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2. USING THE WEBSITE AND R PACKAGE TO ANALYZE THE APPLIED EXAMPLE

Here we provide a tutorial on how to use the R package EValue (version 4.1.2) and website (www
.evalue-calculator.com/meta) to re-analyze Kodama et al| (2009)’s meta-analysis on aerobic
capacity and mortality, as described in the main text.

2.1. Calculating an E-value for the point estimate and its confidence interval

To calculate E-values, we first fit a standard random-effects meta-analysid”| to obtain the meta-analysis
point estimate and confidence interval. Doing so in R yields the following output, with all estimates
given on the log-relative risk scale (Viechtbauer et al., 2010):

Random-Effects Model (k = 16; tau~2 estimator: REML)

tau~2 (estimated amount of total heterogeneity): 0.0395 (SE = 0.0258)
tau (square root of estimated tau~2 value): 0.1988

I~2 (total heterogeneity / total variability):  70.96%

H~2 (total variability / sampling variability): 3.44

Test for Heterogeneity:
Q(df = 15) = 38.6857, p-val = 0.0007

Model Results:

estimate se tval pval ci.lb ci.ub
0.5459 0.0668 8.1682 <.0001 0.4034 0.6883 **x

Then, in the first tab of the website www.evalue-calculator.com/meta, called “Sensitivity analysis
for the point estimate”, we input the pooled point estimate and confidence interval limits on the
relative risk scale. We can obtain these by exponentiating the log-relative risks in the final line of
the R output above, yielding a pooled point estimate of exp{0.5459} ~ 1.73 with confidence interval
bounds of exp{0.4034} ~ 1.50 and exp{0.6883} ~ 1.99. By default, the website considers shifting the
point estimate and lower confidence interval limit to the null, which is usually taken to be 1 for ratio
measures (but this default can be modified).

%In this meta-analysis, some papers or cohorts contributed multiple point estimates. We use “studies” to refer to the
meta-analyzed point estimates. For illustrative purposes and to more closely reproduce the meta-analysts’ reported
results, we analyzed the dataset using a simple random-effects model estimated by restricted maximum likelihood and
with standard errors estimated with the Knapp-Hartung adjustment. However, note that a best-practice meta-analysis
would account for the clustering via, for example, robust estimation (Hedges et all 2010|) or multilevel modeling, or a
combination (Pustejovsky & Tipton, [2021)).



www.evalue-calculator.com/meta
www.evalue-calculator.com/meta
www.evalue-calculator.com/meta
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Outcome type

Relative risk / rate ratio v

Point estimate

173

Confidence interval lower limit

1.50

Confidence interval upper limit

1.99

True causal effect to which to shift estimate (default:
null)

1

E-value for point estimate: 2.85 and for confidence interval: 2.37

Alternatively, we could use the R package EValue by passing estimates from the meta-analysis object,
meta. See also the standard R documentation and package vignettes for details (Mathur et al., 2018)).

install.packages("EValue")
library(EValue)
evalue( est = RR( exp(meta$b) ),

lo = RR( exp(meta$ci.lb) ),

hi = RR( exp(meta$ci.ub) ) )

point lower upper

RR 1.726092 1.496936 1.990329
E-values 2.845602 2.359421 NA

Throughout this example, the numerical values produced by the R package (and as reported in the
main text) differ slightly from those produced by the website. This occurs because we used rounded
values as inputs to the website but used exact values as inputs to the R function.

2.2. Estimating the percentage of effects above RR = 1.1 and the strength of homo-
geneous confounding required to reduce the percentage to less than 15%

The sensitivity analyses we conducted above describe evidence strength in the meta-analysis in terms
of only its pooled point estimate. To additionally characterize heterogeneity across the studies’
true causal effects, we switch to the website tab called “Sensitivity analysis for the proportion of
meaningfully strong effects”. This tab has two options: “Robust estimation (homogeneous bias across
studies)” and “Parametric estimation (allows heterogeneous bias)”. The analyses shown in the main
text all consider homogeneous bias across studies, so we use the “Robust” tab.

