
Supplementary Note 1 

The following Supplementary Note provides technical details and rationale behind the metrics and 
algorithms used in the article “Temporal and spatial topography of cell proliferation in cancer.” 
Specifically, this addendum addresses 1) the scoring of proliferation in fixed human tissues and how 
the multivariate proliferation index (MPI) compares to single channel gating of proliferation and cell 
cycle markers, and 2) the derivation of the cell-cycle difference with classical multidimensional scaling 
(ccD-CMD) representation and how it compares to three recently published time inference algorithms 
(SCORPIUS1, Palantir2, and Cyclum3). 

1. Classification of proliferation and cell cycle in fixed tissues 

1.1 Current tissue-based proliferation scoring metrics 

In clinical settings and research studies that use tissues, cellular proliferation is typically measured by 
determining the “mitotic index” which is a count of the number of mitotic figures per defined area from 
hematoxylin and eosin (H&E) stained section or by scoring the expression of single protein markers 
assayed by immunohistochemistry (IHC). Most commonly Ki-67 is used in the clinical setting and 
additional markers of proliferation used in research studies include phospho-Rb and Cyclin D. Clinical 
scoring is often performed by a pathologist that visually inspects H&E slides or IHC using light 
microscopy and assigns an overall proliferation score per tissue specimen.  

These approaches have a number of limitations. First, the manual scoring by pathologists is subject 
to human bias and is not highly quantitative or scalable. Second, single markers are not able to 
accurately capture proliferation. The markers currently used are biased toward specific parts of the 
cell cycle; for instance, Ki-67 and phospho-Rb preferentially stain cells that are in the S/G2 phase of 
the cell cycle, Cyclin D stains cells in the G1 phase, and the mitotic index identifies cells that are in M 
phase. These markers have a low false positive rate - they are unlikely to stain non-proliferating cells 
- but they miss proliferative cells from large portions of the cell cycle resulting in numerous false 
negatives. Other markers of proliferation, such as PCNA and MCM2 (which will be discussed at 
length in the next section) are more ubiquitously expressed during the cell cycle and are more stable 
proteins. However, they are often co-expressed with markers of cell cycle arrest (Fig. 1a,b and 
Extended Data Fig. 1b,c) and hence have a higher rate of false positives. Lastly, single stains do not 
allow one to discriminate between the various cell types that are present in the tumor areas. Both 
infiltrating stromal and immune cells proliferate within the tumor microenvironment, and they cannot 
be visually excluded from the scoring and hence confound proliferation measurements. 

To overcome these limitations, we used tissue cyclic immunofluorescence (t-CyCIF) to measure up to 
30 protein markers in the same tissue (Fig. 1, Extended Data Fig. 4). The antibody panels include 
both lineage specific markers (e.g., E-Cadherin, Pan-Cytokeratin, CD45, alpha-Smooth Muscle Actin, 
Vimentin) as well as proliferation, cell cycle arrest, and cell cycle regulation markers. The lineage 
markers are necessary to distinguish tumor epithelial cells from infiltrating stromal and immune cells. 
Once we computationally isolate the cells belonging to the tumor compartment, we use additional 
markers to calculate a multidimensional metric for proliferation, the Multivariate Proliferation Index, or 
MPI.  

1.2 Multivariate Proliferation Index (MPI) 

The Multivariate Proliferation Index (MPI) is a single-cell classification score for proliferation based on 
a panel of five markers. The MPI is a ternary classification system that categorizes each single 
epithelial cell into proliferative “+1”, non-proliferative “0”, or arrested “-1”. The aim of the MPI is to 
provide a sensitive and specific measure of cancer cell proliferation that is not reliant on a single 
marker, while also identifying cells expressing high levels of arrest markers, even if they concurrently 
express markers of proliferation. The MPI incorporates information from three markers of proliferation 
(Ki-67, MCM2, and PCNA) and two markers of cell cycle arrest (p21 and p27).  



The values of these 5 markers are compared to assign one of the three MPI labels to each single cell 
(note that the MPI is calculated using the normalized fluorescence intensity values, see the Methods 
section for the details regarding how we perform the normalization of cycling immunofluorescence 
data). A cell is defined as proliferative (MPI +1) if the overall balance of proliferative markers is 
positive and the cell does not express a cell cycle arrest marker. In the latter case, i.e. if a cell 
expresses high levels of either p21 or p27, the cell is classified as arrested and is assigned an MPI -1 
label. If the cell expresses neither proliferation nor high levels of either cell cycle arrest markers, it is 
classified as MPI 0 (i.e., non-proliferative; please refer to the Method section for the exact formulaic 
definitions of the MPI categories).  

1.2.1 MPI rationale and components 

Using a multidimensional metric such as the MPI has multiple advantages. On a technical level, it is 
robust to experimental and biologic variability in marker detection. The proliferation and cell cycle 
arrest markers are partly redundant and overlapping, which reduces the likelihood of erroneous 
classification because a marker is not detected, or protein expression is absent due to genetic 
alteration. This is especially relevant in cancer tissues, in which uncontrolled proliferation is often 
achieved by avoiding cell cycle checkpoints or bypassing the need for an otherwise essential protein 
in cell cycle progression (for instance both Cyclin D and phospho-Rb are used to define proliferative 
cells but their expression is often altered among many cancers). 

