 0.14] 0.001 
-0.050 [-0.188; 

0.088] 0.477 

Rheumatoid factor 
-0.030 [-0.083; 

0.023] 0.272 0.047 [-0.088; 0.182] 0.499 

SHBG 
-0.060 [-0.112; -

0.008] 0.025 0.007 [-0.133; 0.148] 0.917 

Testosterone 
-0.027 [-0.079; 

0.024] 0.295 0.068 [-0.075; 0.212] 0.351 

Total bilirubin 0.068 [0.016; 0.12] 0.010 -0.118 [-0.256; 0.02] 0.093 

Total protein 0.149 [0.097; 0.202] 2.55E-08 
-0.014 [-0.149; 

0.121] 0.835 

Triglycerides 0.032 [-0.021; 0.085] 0.239 
-0.010 [-0.139; 

0.119] 0.880 

Urate 
-0.110 [-0.162; -

0.057] 4.24E-05 
-0.106 [-0.243; 

0.031] 0.128 

Urea 
-0.187 [-0.239; -

0.134] 3.63E-12 
-0.107 [-0.241; 

0.027] 0.117 

Vitamin D 
-0.083 [-0.136; -

0.031] 0.002 
-0.106 [-0.249; 

0.038] 0.149 

BMI 0.136 [0.085; 0.186] 1.32E-07 -0.108 [-0.256; 0.04] 0.152 

SBP 0.184 [0.131; 0.236] 6.40E-12 0.037 [-0.103; 0.177] 0.607 

DBP 0.142 [0.09; 0.194] 1.00E-07 0.017 [-0.121; 0.155] 0.805 
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eTable 9. Secondary Genetic Associations Between Alcohol and Cardiovascular 
Disease Phenotypes 
(A) 2SMR Associations using AUD-R genetic instrument 

 

Current 
Drinkers IVW 
Odds Ratio 

(P-value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-

value) 

Current Drinkers 
MR Egger Odds 
Ratio (P-value) 

Current 
Drinkers MR 

Egger 
Intercept (P-

value) 

Lifelong 
Abstainers IVW 
Odds Ratio (P-

value) 

Hypertension 
1.28 (1.73E-

09) 
1.31 (1.06E-

12) 1.31 (4.79E-05) 0.00 (0.724) 1.17 (0.050) 

Coronary 
artery 

disease 1.38 (0.006) 
1.47 (2.17E-

08) 1.54 (0.014) -0.02 (0.394) 1.20 (0.126) 

Myocardial 
infarction 1.37 (0.020) 

1.52 (8.53E-
06) 1.61 (0.007) -0.02 (0.188) 1.30 (0.192) 

Stroke 1.26 (0.021) 1.28 (0.030) 1.34 (0.040) -0.01 (0.250) 1.21 (0.572) 

Heart failure 1.39 (0.009) 1.50 (0.004) 0.47 (0.010) -0.02 (0.280) 0.67 (0.096) 

Atrial 
fibrillation 1.24 (0.003) 1.25 (0.009) 1.23 (0.050) 0.00 (0.860) 0.94 (0.811) 

 
 
(B) 2SMR Associations using AUDIT-C-R genetic instrument 

 

Current 
Drinkers IVW 
Odds Ratio 

(P-value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-value) 

Current Drinkers 
MR Egger Odds 
Ratio (P-value) 

Current 
Drinkers MR 

Egger 
Intercept (P-

value) 

Lifelong 
Abstainers IVW 
Odds Ratio (P-

value) 

Hypertension 1.247 (0.061) 1.438 (1.08E-07) 1.634 (0.001) -0.018 (0.022) 1.048 (0.758) 

Coronary artery 
disease 1.422 (0.014) 1.655 (4.09E-05) 2.010 (2.39E-04) -0.022 (0.020) 1.140 (0.505) 

Myocardial 
infarction 1.319 (0.159) 1.941 (5.28E-05) 2.203 (0.001) -0.032 (0.008) 1.294 (0.369) 

Stroke 1.315 (0.062) 1.490 (0.027) 1.690 (0.018) -0.016 (0.150) 1.171 (0.396) 

Heart failure 1.234 (0.415) 1.822 (0.011) 2.300 (0.017) -0.039 (0.023) 0.770 (0.535) 