First, we are prompted to upload our meta-analysis dataset as a .csv file. This dataset should contain
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at least two columns: one containing studies’ point estimates on the log-relative risk scaleEl and one
containing their variance estimates (i.e., squared standard errors). The dataset must have a single
header row containing the variable names, like this:

yi Vi
0.385262400790645 0.000731026514084949

-t

0.425267735404344  0.00938935228099761
0.22314355131421  0.00684180739201936
0.198850858745165 0.144504220605036
0.65232518603969 0.0233244877241552
0.22314355131421 0.0346130484520095
0.802001585472027 0.0399853247689023

~N o o A @ N

We upload the dataset to the website and also input the column names for the point estimates and
the variance estimates (here, “yi” and “vi”).

Next we fill out the section “Specify sensitivity parameters and thresholds”. We select a scale (log-
relative risk or relative risk) on which to input the bias factor in each study and the threshold we have
chosen to represent a meaningfully strong effect size; for this example we use the relative risk scale.
To estimate the percentage of studies with meaningfully strong population effects prior to correction
for unmeasured confounding, we type “1” for the bias factor in each study (because multiplying a
relative risk by a bias factor of 1 would leave it unchanged, representing no bias due to unmeasured
confounding).

At the same time, we can also estimate the strength of homogeneous confounding that would be
required to reduce this percentage of meaningfully strong effects to less than 15%. To do so, we also
type in our chosen threshold of RR = 1.1, the proportion below which the proportion of meaningfully
strong effects is to be reduced (0.15), and we select the tail of effects we want to consider (“above”
because we want to consider effects above, rather than below, RR = 1.1). The number of bootstrap
iterates is used when estimating confidence intervals and defaults to 1,000, which is what is used in
this example.

b As indicated in the relevant input box in the website, the studies’ point estimates and variances should be provided
on the log-relative risk scale regardless of whether the sensitivity parameters are provided on the relative risk or
log-relative scale. This is because the meta-analysis should be conducted using estimates on the log scale and because
variances of relative risks are usually estimated on the log scale. For meta-analyses that were conducted with other
types of effect sizes (e.g., odds ratios with a common outcome or standardized mean differences), the estimates and
variances should first be converted to the log-relative risk scale, for example using the function convert_measures in
the R package EValue.
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Upload meta-analysis dataset Specify sensitivity parameters and thresholds
Upload meta-analysis dataset (csv) (] Scale (RR or log-RR) () Proportion below which strong
effects are to be reduced (r) (]
kodama_prepg RR v
0.15

Upload complete
Bias factor in each study (on scale you

Name of variable in data containing specified) o Tail [
studies' point estimates (log-RR scale) @

1 above

yi below
Threshold (q) for meaningfully strong

Name of variable in data containing effect size (on scale you specified) @ Number of bootstrap iterates (i ]
studies' variance estimates (<]

11

1000

vi

Proportion of studies with population causal effects above RR = 1.1:
1(95% ClI: NA, NA)

Minimum bias factor (RR scale) to reduce to less than 0.15 the proportion of studies with population causal effects above RR=1.1:
1.834(95% Cl: 1.462, 2.449)

Minimum confounding strength (RR scale) to reduce to less than 0.15 the proportion of studies with population causal effects above RR = 1.1 :
3.071(95% Cl: 2.284, 4.333)

The confidence interval and/or standard error for the proportion were not estimable via bias-
corrected and accelerated bootstrapping. You can try increasing the number of bootstrap
iterates or choosing a less extreme threshold.