Individual markers have limitations, and hence the MPI markers were chosen to compensate for each 
other. Ki-67 preferentially marks cells in the G2/M phase of the cell cycle. While it has a clear cell-
cycle bias, Ki-67 is also extremely specific to actively proliferating cells, and hence it is hardly ever 
co-expressed with cell cycle arrest markers p21 and p27 (Fig. 1a,b and Extended Data Fig. 1b,c). 
Notably, Ki-67 is not essential for proliferation; Ki-67 mutant mice develop normally and cells in 
culture lacking Ki-67 proliferate efficiently4. PCNA is a DNA clamp required for DNA replication, and 
MCM2 is a licensing factor that accumulates in G1 in pre-replication complexes5. Both are required 
for cell cycle progression and proliferation, and they are broadly expressed throughout the cell cycle. 
In addition, their protein half-life, estimated to be over 40 and 70 hours respectively6, is much longer 
than that of Ki-67 (which is around 8 hours). Their regulation during cell cycle arrest has not been fully 
characterized, but studies have shown that p21 can trigger cell cycle arrest, in both G1 and G2 cell 
cycle phases, through a CDK-independent mechanism involving direct binding to PCNA7,8. As a 
result, we observe cells expressing high levels of MCM2 or PCNA concomitantly with high levels of 
p21 and p27, which are expected to be cell cycle arrested (Extended Data Fig. 1b,c). In conclusion, 
Ki-67 on its own would miss many proliferative cells, while MCM2 and PCNA would erroneously score 
arrested cells as proliferative. By combining these markers into a single metric, we overcome the 
limitations of single markers. 

We chose to use p21 and p27 to mark cell cycle arrest. Both of these proteins inhibit the activity of 
cyclin-dependent kinases (CDKs) and actively trigger cell cycle arrest (rather than simply reporting on 
it). However, both p21 and p27 also play active roles in cell cycle progression9,10. It would be hence 
incorrect to define cells as being arrested when they express moderate levels of these proteins. The 
normalization procedure we utilize centers the positive distribution around +0.5 and thus we use this 
as a threshold for calling cells as arrested. Given the mutual exclusivity of p21 and p27 with Ki-67, the 
threshold for calling a cell arrested (MPI -1) can be adjusted accordingly, usually within the range of 
0.25-0.75 (importantly however, within an imaging experiment involving multiple samples or tissue 
microarrays, both the normalization and thresholds are changed for all of the samples in the 
experiment).  

1.2.2 Comparison between the MPI and other multidimensional classification strategies 

In Fig. 1c and Extended Data Fig. 1d and 1e, we show a direct comparison between MPI calls and 
UMAP, k-means clustering and t-distributed stochastic neighbor embedding (t-SNE), three commonly 



used tools to classify multidimensional datasets from various multiplex techniques (scRNAseq, 
CyTOF, MIBI, IMC, CODEX). The MPI ternary assignment is completely recapitulated in the UMAP 
output (Extended Data Fig. 1e). The concordance between the MPI single cell calls and k-means 
clustering is evident by the fact that the majority of clusters identified by the k-means algorithm 
consist mainly of a single MPI category (Extended Data Fig. 1d). K-means clustering still involves 
manual selection of the number of clusters and manual definition of each cluster’s identity, which 
would have to be inspected for each experiment individually. Further, while the MPI definition is 
deterministic, clustering has a stochastic component that changes the cluster assignment every time 
the algorithm is run, which makes it not fully reproducible and less scalable. 

The t-SNE results are also concordant with the MPI classification, with MPI cells from different 
categories segregating away from each other (Fig. 1c; the MPI was not used as an input for the t-
SNE algorithm). Classifying cells on the t-SNE representation still requires running a clustering 
algorithm on the t-SNE output (DBSCAN is often used for this purpose), which leads to similar 
problems as mentioned above for k-means. The major drawback of t-SNE and similar dimensionality 
reduction algorithms is that they are not computationally scalable and cannot be run on the large 
datasets generated in our study (in the order of hundreds of thousands to millions of cells). While 
machine learning techniques exist that permit building classification models from subsets of the data, 
using these were beyond the scope of this study and did not present clear advantages over the single 
cell MPI deterministic classification strategies. 

1.2.3 Robustness of MPI assignment across adjacent tissue sections 

To test whether the MPI assignment was robust across serial sections of the same tissue samples, 
we performed the MPI marker staining and analysis on 5 sections from a commercial breast tissue 
microarray (TMA, Pantomics BRC15010). From the epithelial cells in each core, we calculated the 
MPI fractions and compared the fraction across different sections from the same core. The correlation 
between sections was extremely high (R2 > 0.92 for all pairwise comparisons of MPI +1 fractions, 
Extended Data Fig. 1f). Similar results were observed when serial sections from whole slide breast 
carcinoma sections were analyzed (Extended Data Fig. 1g). Additionally, we calculated the coefficient 
of variation (CV) across the 5 sections of the breast TMA for the MPI+ 1 fraction; the median value 
across 74 samples was CV = 0.14 with maximum value of max(CV) = 0.47 (Fig. 1d). In the same 
dataset, the assessment of proliferation by the Ki-67 positive fraction (median(CV) = 0.3, max(CV) = 
0.99) or by phospho-Rb (median(CV) = 0.34, max(CV) = 1.71) showed much lower stability. This 
indicates that the assessment of proliferation by the MPI is extremely robust to biological replication, 
whereas single marker measurements provide a much less certain and much more variable metric for 
assessing proliferation. 