Atrial fibrillation 1.265 (0.023) 1.392 (0.013) 1.480 (0.016) -0.010 (0.213) 0.792 (0.367) 

 
(C) 2SMR Associations using AUD genetic instrument 

 

Current 
Drinkers IVW 
Odds Ratio 

(P-value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-value) 

Current Drinkers 
MR Egger Odds 
Ratio (P-value) 

Current 
Drinkers MR 

Egger 
Intercept (P-

value) 

Lifelong 
Abstainers IVW 
Odds Ratio (P-

value) 

Hypertension 1.230 (0.027) 1.287 (7.93E-12) 1.402 (0.022) -0.015 (0.255) 1.047 (0.679) 

Coronary artery 1.262 (0.023) 1.487 (9.72E-09) 1.547 (0.093) -0.022 (0.093) 1.225 (0.138) 
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disease 

Myocardial 
infarction 1.228 (0.041) 1.413 (0.001) 1.567 (0.001) -0.026 (0.024) 1.126 (0.461) 

Stroke 1.194 (0.035) 1.294 (0.015) 1.370 (0.022) -0.015 (0.205) 1.209 (0.396) 

Heart failure 1.257 (0.027) 1.441 (0.006) 1.496 (0.020) -0.019 (0.212) 0.606 (0.021) 

Atrial fibrillation 1.172 (0.011) 1.227 (0.010) 1.208 (0.061) -0.003 (0.704) 0.925 (0.658) 

 
(D) 2SMR Associations using AUDIT-C genetic instrument 

 

Current 
Drinkers IVW 
Odds Ratio 

(P-value) 

Current 
Drinkers 
Weighted 

Median Odds 
Ratio (P-value) 

Current Drinkers 
MR Egger Odds 
Ratio (P-value) 

Current 
Drinkers MR 

Egger 
Intercept (P-

value) 

Lifelong 
Abstainers IVW 
Odds Ratio (P-

value) 

Hypertension 1.226 (0.117) 1.423 (2.36E-07) 1.798 (0.001) -0.025 (0.010) 0.958 (0.772) 

Coronary artery 
disease 1.306 (0.042) 1.570 (1.99E-04) 1.978 (2.43E-04) -0.026 (0.007) 1.047 (0.789) 

Myocardial 
infarction 1.198 (0.241) 1.132 (0.449) 2.012 (0.001) -0.032 (0.003) 1.087 (0.726) 

Stroke 1.247 (0.061) 1.380 (0.040) 1.662 (0.014) -0.018 (0.091) 1.110 (0.523) 

Heart failure 1.165 (0.437) 1.355 (0.159) 1.937 (0.035) -0.031 (0.050) 0.551 (0.115) 

Atrial fibrillation 1.170 (0.076) 1.106 (0.409) 1.377 (0.036) -0.010 (0.188) 0.739 (0.187) 
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eTable 10. MR-PRESSO Sensitivity Analyses for 2SMR Analyses 
The Global Test RSSobs (residual sum of squares) measures the amount of residual variance, with a lower 
value indicating a better fit of the genetic model; a low Global Test p-value indicates the presence of 
horizontal pleiotropy. If one or more SNPs were significant outliers, a new outlier-corrected OR is (if there 
was influence of horizontal pleiotropy/outliers) the new OR/p-val excluding outliers. The distortion test 
assesses whether the original and outlier-corrected models are significantly different. 
 