This analysis may take a minute or so to run, after which the metrics we want to estimate appear
in the grey boxes. The output in the first box indicates that, prior to correction for unmeasured
confounding, we estimate that the percentage of studies with meaningfully strong population effects
(RR > 1.1) is nearly 100%. There is no confidence interval (“NA”) because, per the red message at
the bottom of the screen, we have chosen an extremely high threshold compared to the distribution of
effects in the meta-analysis, and this can make it impossible to estimate confidence intervals. The
output in the second box is not discussed in this tutorial paper, but is described in the instructions
of the website. The output in the third box indicates that to bring this percentage of meaningfully
strong effects below 15%, homogeneous unmeasured confounding associations with both higher aerobic
capacity and lower all-cause mortality of RR = 3.07 (95% CI: |2.28, 4.33|) each could suffice, but
weaker homogeneous confounding could not.

Alternatively, we could use the R package as follows:

confounded_meta( method = "calibrated",
q = log(1.1),
r = 0.15,
tail = "above",
muB = 0,
dat = dat,
yi.name = "yi"
vi.name = "vi" )

which yields the following output:
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The confidence interval and/or standard error for the proportion were not estimable via
bias-corrected and accelerated bootstrapping. You can try increasing R.
Value Est SE CI.lo CI.hi
1 Prop 1.000000 NA NA NA
2 Tmin 1.833881 0.2452685 1.490533 2.420839
3 Gmin 3.070504 0.5084525 2.345609 4.275461

Because these confidence intervals are constructed by bootstrapping, they differ slightly from those
provided on the website. In the main text, we report the confidence intervals given by the R package.

To consider heterogeneous bias as described in the main text, we can use the website tab “Parametric
estimation (allows heterogeneous bias)”. Here, rather than uploading the meta-analysis dataset, we
input 4 estimates from our meta-analysis: the point estimate, its estimated variance (i.e., squared
standard error, which can be found in the R output shown in Section , the estimated heterogeneity
(called “tau”2” in the R output), and the estimated variance of the heterogeneity estimate. On the
right side of the website, we again input the sensitivity parameters as we did in Section 2.2 but now,
to characterize our assumed degree of heterogeneity in the confounding bias across studies, we specify
what proportion of the observed heterogeneity (of 72 = 0.04) is assumed to be due to variation in
confounding bias rather than to genuine heterogeneity in studies’ causal effects. If this proportion is 0,
then confounding is assumed to be of homogeneous severity across studies. The closer the proportion
is to 1, the more the severity of confounding is assumed to differ across studies.

Parametric estimation (allows heterogeneous bias)

Input estimates from confounded meta- Specify sensitivity parameters and thresholds
a na|y5|s Mean bias factor across studies (on scale you Threshold (q) for meaningfully strong effect
Scale (RR or log-RR) specified) size (on scale you specified)
RR v 11
Pooled effect size Proportion of heterogeneity (1?) due to Tail
variation in confounding bias
173 above
8 below

Estimated variance of pooled point estimate

(optional) Proportion below which strong effects are to
be reduced (r) Analyze
0.004465944

15
Estimated heterogeneity (1?)

0.03953606

Estimated variance of t* (optional)

0.0006681604

Proportion of studies with population causal effects above RR=1.1:
NA (95% Cl: NA, NA)

Minimum bias factor (RR scale) to reduce to less than 0.15 the proportion of studies with population causal effects above RR = 1.1 :
1.725(95% Cl: 1.168,2.282)

Minimum confounding strength (RR scale) to reduce to less than 0.15 the proportion of studies with population causal effects above RR = 1.1:
2.842(95% Cl: 1.675,4.01)
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3. SUPPLEMENTAL FIGURES FOR THE APPLIED EXAMPLE

Study Risk Ratio [95% CI]