1.2.4 Stress-testing MPI marker normalization and MPI assignment 

The assignment of the MPI categories depends on the process of normalization of the MPI markers 
(Ki-67, PCNA, MCM2, p21 and p27). To normalize the data, we employed a two-component 
Gaussian mixture model (GMM) on single channel distributions. GMM’s are commonly used to 
separate positive and negative populations within fluorescent datasets due to the log-normality of 
fluorescence measurements. When single markers are used to assign a proliferative index (e.g., Ki-
67, phospho-Rb, or phospho-histone H3 which marks mitotic cells) this process is equivalent to using 
the GMM to select a single threshold because the quantitative amount of positivity is not taken into 
account, effectively binarizing the data. This leads to a substantial loss of information and it is error 
prone (see Section 1.2.3 above and Section 2.1 below for more details). Instead, the MPI strategy 
quantitatively integrates the information from multiple markers, buffering against imprecision in 
choosing the normalization parameters. 

Despite using multiple markers to buffer against errors in single channels normalization, we strived to 
measure the robustness of the MPI calls to errors in the normalization procedure. In a cohort of 180 



breast tumors, we stress-tested the MPI assignment by adding random noise to all five MPI channel 
distributions and recalculated the MPI scores, repeating this procedure 1000 times. The insertion of 
noise mimics a random error in the selection of the normalization parameters and hence we modelled 
the errors as independently normally distributed random variables with zero mean and increasing 
standard deviation; we started with the errors having 0.1x of the standard deviation (i.e., 10% of the 
width of the original distribution), and increased the error width up to 1x of standard deviation of the 
original distribution. This upper limit is an unrealistic extreme as it assumes that the noise distribution 
is essentially as wide as the original signal. We then assessed the effect of the noise addition in three 
ways: 1) by linear regression (R2) of the original MPI score with the noise-added scores (Extended 
Data Fig. 1h), 2) by Pearson correlation between the two scores (Extended Data Fig. 1i), and 3) by 
assessing how the ordering between patient samples changed due to the addition of noise (Extended 
Data Fig. 1j). All three measures show that the MPI measurements are strongly robust to the addition 
of random noise, with both the R2 and the Pearson correlation being close to 1 even with the noise 
being half as wide as the original distribution (in the Extended Data Fig. 1h-j panels this is the 0.5x 
standard deviation addition). Only when the noise was essentially equal to the signal (1x standard 
deviation) did the MPI measurements diverge dramatically. From this stress-testing procedure we 
conclude that the MPI calls are robust to potential errors in the MPI channel normalization. 

 
2. Cell cycle inference from multiplexed imaging data 
 
2.1 Analysis of the cell cycle by combinatorial gating 

2.1.1 Single channel gating in t-CyCIF datasets 

In single channel immunofluorescence datasets, a conventional strategy for identifying cells 
expressing a proliferation or cell cycle marker is to visually inspect the single cell distribution and 
select a threshold or “gate”. All cells whose fluorescence signal value is above the threshold are 
considered “positive” and the others are defined as “negative”. The binarization of the data leads to 
substantial information loss but simplifies the data analysis. The gating strategy assumes that the 
single cell distribution is bimodal or has a clear positive or negative tail. In the t-CyCIF datasets we 
produce, lineage markers often have clear bimodal single cell distributions, as shown for example for 
E-Cadherin, Vimentin and alpha Smooth Muscle Actin (αSMA) in Extended Data Fig. 3c. The 
bimodality enables us to use the single channel gating strategy to perform basic cell type calling and 
to isolate epithelial cells away from stromal and immune cells. For example, in the breast tissues 
shown in Extended Data Fig. 3a-d, epithelial cells were defined as cells positive for E-Cadherin and 
negative for stromal and immune markers. In our work, the numerical value of the lineage marker 
expression is still used to resolve “conflicts,” i.e., instances for which multiple lineage markers are 
found to be positive. When these conflicts arise, the marker with the higher normalized value “wins” 
and is used to define the cell type for the cell in question. 

In the case of non-lineage markers, such as the proliferation and cell cycle markers, the single cell 
distributions from t-CyCIF are generally not bimodal (Extended Data Fig. 3c, lower panels). While the 
single-cell fluorescent signals are strong and the contrast between nuclear and cytoplasmic signals is 
evident (Fig. 1b and Extended Data Fig. 3a), the distribution of single cells across tissues is 
continuous and does not have a strong skew. Inspection of two-channel comparisons with scatter 
plots shows that the expected relationships between markers, based on the published literature, hold 
true (Extended Data Fig. 3b). For example, CDT1 and Geminin are generally mutually exclusive, G2 
markers like Cyclin A1/2, Geminin, and phospho-Rb are positively correlated with each other and 
negatively correlated with G1 markers such as Cyclin D1 and p21. To directly confirm that the t-
CyCIF protocol is comparable to established immunofluorescence (IF) measurements, we performed 
standard indirect IF (primary antibody staining followed by secondary fluorescently labelled detection) 
on five sections of the Pantomics BRC15010 breast tissue microarray and performed the t-CyCIF 