(A) AUD-R Associations with CVD phenotypes 

 
Global Test 

RSSobs 

Global Test P-
value 

Number of 
Detected 
Outliers 

Outlier-
corrected OR 

(P-value) 
Distortion Test 

P-value 

Hypertension 10.17224 0.285 0 NA NA 

CAD 28.52291 0.019 1 1.467 (0.004) 0.409 

MI 23.54193 0.024 0 NA NA 

HF 6.277019 0.456 0 NA NA 

Stroke 1.661363 0.884 0 NA NA 

AF 0.8754201 0.962 0 NA NA 

 
(B) AUD-R Associations with continuous traits 

 
Global Test 

RSSobs 

Global Test P-
value 

Number of 
Detected 
Outliers 

Outlier-
corrected Beta 

(P-value) 
Distortion Test 

P-value 

SBP 12.870 0.196 0 NA NA 

DBP 30.372 0.012 1 0.021 (0.031) 0.324 

HDL Cholesterol 23.115 0.021 1 -0.029 (0.237) <0.001 

Apolipoprotein A 32.605 0.006 1 -0.055 (0.148) 0.066 

LDL Cholesterol 67.018 0.001 1 0.167 (0.020) 0.62 

Apolipoprotein B 27.169 0.020 1 0.068 (0.101) 0.259 

Triglycerides 14.214 0.134 0 NA NA 

Total Cholesterol 27.343 0.018 0 NA NA 

Gamma glutamyl 
transferase 17.148 0.065 0 NA NA 

C reactive protein 26.632 0.019 1 0.066 (0.087) 0.241 

 
(C) AUDIT-C-R Associations with CVD phenotypes 

 
Global Test 

RSSobs 

Global Test P-
value 

Number of 
Detected 
Outliers 

Outlier-
corrected OR 

(P-value) 
Distortion Test 

P-value 

Hypertension 106.788 <0.001 3 1.214 (0.038) 0.203 

CAD 49.077 <0.001 2 1.188 (0.253) <0.001 

MI 48.779 0.001 2 1.047 (0.813) <0.001 

HF 30.072 0.012 1 1.406 (0.116) 0.672 

Stroke 12.884 0.329 0 NA NA 

AF 11.251 0.438 0 NA NA 
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(D) AUDIT-C-R Associations with continuous traits 

 
Global Test 

RSSobs 

Global Test P-
value 

Number of 
Detected 
Outliers 

Outlier-
corrected Beta 

(P-value) 
Distortion Test 

P-value 

SBP 131.176 <0.001 4 0.130 (0.357) 0.025 

DBP 69.845 <0.001 2 0.133 (0.004) 0.677 

HDL Cholesterol 42.911 <0.001 1 -0.012 (0.678) 0.254 

Apolipoprotein A 70.688 <0.001 1 -0.040 (0.325) 0.381 

LDL Cholesterol 113.503 <0.001 2 0.118 (0.051) <0.001 

Apolipoprotein B 41.035 0.001 2 0.105 (0.007) 0.787 

Triglycerides 46.151 <0.001 1 0.004 (0.899) 0.139 

Total Cholesterol 41.642 0.002 1 0.159 (<0.001) 0.709 

Gamma glutamyl 
transferase 133.577 <0.001 4 0.125 (0.025) 0.448 

C reactive protein 57.111 <0.001 2 0.102 (0.010) 0.890 
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eTable 11. Sex-Stratified Allele Score Associations Between Alcohol and Primary 
Cardiovascular Disease Outcomes 
(A) AUD-R genetic instrument 

 

Light Drinkers 
(57690 men, 

90463 women) 

Moderate Drinkers 
(41277 men, 33672 

women) 

Heavy Drinkers 
(26595 men, 12971 

women) 

Abusive Drinkers 
(18919 men, 4865 

women) 

Hypertension, 
Men 

1.39 (95% CI, 
1.08-1.78, 
p=0.010) 

1.60 (95% CI, 1.16-2.20, 
p=0.004) 

1.92 (95% CI, 1.27-
2.91, p=0.002) 

2.80 (95% CI, 1.65-
4.74, p<0.001) 

Hypertension, 
Women 

1.22 (95% CI, 
0.97-1.53, 
p=0.093) 

2.01 (95% CI, 1.30-3.11, 
p=0.002) 

1.78 (95% CI, 0.87-
3.65, p=0.113) 

1.71 (95% CI, 0.54-
5.41, p=0.364) 

Coronary Artery 
Disease, Men 

1.74 (95% CI, 
1.19-2.55, 
p=0.004) 

1.75 (95% CI, 1.07-2.87, 
p=0.027) 

2.25 (95% CI, 1.14-
4.44, p=0.019) 

6.60 (95% CI, 2.68-
16.28, p<0.001) 

Coronary Artery 
Disease, Women 

1.66 (95% CI, 
0.92-3.01, 
p=0.093) 

1.74 (95% CI, 0.53-5.66, 
p=0.359) 

1.10 (95% CI, 0.15-
8.04, p=0.927) 

1.00 (95% CI, 0.05-
18.42, p=0.998) 

 
(B) AUDIT-C-R genetic instrument 

 

Light Drinkers 
(57690 men, 

90463 women) 

Moderate Drinkers 
(41277 men, 33672 

women) 