Villeneuve 1998 |——-—| 1.22[0.58, 2.57]
Aijaz 2008 - 1.25[1.06, 1.47]
Farrell 2002 H—— 1.25[0.87, 1.80]
Sandvik 1993 |——-—| 1.38[0.67, 2.83]
Kampert 1996 |—-—| 1.42[1.08, 1.87]
Slattery 1988 . 1.47 [1.39, 1.55]
Hein 1992 D HEH 1.53[1.27, 1.85]
Laukken 2008 D —— 1.83[1.23, 2.73]
Gulati 2003 C—a— 1.89[1.25, 2.86]
Stevens 2002a —— 1.92[1.42, 2.59]
Erikksen 1998 —a— 2.09 [1.48, 2.96]
Arraiz 1992 | 2.17 [1.10, 4.30]
Stevens 2002b —a 2.23[1.51, 3.30]
Sawada 1999 : 2.38[1.37, 4.14]
Stevens 2004 | = 2.58 [1.63, 4.09]
Myers 2002 : . | 2.96 [1.96, 4.46]
Pooled estimate < 1.73[1.50, 1.99]

0.5

15 25 35
Estimate (RR)

4.5

Supplemental Figure 1: Forest plot of point estimates (RR) and uncorrected pooled estimate in our
reanalysis of |Kodama et al.| (2009)’s meta-analysis on lower aerobic capacity and mortality. Studies are
ordered from largest to smallest point estimate.
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(a) (b)

Supplemental Figure 2: (a) In sensitivity analyses considering homogeneous bias across studies with
nonparametric estimation, the estimated proportion of studies with meaningfully strong causal effects

(RR > 1.1) as a function of the multiplicative bias in all studies (lower x-azis) or, equivalently, the con-
founding strength in all studies (upper x-axis). Horizontal dashed line: the threshold (r) at which only 15%
of effects are meaningfully strong. Vertical dashed line: the confounding strength required to reduce to less
than 0.15 the proportion of meaningfully strong effects (é(r = 0.15,q = log(1.1)). (b) Counterpart for
sensitivity analyses considering heterogeneous bias across studies. The confidence intervals in this panel are
estimated parametrically and may not perform well for values of the proportion that are less than 0.15 or
greater than 0.85 (Mathur € VanderWeele, |20200|).

4. EMPIRICAL BENCHMARKS ON AGREEMENT BETWEEN NONRANDOMIZED AND
RANDOMIZED STUDIES IN META-ANALYSES

Although directly estimating the extent of confounding bias in meta-analyzed studies would be very
difficult, several studies have addressed this issues indirectly by estimating the extent of agreement
or disagreement between NRS and RS on the same topic. Most relevant to our discussion are
meta-meta-analyses in which investigators sample existing meta-analyses that contain both NRS
and RS, calculate metrics of agreement between the study designs for each meta-analysis, and then
summarize these agreement metrics across meta-analyses. If, within a meta-analysis, the estimates
from NRS were on average biased upward or downward due to systematic confounding, this would
tend to decrease agreement between the two study designs. Critically, though, any such disagreements
could reflect not only unmeasured confounding, but also other biases that might preferentially affect
one study design (e.g., publication bias) as well as differing distributions of effect modifiers (e.g.,
populations, interventions, or outcome measures) between the study designs. Therefore, estimates
from these meta-meta-analyses should not be interpreted as direct estimates of confounding bias, but
rather of the aggregation of confounding bias plus any other systematic differences between study
designs.

Supplemental Table [2| summarizes the results of 4 such meta-meta-analyses (Bun et al. 2020}
Golder et al., [2011; Shikata et al., 2006} loannidis et al., [2001)) that used ratio outcomes that were
comparable to RRs. When possible, we re-analyzed data (Mathur & VanderWeele, 2020a) to estimate
the percentage of discrepancy ratios (i.e., the pooled RR in NRS divided by that in RS) that were
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more extreme than various thresholds (e.g., 1.25) In the 2 meta-meta-analyses for which we could
obtain study-level estimates to conduct these analyses, about 50% of meta-analyses had discrepancy
ratios greater than 1.25 or less than 0.80, but few (< 10%) had discrepancy ratios greater than 2 or
less than 0.50. Again, these estimates potentially reflect multiple systematic differences between the
study designs, not only unmeasured confounding bias.