protocol on the same slides after the indirect IF. Using this approach, we can compare protein 
detection using the t-CyCIF multiplexed protocol with the indirect IF within the exact same cells. 
Extended Data Fig. 4b shows a high degree of correlation between the two measurements. When 
comparing the overall core detection, we also noted that the t-CyCIF signal while having decreased 
overall signal provided increase dynamical range (Extended Data Fig. 4c). For instance, when 
measuring the overall phospho-Rb signal, we observed that the signal was the lowest in non-
proliferating cells (MPI 0), increased in proliferative cells early in the cell cycle (MPI +1, Ki-67-), and 
was highest in proliferating cells later in the cell cycle (MPI +1, Ki-67+) (Extended Data Fig. 4c). While 
this pattern was observed using both indirect IF and in the t-CyCIF experiment (i.e., direct IF), in the 
latter the difference between the three bins was more marked. Together with previous validation 
studies, these correlations serve to increase the confidence that the antibodies used to recognize 
these cell cycle proteins are indeed binding the intended epitopes. 

2.1.2 Lack of accurate quantification of total DNA and DNA replication  

A unique limitation in the study of human tissues is the unavailability of two key pieces of information: 
the quantification of DNA amount and of active DNA replication. DNA staining by intercalating agents 
such as Hoechst is routinely performed in tissue imaging, and the t-CyCIF method relies on it to align 
the rounds of imaging to obtain highly multiplexed single-cell datasets. However, the DNA 
quantification from tissue images does not appear to be an accurate representation of DNA content. 
Single cell distributions of DNA content from tissue are not bimodal (Extended Data Fig. 4a) which 
they would be expected to be, and how they appear from quantification of CyCIF images acquired 
from cells grown in tissue culture (Extended Data Fig. 5a). In addition, genomic instability and 
aneuploidy are a common feature in human tumors and can vary widely between tumor cells within 
the same tumor mass, making the interpretation of DNA quantification in solid tumors additionally 
challenging. Similarly, the detection of DNA replication - usually performed by EdU incorporation in 
cell culture - is not technically possible in fixed human tissues. 

2.1.3 Multichannel gating to infer cell cycle distributions 

In order to attempt to understand the cell cycle positions of cells based on a gating approach, we 
gated single channels and looked at the combinatorial patterns of positivity for multiple channels, or 
“multichannel gating” (Extended Data Fig. 3d). Binarizing an 8-cell cycle marker panel by gating 
produces 28 = 256 combinatorial states, and in Extended Data Fig. 3d we show a visual 
representation of the top 50 most frequently occurring states (from the same breast sample we used 
for the single distribution and two-channel scatters in panel c. of the same figure). We used the Upset 
plot package (https://gehlenborglab.shinyapps.io/upsetr/) to display the combination of positive 
markers in each of the 50 states and the relative abundance of each state. While the abundance of 
these states is technically quantifiable, it is important to remember that in the absence of bimodal 
single marker distributions, the choice of gating threshold is somewhat arbitrary. Small changes in 
any of the cutoffs would drastically modify the relative abundances of all the states. 

In the absence of information about the ploidy and DNA replication state of the cells, discriminating 
the combinatorial states generated by multichannel gating is prohibitive. In cell culture experiments, 
both DNA amount and EdU incorporation have bimodal distributions, the combination of which clearly 
defines the G1 (2N, EdU-), S (EdU+) and G2/M (4N, EdU-) phases of the cell cycle. This information 
is instrumental to define cell cycle states because the dynamics of cyclin expression (as well as 
CDT1, Geminin and phospho-Rb) are more graded through the cell cycle. In addition, while the 
dynamics of single proteins through the cell cycle are well-characterized, it is still unclear how they 
relate to each other. For example, the levels of Cyclin D1 decrease from G1 to S/G2, but how does 
this quantitatively relate to the increase in Geminin? Similarly, how does the rise of G2-phase cyclins 
like Cyclin A1/2 relate to the dynamics of decrease in CDT1? Without firm answers to these 
questions, we are not able classify the multichannel gating data in Extended Data Fig. 3d. 

https://gehlenborglab.shinyapps.io/upsetr/


In conclusion, the loss of information that results from binarized gating of the continuous distributions 
did not simplify the classification problem; it only changed the nature of the problem from continuous 
to discrete. Thus, because of 1) the lack of interpretability, and 2) the lack of robustness in state 
abundances, we concluded that a gating strategy would be insufficient for the cell cycle analysis 
(specifically in our multiplexed tissue imaging datasets). Instead, we pivoted to methods that use the 
full continuum of markers expression values to create unsupervised metrics for cell cycle analysis. 

 
2.2 Time inference 

Time inference is a computational method to model dynamic processes using data generated from a 
static system (also called trajectory inference). Several approaches have been published to infer 
temporal dynamics from fixed time data involving imaging from cell lines11,12 and single-cell RNA 
sequencing data1–3,13. To develop an analogous approach for multiplexed tissue images, we made 
the following assumptions: 1) measured markers provide coverage of multiple cell cycle transitions, 2) 
sampling is sufficiently uniform and dense for ergodic theory to be applicable, and 3) there exists a 
dynamical system governing changes in expression of measured cell cycle proteins. Similar 
assumptions are needed to apply any time inference framework to static data. If these assumptions 
are met, the time inference method approximates time series data by inferring an ordering of cells 
that can be translated into pseudotime.  