Heavy Drinkers 
(26595 men, 12971 

women) 

Abusive Drinkers 
(18919 men, 4865 

women) 

Hypertension, 
Men 

1.27 (95% CI, 
1.01-1.59, 
p=0.037) 

1.32 (95% CI, 1.00-1.75, 
p=0.053) 

1.47 (95% CI, 1.02-
2.10, p=0.038) 

1.78 (95% CI, 1.13-
2.78, p=0.012) 

Hypertension, 
Women 

1.05 (95% CI, 
0.85-1.28, 
p=0.667) 

1.24 (95% CI, 0.86-1.79, 
p=0.244) 

0.83 (95% CI, 0.46-
1.51, p=0.548) 

1.48 (95% CI, 0.56-
3.93, p=0.430) 

Coronary Artery 
Disease, Men 

1.63 (95% CI, 
1.16-2.29, 
p=0.005) 

1.55 (95% CI, 1.01-2.39, 
p=0.046) 

2.19 (95% CI, 1.22-
3.93, p=0.008) 

2.65 (95% CI, 1.28-
5.50, p=0.009) 

Coronary Artery 
Disease, 
Women 

1.40 (95% CI, 
0.83-2.34, 
p=0.204) 

1.52 (95% CI, 0.56-4.12, 
p=0.406) 

1.35 (95% CI, 0.25-
7.28, p=0.727) 

0.17 (95% CI, 0.02-
1.69, p=0.131) 
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eTable 12. Nonlinear MR Tests 
A low fractional polynomial non-linearity p-value indicates a non-linear relationship better fits the 
relationship than a linear model, and a low quadratic test p-value indicates a non-linear relationship 
between the exposure and the outcome. The Cochran Q p-value tests if LACE values differ more than 
would be expected by chance. Fractional polynomial powers (p1 for models of degree 1 and p1 and p2 for 
models of degree 2) are also listed with respective p-values. 
(A) Disease phenotypes, testing using AUD-R as genetic instrument 

 

Fractional 
polynomial 

non-linearity P-
value 

Quadratic P-
value 

Cochran Q P-
value p1 (P-value) p2 (P-value) 

Hypertension 1.31E-05 7.14E-05 3.07E-05 2 (4.93E-09) NA 

CAD 9.24E-04 8.36E-04 0.002 2 (4.56E-06) NA 

MI 0.004 0.003 7.83E-04 2 (1.65E-04) NA 

Stroke 0.216 0.162 0.660 3 (0.175) NA 

Heart Failure 0.053 0.029 0.013 3 (0.032) NA 

Atrial Fibrillation 0.491 0.384 0.604 2 (0.044) NA 

 
(B) Continuous traits, testing using AUD-R as genetic instrument 

 

Fractional 
polynomial 

non-linearity P-
value 

Quadratic P-
value 

Cochran Q P-
value p1 (P-value) p2 (P-value) 

GGT 0.001 0.001 0.038 2 (2.35E-07) NA 

LDL-C 6.32E-10  5.92E-10 3.36E-06 2 (1.79E-22) NA 

SBP 0.035 0.003 0.267 2 (1.16E-14) NA 

DBP 0.130 0.109 0.649 2 (0.001) NA 

 
(C) Disease phenotypes, testing using AUDIT-C-R as genetic instrument 

 

Fractional 
polynomial 

non-linearity P-
value 

Quadratic P-
value 

Cochran Q P-
value p1 (P-value) p2 (P-value) 

Hypertension 8.86E-04 5.45E-06 6.17E-05 1 (9.91E-06) log 1 (1.71E-06) 

CAD 0.002 0.001 0.002 2 (8.08E-05) NA 

MI 0.010 0.005 0.003 2 (0.003) NA 

Stroke 0.304 0.184 0.224 3 (0.3035) NA 

Heart Failure 0.209 0.174 0.002 2 (0.147) NA 

Atrial Fibrillation 0.129 0.105 0.591 2 (0.065) NA 

 
(D) Continuous traits, testing using AUDIT-C-R as genetic instrument 

 

Fractional 
polynomial 

non-linearity P-
Quadratic P-

value 
Cochran Q P-

value p1 (P-value) p2 (P-value) 
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value 