Outside the context of meta-analyses, other studies have compared NRS to RS while more stringently
minimizing systematic differences in populations, interventions, and outcomes. In the ongoing RCT-
DUPLICATE project, existing medical RS are being “replicated” in NRS using claims data (Franklin
et al., |2020). In the first 10 replications, one of 10 study pairs had a discrepancy with p < 0.05
(Franklin et all 2020), and we estimated that none (0%) of the discrepancy ratios were greater than
1.25 or less than 0.80. These discrepancies appear to be less than seen in the meta-meta-analyses,
perhaps partly reflecting extensive confounding control in the NRS conducted by RCT-DUPLICATE.
A few studies have even randomly assigned subjects to participate in either an observational study or
an RCT, which would eliminate average discrepancies in the characteristics of subjects participating
in each study design (Shadish et al., 2008| 2011)). We encourage further empirical work comparing
NRS to RS, including in meta-analyses and accounting for differing distributions of suspected effect
modifiers (Dahabreh et al., [2020; Mathur & VanderWeele, 2021]).

¢Our numerical results and qualitative interpretations sometimes disagree considerably with those reported in
the meta-meta-analyses themselves for two reasons. First, some of the meta-meta-analyses reported much larger
percentages of extreme discrepancy ratios than those we report. Those analyses had estimated these percentages by
simply counting the number of estimated ratios that were above or below various thresholds. This method does not
account for the substantial statistical error associated with ratio estimates, leading to substantially overestimated
percentages of extreme ratios. We instead used methods that correct for this statistical error (Mathur & VanderWeele,
2020al), leading us to estimate smaller percentages of extreme ratios. Second, some meta-meta-analyses concluded that
there was little disagreement based on the average discrepancy ratio across meta-analyses, but such results could occur
even if discrepancies were extreme but occurred in different directions in different meta-analyses.

11



Supplement

‘pogiodos JON YN

"SPOYSALY] SNOLIDA UDY] §S9) 4dm J0Yy) SUTAT /SUNYYT s0104 Jo abvjuoosod pagpwagse oyg ‘SUY > SUNYT ypm sasfiypun-vpow buowyy (ST > SUNyy)
§0190.4 fioundaLdsip WYL [0 $9BDIUIILD *SPIOYSALY] STOLIDO UDY] L2ID2LD 240m J0Y) SUTAT /SUNYAT soun.s Jo abvjusoiad pajpwigso oY) ‘SUY < SUNYAT ypm
sasfiyppun-npow buowyy :(SUYYy < STNYY) souvs fioundasosip 2wayra Jo sabvjuodsod "GO0 > d ypm ST wouf pasaffip SUNY yorym 4of sasfiypun-ngow
Jo abvyusous g ¢ () > d foundoudsyq "SY 9Y3 Ul 0104 YSts Pajood :SHYT QYN Y} UL 01D YSit Pajood SN *S01DL YSth 0] 2]QDAIDAUL0D SIUNSDIUL DULOIINO
ypm (GY) S)pILY PajjoLU0D PIZIUOPUDL [O PUD GYN UMY SYNSaL UL $10UDaLISIP PIIDWISD IDY] SISAIDUD-DIPW-DIOUL P02]aG g, S[qR], [ejyuswaiddng