Time inference algorithms can be implemented in various ways but generally consists of two main 
steps: 1) reducing high-dimensional data into a low-dimensional representation, and 2) constructing a 
trajectory model of the cells in low-dimensional space and projecting the cells onto that trajectory, 
thereby producing a pseudotime ordering of cells. Time inference algorithms usually rely on 
unsupervised machine learning methods, which have the advantage of being relatively unbiased. By 
not biasing the ordering with prior knowledge (e.g., protein or gene function), the algorithm can 
potentially offer novel insights. For canonical presentations of well-understood processes, one might 
actually achieve a more accurate ordering using a manual approach based on prior knowledge (e.g., 
ordering cells by DNA content for cell cycle ordering). However, for less understood processes, over-
reliance on pre-existing knowledge might lead to a failure to detect biologically significant underlying 
structures in the data. 

Time inference algorithms, however, are not completely unbiased. First, the design of the algorithm 
usually reflects some assumption about the underlying structure of the data trajectory (e.g., 
connected vs. unconnected, linear vs. bifurcating). In some algorithms, the user selects a subset of 
markers to include as input, which generally reflects the assumption that these markers are relevant 
to the biological process of interest. Finally, some algorithms require a user-defined “start” cell, which 
again requires prior knowledge and therefore introduces potential bias.  

The time inference method we developed for this paper was inspired by previously developed time 
inference methods but differs from previous methods in that it is designed for multiplexed tissue 
images and assumes a latent cyclical representation of the data that reflects the cyclical nature of cell 
cycle progression. Additionally, our method does not rely on DNA or EdU content as inputs; in fact, its 
aim was not to be highly dependent on any single feature. In human tumor tissue samples, DNA 
content is difficult to measure robustly, measurement of EdU incorporation cannot be performed, and 
any individual cell cycle marker could be lost to genetic instability or aberrant epigenetic control. We 
did, however, use DNA quantification to validate our computational method for time ordering in cell 
culture experiments (Extended Data Fig. 5). 

The following section describes the time inference algorithm we used in our work and compares its 
output to several existing time inference algorithms.  

 
2.3 Pairwise cell cycle difference (ccD) and classical multidimensional scaling (CMD) 



2.3.1 Description of input 

For this paper, we constructed trajectories of cell cycle progression from single cell 
immunofluorescence measurements obtained from fixed tissue images. We utilized the MPI 
classification to isolate epithelial proliferating cells (i.e., MPI +1 cells), and we used only those cells as 
input. For the cell culture experiments all the cells measured are used in input, because the cell 
composition is homogeneous, and the majority of cells were MPI +1. Each cell is represented by a 
cell cycle marker vector of normalized values for markers of cell cycle proliferation (Ki-67, PCNA, 
MCM2), cell cycle arrest (p21, p27), and cell cycle progression (phospho-Rb Ser807/811, CDT1, 
Geminin, and Cyclins A1/2, B1, D1, and E1).  

The markers for the ccD-CMD analysis were chosen to represent multiple cell cycle transitions. For 
instance, p21, CDT1 and Cyclin D1 cover the transition through G1 and into S-phase, and phospho-
Rb, Ki-67, Cyclin A1/2 and B1 cover the passage from S-phase into early and then late G2 phase. 
Although PCNA and MCM2 are used to calculate the MPI, they were not routinely used in the ccD-
CMD trajectory inference because their variability within MPI+1 cells is minimal; therefore, they do not 
provide additional information and potentially add spurious noise. This reasoning also holds true for 
markers that are highly specific but are only expressed in a small subset of cells (e.g., phospho 
histone H3 which marks M phase). It is important to note that not all of these markers were usable for 
every dataset, especially in tissue-based experiments where the staining variability can be high and 
where individual tumors might genetically or epigenetically lose the expression of single proteins (see 
Supplementary Table 2 for details of which markers were used for the ccD-CMD calculations in each 
experiment). 

 
2.3.2 Dimensionality reduction 

The ccD-CMD analysis starts by calculating the cell cycle difference (ccD) matrix, which is defined as 
the absolute value of the pairwise Pearson correlation between the cell cycle marker vector of 
normalized values of each cell. An example of ccD matrix is presented in Fig. 3c.  

In order to be interpreted, the ccD matrix needs to be reduced in dimensions. Classical 
multidimensional scaling (CMD14) is a linear dimensionality reduction method used to approximate the 
pairwise distances between ‘n’ points (in our case n = number of single cells) to a representation in 
lower dimensions. Commonly, reduction to two dimensions is chosen to ease visualization and 
interpretation. CMD scaling is a linear algorithm, and although assuming linearity is an 
oversimplification, CMD scaling runs significantly faster than non-linear methods, which is important 
for scalability as we often need to perform the algorithm on hundreds of samples with upwards of 
20,000 cells or tens of samples with over a million cells apiece.  