GGT 0.003 0.002 0.001 2 (4.31E-10) NA 

LDL-C 7.46E-05 2.96E-05 0.017 2 (7.55E-18) NA 

SBP 0.014 0.006 0.223 2 (1.42E-09) NA 

DBP 0.037 0.023 0.328 2 (0.011) NA 
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eTable 13. Study Characteristics in Mass General Brigham Biobank 
 

Table. Baseline Characteristics of Individuals in the Mass General Brigham Biobank 
  

No. Individuals 30716 
Age, mean (SD) 57.23 (17.26) 

Men, No. (%) 13935 (45.37) 
Weekly Alcohol Consumption, Mean (SD) 3.52 (5.83) 

Blood Pressure, Mean (SD), mmHg  
    Systolic 150.00 (21.64) 
    Diastolic 89.45 (11.51) 
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eTable 14. Associations of AUD-R Allele Score With Alcohol Consumption and 
Blood Pressure Measurements in Mass General Brigham Biobank 
 
(A) Allele score associations using linear regression. 

 Beta Coefficient 95% Lower Bound 95% Upper Bound P-value 

Weekly Alcohol 7.000 5.149 8.851 1.32E-13 

Systolic Blood 
Pressure 3.597 -0.923 8.117 0.119 

Diastolic Blood 
Pressure 3.507 0.848 6.166 0.010 

 
(B) Non-linearity tests. A low fractional polynomial non-linearity p-value indicates a non-linear relationship 
better fits the relationship than a linear model, and a low quadratic test p-value indicates a non-linear 
relationship between the exposure and the outcome. The Cochran Q p-value tests if LACE values differ 
more than would be expected by chance. Fractional polynomial powers (p1 for models of degree 1 and p1 
and p2 for models of degree 2) are also listed with respective p-values. 

 

Fractional 
polynomial 

non-linearity P-
value 

Quadratic P-
value 

Cochran Q P-
value p1 (P-value) p2 (P-value) 

Systolic Blood 
Pressure 0.304 0.297 0.042 2 (0.068) NA 

Diastolic Blood 
Pressure 0.006 0.003 0.001 2 (0.001) NA 
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eFigure 1. Alcohol Consumption and Prevalence of Cardiovascular Diseases 
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eFigure 2. Secondary Analyses for Confounding in Epidemiological Associations 
Between Alcohol Consumption and Cardiovascular Disease 
 
(I) Secondary cardiovascular disease phenotypes: Myocardial infarction, stroke, heart failure, and atrial 
fibrillation. Baseline cox proportional hazards models are shown in black, and lifestyle-adjusted models 
models are shown in gray. Lifestyle factors were smoking, BMI, red meat intake, vegetable intake, 
physical activity, and self-reported health. 
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(II) Sensitivity analyses for hypertension: unadjusted for self-reported health, men only, and women only. 
Baseline cox proportional hazards models are shown in black, and lifestyle-adjusted models models are 
shown in gray. Unless otherwise noted, lifestyle factors were smoking, BMI, red meat intake, vegetable 
intake, physical activity, and self-reported health. 
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eFigure 3. Mean Values of 6 Different Lifestyle Factors Within Alcohol 
Consumption Subcategories 
Self-reported health is coded such that a lower value represents a better description of health. 
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eFigure 4. Genetic Associations of Alcohol With CVD Phenotypes Using Allele 
Scores 
 
(I) Allele score associations using AUD-R genetic instrument. Models were run in (A) all subjects, (B) 
current drinkers, and (C) lifelong abstainers. Associations were determined using logistic regression 
models adjusting for age at assessment, sex, genotyping array, and principle components 1-10. 
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(II) Allele score associations using AUDIT-C-R genetic instrument. Models were run in (A) all subjects, (B) 
current drinkers, and (C) lifelong abstainers. Associations were determined using logistic regression 
models adjusting for age at assessment, sex, genotyping array, and principle components 1-10. 
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(III) Allele score associations using AUD genetic instrument. Models were run in (A) all subjects, (B) 
current drinkers, and (C) lifelong abstainers. Associations were determined using logistic regression 
models adjusting for age at assessment, sex, genotyping array, and principle components 1-10. 
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(IV) Allele score associations using AUDIT-C genetic instrument. Models were run in (A) all subjects, (B) 
current drinkers, and (C) lifelong abstainers. Associations were determined using logistic regression 
models adjusting for age at assessment, sex, genotyping array, and principle components 1-10.
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eFigure 5. Genetic Allele Score Associations of Alcohol With CVD Phenotypes 
Stratified by Category of Alcohol Consumption 
 
(I) Genetic associations between AUD-R genetic risk score and heart disease phenotypes in (A) light 
drinkers, (B) moderate drinkers, (C) heavy drinkers, and (D) abusive drinkers. Associations were 
determined using logistic regression models adjusting for age at assessment, sex, genotyping array, and 
principle components 1-10. 