(%61 “%0] %8
[%0% ‘%0l %¢€T
[%09 ‘%0] %e€

(%S “%0] %3
[%e¥ ‘%l %ve
(%29 ‘%62] %8¥

(%) PI9J-0¢°0 >

(%) PIo§-8°0 >

(%) P1o3-16'0 >
(S > SUNy)
soryel
AouedaIdsIp awILI)Xd
Jo seS8ejuedied

(%21 ‘%0l %z
[%00T ‘%0] %1€
%26 ‘%0] %9%

[%0T ‘%0 %z
(%€ ‘%¥| %61
(%87 ‘“%0T] %1€

(%) Pro3-¢ <

(%) PIoJ-6z'T <

(%) PIOJ-T'T <
(SYqY < SUNT)
sorjyed
KLouedaadsIip owaI)xo
Jo so8ejuadaog

%91 %61 N %ET G0'0 > d Aouederdsiq
A[reoryewo)s£s-uou QY JO sosATeur-ejomt SUOT)UOAIDIUT UOTJUOAI)UT [RITPOUL
uesod ‘SYN a[qeIeduod yjim paired )[ea7] JO S709]j0 JSIOAPR ® Jo AjoJes 10 Aoeoyje

pue Y yjoq Sururejuod
SosATRUR-R19W [eIIPIIN

QYN AI93INS 9A1ISOSIp
uo QYN JO sosA[eue-e1ofy

U0 SYN Pue Sy 09
SUIUTRIUOD SOSATRUR-RIDIA]

o1 o YN PU® SY Y1oq
SUIUTRIUOD SOSATRUR-RIDA]

popnoul
sosA[eue-ejowi Jo adAT,

i

4%

8¢

¢0T

papnpoul
sesATeue-elowt
Jo Joquun Ny

(T00Z) ‘T® 70 sipruueoy

(9002) ‘T& 19 ereqIys

(1T02) ‘T 70 I9P[0ODH

(0z0g) ‘T8 30 ung

12



Supplement

5. ADDITIONAL SENSITIVITY ANALYSIS FORMULAS

5.1. T’(T, q) and a(r, q) with log-normal bias

The expressions given the main text for T (r,q) and G (r,q) apply if the confounded pooled estimate is
apparently causative (u¢ > O) If instead the confounded pooled estimate is apparently preventive
(11 < 0), the expression for G(r q) in terms of T(r ¢) remains the same, but 7(r, q) itself becomes:

T(r,q) = exp {a - = 07 ()/72 = o3} (S.1)

Var (72) (1 (r))*

SE (T(r.0)) = exp {4 = " = @70\ /52 = o [V () + = 55

c 0+

These expressions, like those given in the main text, are straightforward generalizations of those given
in Section 4.2 of Mathur & VanderWeele| (2020b) for homogeneous bias.

5.2. Sensitivity analysis with weakened assumptions on the bias distribution

Here we provide a somewhat more technical explanation of how the E-value for the pooled estimate
(VanderWeele & Ding), [2017; Mathur & VanderWeele, 2020b) and the nonparametric estimates
]3>q, f('r, q), and G (r,q) (Mathur & VanderWeele, [2020a) can be calculated and interpreted under
weakened assumptions about the distribution of bias. For the 7" meta-analyzed study, let @C denote
its confounded estimate, 6! its population causal effect, B} its bias, and ¢; its statistical error, such
that @\f = 0! + B! +¢;. As in the main text, we use the superscript ¢ to denote confounded estimates
and parameters and the superscript * to denote their true (i.e., causal) counterparts, with ¢ denoting
the confounded pooled log-RR. Let k denote the number of studies in the meta-analysis.

5.2.1 E-value for the pooled estimate and confidence interval

First , as discussed in the main text, the E-value calculated using the confounded pooled estimate is
exp (u°)+ \/ exp (1) (exp (j1¢) — 1). All the considerations discussed below also apply when calculating
the E-value for the confidence interval limit. The E-value for the pooled estimate and confidence
interval can be interpreted without assumptions on the distribution of the population causal effects or
the distribution of bias across the population causal effects provided that:

e Condition (i). Any distributional assumptions of the meta-analysis model are fulfilled. This
implies that if the population confounded effects, 6, are not normal, the meta-analysis must be
conducted using an approach that does not make this distributional assumption (Hedges et al.,
2010; [Pustejovsky & Tipton, 2021]).

e Condition (ii). The bias in each study is independent of its population causal effect, 6!, and its
standard error. That is, studies with larger population causal effects cannot have systematically
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more or less bias than studies with smaller population causal effects, and more precise studies
cannot have systematically more or less bias than less precise studies.