2.3.3 Circular fitting: trajectory model and cell ordering 

The reduced two-dimension ccD scatter, referred to as the “ccD-CMD” representation, or landscape, 
is parametrized by fitting it to a circle by least-squares minimization. This choice was made based on 
the observation that the two-dimensional representation has an underlying cyclical structure following 
the dynamics of the cell cycle. This is in contrast with many other time inference algorithms that 
search for non-cyclical paths through the data. 

The circular fitting served two purposes: 

1. to perform ordering of the cells around the cell cycle position. Notably the ordering is most 
accurate only for populations of cells where the ccD-CMD representation forms an evenly 
distributed torus (referred to as “cell cycle coherent” in the main text), rather than a skewed 
torus or amorphous point cloud (referred to respectively as “skewed cell cycle” and “non-
canonical”). 



2. to parametrize the ccD-CMD representation and extract quantitative metrics that summarize a 
sample’s overall cell cycle temporal organization.  

For each data point (i.e., single cell), two parameters are calculated, 1) the shortest distance between 
the data point and the fitted circle (d) and 2) the angle relative to the point of origin of the fitted circle 
(θ) as shown in Fig. 3f. Using the angle, each data point was projected to the nearest point on the 
circle to order the cells in what is referred to as the “cell cycle ordering”. Given the cyclical nature of 
the ordering, the point of origin (time = 0 or start time) is arbitrary. For each population of cells being 
analyzed, two overall metrics were extracted from the fit (Fig. 3f):  

i) the circle fit distance (CFD), which is the mean d of the population,  

ii) the inter-octile variation in angle (IOV). To calculate the IOV, the angle measurements were 
binned to 8 equally sized bins (of 45 degrees or π/4 radiant) and the proportion of cells in each 
bin were calculated. To ensure lack of positional bias, the proportion calculation was repeated 
by shifting the bin position by π/8. The IOV is the coefficient of variation of the bin proportions, 
which is equal to 0 in a uniformly distributed population. 

2.3.4 Measures of cell cycle coherence 

The two metrics, CFD and IOV, were used to describe what we call the “cell cycle coherence” of a 
sampled cell population. A low CFD indicates that the points in CMD space are distributed along the 
circular path (i.e., the best-fit circle). As more and more cells accumulate in the center of the ccD-
CMD representation (forming a cloud of points) the CFD metric increases. In the ccD-CMD 
representation, the 2D distance between two points is proportional to their similarity in 
multidimensional space, in our case the cell cycle space. Therefore, a cloud of points means that 
many cells are just as similar to each other as to many other cells, i.e. there is no coordination 
between cell cycle markers (e.g., Sample 3, Fig. 4c). If the measured cells are random samples from 
a deterministically oscillating system, the distance between the cells would be proportional to the time 
between the positions of the random samplings. In this case, the data points would form a topological 
toroidal shape and in turn, a low CFD. In Fig. 5h,i, we show how a sharp drop in HER2 expression led 
to a shift from a toroidal ccD-CMD representation (9 weeks HER2 “on”) to a point cloud (2 days HER2 
“off”), with a corresponding increase in CFD (from 30 to 50). Our interpretation is that HER2 
expression promotes a strong signal for cells to grow; once this is withdrawn, the system drifts in 
multiple directions and the levels of the cell cycle markers lose coordination. 

A low IOV indicates that points are distributed evenly around the circle as opposed to clustered at 
specific regions. This clustering occurs if cells slow down in a specific part of the cell cycle, hence 
accumulating at that location. Notably, a similar clustering would occur if cells were to accelerate 
through a specific part of the cell cycle, but in this case, the accumulation of cells would occur away 
from the acceleration point. In both instances, the population of cells would be unevenly distributed 
and have high IOV, a state that we call “skewed cell cycle” because of the uneven distribution of cells 
around the ccD-CMD torus. The extreme case scenario is cell cycle arrest, for instance triggered in 
MCF10A and MCF-7 cells by cell cycle inhibitors (Fig. 3g-l). For example, following treatment with 
palbociclib or nocodazole for either 24 or 48 hours, the recorded IOV is up to three-fold higher than 
freely cycling MCF10A cells. However, these perturbations are extreme scenarios. In human 
samples, we focus on the MPI +1 population of cells and eliminate from the analysis the most likely 
arrested population (MPI -1, with high levels of p21 or p27). Accordingly, most human tumors we 
measured had IOV between 0.4 and 1.2, while the fully arrested cells have IOV of 1.5-2. The high 
IOV state potentially represents populations of cells moving towards cell cycle arrest. However, as 
described above, high IOV could also suggest a more streamlined cell cycle with a shortening in one 
cell cycle phase and in fact a faster, albeit still less balanced, completion of the cell cycle. 

2.3.5 Interpretation of the ccD-CMD representation: closed torus vs point cloud 



In the main text, we explain how to make inferences about alterations in cell cycle dynamics from the 
arrangements of single cell data points in the ccD-CMD representation. Both the cell line 
experiments, and the tumor sample data catch the two extremes of the ccD-CMD representation, a 
closed torus and a densely aggregated point cloud.  