 
 
(II) Genetic associations between AUDIT-C-R genetic risk score and heart disease phenotypes in (A) light 
drinkers, (B) moderate drinkers, (C) heavy drinkers, and (D) abusive drinkers. Associations were 
determined using logistic regression models adjusting for age at assessment, sex, genotyping array, and 
principle components 1-10. 
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eFigure 6. Fractional Polynomial Nonlinear MR Analyses, Using AUD-R Genetic 
Instruments, of Alcohol and Secondary Cardiovascular Disease Phenotypes 
LACE values were meta-regressed against mean consumption in each strata of alcohol, and these plots 
were reconstructed as the derivative of the best fit model. Shaded areas denote 95% confidence intervals 
for the model. 
I) In all individuals 
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II) Excluding abstainers 
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eFigure 7. Nonlinear MR Analyses of Alcohol and Total Mortality  
Associations were tested using fractional polynomial (A) or piecewise linear methodology (B). LACE 
values were calculated using the AUD-R allele score. Shaded areas and error bars refer to the 95% 
confidence interval. 
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eFigure 8. Fractional Polynomial Nonlinear MR Analyses, Using Secondary 
Genetic Instruments, of Alcohol and 6 Cardiovascular Disease Phenotypes 
LACE values were meta-regressed against mean consumption in each strata of alcohol intake, and these 
plots were reconstructed as the derivative of the best fit model. Shaded areas denote 95% confidence 
intervals for the model.  
(I) Using AUDIT-C-R genetic instrument, all individuals 

 
 
II) Using AUDIT-C-R instrument, excluding abstainers 
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(III) Using number of alcohol-increasing alleles in rs1229984 in the ADH1B gene, all individuals 
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(IV) Using number of alcohol-increasing alleles in rs1229984 in the ADH1B gene, excluding abstainers 
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eFigure 9. Piecewise Nonlinear MR Analyses of Alcohol and 6 Cardiovascular 
Disease Phenotypes 
Gradient at each value of weekly alcohol consumption is the localized average causal effect for the 
corresponding category of residual alcohol. Error bars refer to the 95% confidence interval. 
 
(I) AUD-R genetic instrument, all individuals 
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(II) AUD-R genetic instrument, excluding abstainers 

 
 
(III) AUDIT-C-R genetic instrument, all individuals 
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(IV) AUDIT-C-R genetic instrument, excluding abstainers 
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eFigure 10. Fractional Polynomial Nonlinear MR Analyses of Alcohol and 
Continuous Traits 
(I) Fractional polynomial non-linear MR analyses for four primary continuous traits using AUD-R genetic 
instruments, in all individuals. Shaded areas denote 95% confidence intervals for the model. 

 
 
 
(II) Fractional polynomial non-linear MR analyses for six secondary continuous traits using AUD-R genetic 
instruments, in all individuals. Shaded areas denote 95% confidence intervals for the model.  
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(III) Fractional polynomial non-linear MR analyses for four secondary continuous traits using AUD-R 
genetic instruments, excluding abstainers. 
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(IV) Fractional polynomial non-linear MR analyses for six secondary continuous traits using AUD-R 
genetic instruments, excluding abstainers. 
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(V) Fractional polynomial non-linear MR analyses for four continuous traits using AUDIT-C-R genetic 
instruments. LACE values were meta-regressed against mean consumption in each strata of alcohol, and 
these plots were reconstructed as the derivative of the best fit model. Shaded areas denote 95% 
confidence intervals for the model. 
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(VI) Fractional polynomial non-linear MR analyses for six secondary continuous traits using AUDIT-C-R 
genetic instruments. Shaded areas denote 95% confidence intervals for the model. 
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(VII) Fractional polynomial non-linear MR analyses for four continuous traits using rs1229984 from the 
biologically relevant ADH1B genetic instruments. Shaded areas denote 95% confidence intervals for the 
model. 
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(VIII) Fractional polynomial non-linear MR analyses for six secondary continuous traits using rs1229984 
from the biologically relevant ADH1B genetic instruments. 
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eFigure 11. Piecewise Nonlinear MR Analyses of Alcohol and Continuous Traits 
 
(I) Piecewise non-linear MR analyses for four continuous traits, all individuals. Gradient at each value of 
weekly alcohol consumption is the localized average causal effect, calculated using the AUD-R score, for 
the corresponding category of residual alcohol. Error bars refer to the 95% confidence interval. 