Along with standard assumptions of meta-analysis, these conditions imply that 11 is consistent in & for
u¢. This consistency implies that the E-value calculated using ¢ is itself consistent for the population
E-value that would be calculated using the confounded population mean u€. Specifically, standard
meta-analysis methods based on inverse-variance weighting require studies’ population effects to be
independent of their standard errors. If we thus make the standard assumption that 6 IT ¢; and
additionally assume that Condition (ii) holds (i.e., Bf IT¢; and Bj 116!), then these assumptions imply
that 6 = 0! + By Il ¢;. Then, under standard regularity conditions, fi¢ is consistent for u¢ without
further assumptions on the distribution of 65 = 0! + By, subject to the choice of a meta-analysis model
that fulfills Condition (i).

Note that even if 6! are assumed to be normal, the first condition is still necessary to accommodate
the possibility of non-normal distributions of bias. In practice, diagnostic plots and tests could be
used to check the normality assumption (Hardy & Thompson, [1998; Wang & Lee} 2020). If normality
appears to hold, then a standard parametric meta-analysis could still be used. Using parametric
estimation facilitates estimating the standard error of 72, which is used when constructing parametric
confidence intervals for ﬁ>q.

5.2.2 P., G(r,q), and T(r,q)

To estimate ﬁ>q under homogeneous bias B*, the method of Mathur & VanderWeele| (2020a)) involves
calculating a bias-corrected “calibrated” estimate (Wang & Lee, [2019) for each meta-analyzed study,
@, and then calculating the sample proportion of 51 that are above ¢ as follows. Let 72 = Var (0")
denote the heterogeneity of the population causal effects and 77 its sample estimate based on the
confounded meta-analysis, whose form is given below. Define a generic calibrated estimate as the
function:

0 ~c v ne e

Assuming homogeneous bias of magnitude B*, the calibrated estimates 51 (B*,7%) approximately
match the first two moments of the marginal distribution of population effects (Wang & Lee, [2019).
The proportion of meaningfully strong effects can then be estimated as (Mathur & VanderWeele,

2020a)){]

k
]3>q (b,v) = %Z IL{@ (B*,77) > q} (S.3)

=1

The following lemma and corollary show that, under Conditions (i) and (ii) given in Section the
calibrated estimates could instead be calculated using an estimated lower or upper bound on 72. The
lower bound on 77 is attained when the variance of the bias (0%.) is the most that the meta-analyst

?Here, in contrast to Mathur & VanderWeele| (2020a) we adopt the more explicit notation “13>q (b,v)” to emphasize
the dependence of this estimate on the choice of b and v used to calculate the calibrated estimates.
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believes is plausible (called U B (0%.)); the upper bound on 77 is attained when the bias is homogeneous.
The following results show that the calibrated estimates calculated using the lower bound on 77 and
assuming a mean bias of pp+ are 0; (up+, 72 — UB (0%.)) and are underdispersed compared to the
distribution of the causal population effects. Conversely, the calibrated estimates calculated using the
upper bound on 77 are 9 (up+,72) and are overdlspersed compared to the distribution of the causal
population effects. This leads to estimates P>q that are typically, though not always, overestimates
or underestimates depending on whether the bias-corrected pooled estimate is above or below ¢
(Supplemental Table . These results could be used to calculate estimates, P, (b,v), that are
considered conservative in the context of whether one is claiming that a meta-analysis is robust or
sensitive to unmeasured confounding.