A general question is whether the current understanding of cell cycle protein dynamics would lead us 
to expect a torus representation. While the cell cycle is by definition a periodically recurring dynamical 
system, it is often conceptualized as a linear path starting and ending at cell division. Moreover, the 
linear path is further abstracted as a sequence of phases (G0, G1, S, G2 and M), separated by 
discrete molecular events, such as the passing of restriction points. In multidimensional space, these 
conceptualizations could result in a clustered and disconnected set of point clouds (each of which 
represent a discrete sub-state in the cell cycle sequence) rather than a continuous topology.  

Reasons for a continuous torus: In all the samples we assessed, the ccD-CMD representation did not 
produce a clustered and disconnected topology. The lack of a clustered and disconnected topology is 
likely due to both biological and technical reasons. One technical reason is experimental noise, which 
could blur the edge of distinct clusters, resulting in continuous state transitions. Another technical 
reason for lack of distinct clusters is that the ccD-CMD population measurement captures a ‘mean’ 
cell cycle state, and as a result differences between cell cycle states may be de-emphasized.  

However, an important biological reason for a continuum of cell cycle states is that the fluctuation of 
cell cycle proteins is more gradual than the abstracted sequential and distinct view of the cell cycle 
would imply. The fluctuations in most proteins we measure (cyclin A1/2, B1, D1, E1, Geminin and 
CDT1) appear to cross smoothly over multiple adjacent cell cycle phases. In the multiplexed protein 
space, these gradual changes produce a continuous distribution of cell states that are then 
experimentally sampled, producing a continuous torus in the ccD-CMD representation. 

Reasons for a closed torus: Similar reasoning also applies to explaining why the torus is closed (or 
nearly closed). During M phase cellular structures are disrupted, the cellular components subdivided 
in two, and cell division is completed. From an imaging point of view, M phase transitions are the 
most difficult to capture; cyclic multiplex imaging relies on DNA to identify and outline the nucleus of 
cells, and when the DNA is compacted the nucleus temporarily “disappears” from the image. 
However, cell division results in an ~2-fold decrease in protein abundance, which is an order of 
magnitude lower than the fluctuations that many cell-cycle regulated proteins undergo during the 
entire cell cycle. In addition, during the cell cycle the protein changes can be uncorrelated, while 
during cell division the whole proteome drops in synchrony. The ccD-CMD algorithm uses the 
absolute value of the correlation as the distance metric to calculate the cell cycle difference (the “ccD” 
part of the algorithm), which focuses on discriminating coordinated changes of protein expression. 
For these reasons, cells on either side of cell division (i.e., pre-division and post-division) are closer to 
each other in the ccD-CMD space than cells in other cell cycle phases, leading to the torus shape 
appearing closed. No extra data manipulation step was undertaken to achieve or bias the 
representation into forming a closed structure.  

 
2.3.6 Robustness of the ccD-CMD algorithm and coherence metrics 

The ccD-CMD algorithm does not have a stochastic component and hence it is an injective function 
with one-on-one mapping from input to output. However, its application to estimate the coherence 
metrics IOV and CFD is sensitive to two variables: 1) the number of cells from the tissue used in 
input, and 2) the markers used to calculate the cell cycle difference (ccD). 

Because the ccD is a quantification of the binary distances between pairs of cells, the computing time 
to calculate the ccD increases non-linearly with the number of cells provided in input. It hence 
becomes prohibitive to run the ccD-CMD computation on more than a few tens of thousands of cells. 
On the other hand, when using tissue microarray cores, the number of cells available for analysis is 



relatively limited. For both these reasons it is important to estimate how sensitive the performance of 
the algorithm is to the number of cells used as input. In Extended Data Fig. 5i we calculated the CFD 
and IOV parameters in 5 tissues using an increasing number of cells (“n” from 50 to 2,000, breast 
cancer tissue ROIs from Fig. 2 and Extended Data Fig. 7 with at least 20,000 MPI+1 cells used for 
this analysis). For each ‘n’, we run the ccD-CMD algorithm 40 times with a different set of ‘n’ cells 
from the same tissue and calculate the coefficient of variation (CV) for the IOV and CFD metrics. For 
both metrics the CV quickly decreased and reached a plateau. This shows that for whole tissue 
experiments using >2,000 cells would not provide a great increase in precision. In addition, when cell 
numbers are limited, using at least 500-1,000 cells is required for an acceptable estimate. 

Next, we tested the dependency on single markers on the coherence metrics, by eliminating one or 
two markers from ccD calculation (Extended Data Fig. 5j). For this we used the MCF10A cell line 
dataset, for which we have experimental controls obtained by perturbing the cell cycle with palbociclib 
and nocodazole (Fig. 3g-j). Eliminating one marker (out of 10 in the panel) had limited effect, 
comparable to the biologic variability of the three replicates in Fig. 3j. Eliminating two markers did not 
produce much larger displacement from the whole-panel estimates (green dot) than the single marker 
removal. Furthermore, the direction of the changes is spread in all directions of the IOV-CFD phase 
plane, suggesting that addition of markers converges to a central estimate, the green dot. In 
conclusion, these results show that the ccD-CMD algorithm is robust to the removal of one or two 
markers, especially when compared to experimental perturbations.  