 
 
(II) Piecewise non-linear MR analyses for four continuous traits, excluding abstainers. Gradient at each 
value of weekly alcohol consumption is the localized average causal effect, calculated using the AUD-R 
score, for the corresponding category of residual alcohol. Error bars refer to the 95% confidence interval. 
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(III) Piecewise non-linear MR analyses for six secondary continuous traits, all individuals. Gradient at 
each value of weekly alcohol consumption is the localized average causal effect, calculated using the 
AUD-R score, for the corresponding category of residual alcohol. Error bars refer to the 95% confidence 
interval. 
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(IV) Piecewise non-linear MR analyses for six secondary continuous traits, excluding abstainers. Gradient 
at each value of weekly alcohol consumption is the localized average causal effect, calculated using the 
AUD-R score, for the corresponding category of residual alcohol. Error bars refer to the 95% confidence 
interval. 
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(V) Piecewise non-linear MR analyses for for four primary continuous traits, all individuals. Gradient at 
each value of weekly alcohol consumption is the localized average causal effect, calculated using the 
AUDIT-C-R score, for the corresponding category of residual alcohol. Error bars refer to the 95% 
confidence interval. 
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(VI) Piecewise non-linear MR analyses for four primary continuous traits, excluding abstainers. Gradient 
at each value of weekly alcohol consumption is the localized average causal effect, calculated using the 
AUDIT-C-R score, for the corresponding category of residual alcohol. Error bars refer to the 95% 
confidence interval. 
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(VII) Piecewise non-linear MR analyses for six secondary continuous traits, all individuals. Gradient at 
each value of weekly alcohol consumption is the localized average causal effect, calculated using the 
AUDIT-C-R score, for the corresponding category of residual alcohol. Error bars refer to the 95% 
confidence interval. 
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(VIII) Piecewise non-linear MR analyses for six secondary continuous traits, excluding abstainers. 
Gradient at each value of weekly alcohol consumption is the localized average causal effect, calculated 
using the AUDIT-C-R score, for the corresponding category of residual alcohol. Error bars refer to the 
95% confidence interval. 
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eFigure 12. Sex-Stratified Nonlinear MR Analyses for Primary Outcomes 
Non-linear MR analyses were conducted using fractional polynomial methodology. LACE values were 
determined in men or women using the AUD-R genetic score. Shaded areas and error bars refer to the 
95% confidence interval. 
 
(I) Disease phenotypes, all individuals 
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(II) Disease phenotypes, excluding abstainers 
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(III) Continuous outcomes, all individuals 

 
 
(IV) Continuous outcomes, excluding abstainers 
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eFigure 13. Nonlinear MR Analyses of Alcohol and Medication-Corrected Blood 
Pressure 
(I) AUD-R instrument, fractional polynomial analysis 

 
 
 
(II) AUD-R instrument, piecewise linear analysis 
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(III) AUDIT-C-R instrument, fractional polynomial analysis 

 
 
(IV) AUDIT-C-R instrument, piecewise linear analysis 
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eFigure 14. Multivariable Fractional Polynomial Nonlinear MR Analyses, Adjusting 
for Smoking, BMI, and Depression 
LACE values – assessed using the primary AUD-R score – were meta-regressed against mean 
consumption in each strata of alcohol intake, and these plots were reconstructed as the derivative of the 
best fit model. Shaded areas denote 95% confidence intervals for the model.  
 
(I) Disease outcomes 

 
 
  



© 2022 Biddinger KJ et al. JAMA Network Open. 

(II) Continuous traits 
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eFigure 15. Fractional Polynomial Nonlinear MR Analyses of Alcohol and Blood 
Pressure in Mass General Brigham Biobank 
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