Because T\(r, q) and G (r,q) are simply roots in b of the function 13>q (b,v), they can also be interpreted
similarly. For example suppose ¢ = log(2) and we estimate the severity of homogeneous bias (i.e.,
0%, =0,50 77 =72) required to reduce the proportion of causal effects above ¢ =log(1.1) to r = 0. 15.
We might thus obtain T(r q) = 1.5, which is equivalent to estimating that P>q (log(1.5),72) = 0.15.
With this amount of bias, the bias-corrected mean is fit = i — log(T(r,q)) ~ log(1.33). Thus,
it > q, so by consulting the third row and first column of Supplemental Table |3 we can conclude
that the estimate Ps, (log(1.5),72) = 0.15 would typically underestimate the true proportion of
meaningfully strong effects if in fact the bias were heterogeneous across studies. Equivalently, our
estimate T'(r,q) = 1.5 is conservative in the sense that if the bias were in fact heterogeneous, then we
would typically expect that at least 15% of effects would remain meaningfully strong.

it >q it <q
P>q (up-,72 —UB(0%.)) Overestimate  Underestimate
o (=, 72 —UB (0%.)) Underestimate Overestimate
. (B, T, ) Underestimate Overestimate
P<q (up,72) Overestimate ~ Underestimate

Supplemental Table 3: Two methods of calculating ﬁ>q and ﬁ<q (i.e., the proportion of population
causal effects below q) and the conditions under which they are typically overestimates or underestimates
compared to the estimate that would be obtained using the true heterogeneity 7¢. These results apply re-
gardless of the sign of i€ (i.e., whether it is apparently causative or apparently preventive); as in | Mathur
& VanderWeeld (20200), we consider bias that operates on average away from the null with the convention
e > 0 regardless of the sign of i, such that it estimates p' and is equal to i — ppg= for ¢ > 0 and

1e + pps for pc < 0.

The following lemma and corollary establish the claims made in Supplemental Table [3]

Lemma 1 (Underdispersed calibrated estimates). Suppose pup- = E[B*] is considered known and
that 0%. is unknown, but has a known upper bound UB (c%.). Assume that Corr(0%, Bf) = 0. If the
calibrated estimates are calculated as:

" N 72—UB(0%.) (7
02' (/LB*,T(:Q —UB (U%*)) = /Lc — UpB* + \/TC ,E;-B ) <¢916—/JJC> (84)

72 +0;
then E[9 (up,72 — UB (0%.))] approximately matches the expectation of the distribution of population
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causal effects, and the calibrated estimates are underdispersed in the sense that Var (51 (up~, 72 —UB (0%*))>

is consistent for a value that is at most 77.

Proof. Regarding the first moment, we have E[@ (up+, 72 —UB(0%.)) | = pu¢ — pp-. Regarding the
second moment, first note that 72 = 72 — 0%., so 77 is bounded by 72 — UB (c%.) < 72 < 72. (The

lower bound, 72 — 0%., is attained when the bias explains the maximum plausible amount of the
observed heterogeneity; the upper bound, 72, is attained when the bias explains none of the observed

heterogeneity.) Let “kLV’ denote convergence in probability in k. By invoking Conditions (i) and
—00

(i) so that ¢ and 72 are each consistent, we have:

~ 2 2
Var (ei (NB*;?E_UB (O_QB*))) p T2—UB/(0%.)

k00 72+ 02 x Var (9’)
=72-UB (0123*)

2
<7

]

Corollary 1 (Overdispersed calibrated estimates). Under the same assumptions given above, if the
calibrated estimates are calculated as:

_ s
0 (1o, 72) = 1° — e _;%{m—“> S5
(wp+,72) = [° — pp- + =AUl (S.5)

then E[0; (up-,72)] approximately matches the expectation of the distribution of population causal

effects and the calibrated estimates are overdispersed in the sense that Var (91- (uB*,?f)> is consistent

for a value that is at least T7.
Proof. This follows immediately from the bound 72 < 72, attained when 0%. = 0. O

The overdispersed calibrated estimates in Eq. (S.5]) are equivalent to the calibrated estimates calculated
by assuming homogeneous bias, ; (B*,72), when the homogeneous bias B* is set equal to pp-.
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