Finally, the ccD-CMD algorithm is run using only proliferative cells (MPI +1) in order to isolate cells 
that are actively cycling before assaying the cell cycle dynamics. As a conceptual validation, we 
characterized the effect on the ccD-CMD metrics of adding cells classified as MPI 0 or MPI -1 to the 
analysis. To assay this effect, we calculated the ccD-CMD parameters (IOV and CFD) for populations 
of MPI +1 cells, then added increasing fractions of non-MPI +1 cells from the same tissues, starting 
from a mix of 90% MPI +1 cells with 10% MPI=0 or MPI -1 cells (i.e., ‘10% ratio) and ending with 40% 
MPI +1 cells and 60% MPI 0 or MPI -1 cells (i.e., ‘60% ratio) (Extended Data Fig. 5k). To understand 
the effect of different non-MPI +1 populations, we mixed MPI+1 cells with MPI 0, ‘MPI -1 p21+’ and 
‘MPI -1 p27+’ cells separately. In the case of MPI -1 cells, the hypothesis is that mixing cells from the 
MPI -1 group would increase the IOV similar to the effect seen in cell lines treated with cell cycle 
inhibitors. Because the mechanism of arrest that is driven by the two cell cycle arrest markers is part 
of the MPI calculations (p21 and p27) they each might result in somewhat different molecular 
signature. Thus, we tested the addition of ‘MPI -1 p21+’ and ‘MPI -1 p27+’ cells to the MPI +1 cells 
separately. In all cases, the increasing addition of arrested cells increased the IOV as expected 
(Extended Data Fig. 5k, red and magenta lines). Similar addition of MPI 0 cells leads to a decrease in 
coherence, as expected, but the direction of change in the IOV-CFD phase plane was more variable; 
in some cases, the CFD only increased while in other cases both the CFD and the IOV increased 
(Extended Data Fig. 5k, blue lines). We postulate that these different responses occur for two 
reasons: i) cells in the non-proliferative state MPI 0 either do not express any cell cycle markers, 
probably having fully exited the proliferative state, or ii) still express markers congruent with an early 
G1/G0 state. When all cell cycle markers are low their patterned coordination does not resemble any 
part of the cell cycle dynamics and in turn the CFD increases. Instead, when cells have more recently 
exited the cell cycle into quiescence, the marker pattern resembles a specific cell cycle phase (early 
G1/G0) and the IOV increases.  

2.3.7 CDT1-Geminin dynamics 

In cell culture, the dynamics of the cell cycle are commonly monitored using the FUCCI system15. 
This combines tagged versions of the proteins CDT1 and Geminin to track the progress of live single 
cells through the cell cycle. To further validate the time dynamics derived from the ccD-CMD 
algorithm, we measured the reconstructed dynamics of the endogenous CDT1 and Geminin proteins 
in exemplar tissue areas (Extended Data Fig. 5l). The CDT1 protein is known to function both in M 



and G1 phase, and it is downregulated in G2 to stop DNA replication and prevent DNA re-replication. 
Geminin rises through S and G2 phases and it inhibits CDT1 leading to its degradation. In the cell 
cycle dynamics reconstructed from tissue, the endogenous CDT1 and Geminin proteins are clearly 
anti-correlated (Extended Data Fig. 3b and 5l). Geminin levels remained constant and low in the first 
part of the cell cycle and rose in the middle of the cycle and dropped back at the end of the cycle. 
Interestingly, the CDT1 dynamics differed slightly in different tissue areas: the CDT1 protein levels 
either i) peaked at the beginning of the cell cycle, decreasing slowly through G1 and then decreasing 
sharply in correspondence to the rise of Geminin, or ii) increased through the beginning of the cell 
cycle and then decreased sharply as Geminin rose. Hence, the reconstructed cell cycle dynamics 
from the ccD-CMD algorithm are consistent with the known biology of the FUCCI system. However, 
both the single cell variability and the quantitatively different dynamics observed in the different tissue 
areas precludes the use of CDT1 and Geminin alone to reconstruct the cell cycle dynamics from 
static tissue images. 

 
2.4 Comparison of time inference methods across datasets 

2.4.1 Description of existing methods 

A large number of algorithms have been published to computationally infer ordering of cells based on 
multidimensional data. The vast majority of the algorithms have been developed to analyze genomics 
data rather than information from proteomics or antibody-based imaging technologies. We selected a 
subset of commonly used time inference algorithms, processed our multiplexed tissue imaging data, 
and compared the results with the ccD-CMD representation and pseudotime ordering from the same 
datasets. We used the following three algorithms, all originally developed to process single-cell RNA 
sequencing (scRNA-seq) data: 

• SCORPIUS1 calculates a difference matrix based on the entire single cell transcriptome and 
performs dimensionality reduction. The data in the reduced-dimensional space is clustered into 
k clusters via k-means clustering. The cluster centroids are connected through a shortest path, 
and the path is then optimized using the Hastie and Stuetzle principal curve algorithm, which 
iteratively smooths the trajectory until convergence. The cells are projected onto the trajectory 
to obtain the cell ordering. The rationale of SCORPIUS is similar to the ccD-CMD, but the 
difference matrix is different, and the trajectory inference is designed to find a non-cyclical path 
through the data. 

• Palantir2 is used to model cell differentiation into terminal differentiated states. It takes as input 
scRNA-seq data and projects the data onto diffusion maps to construct a nearest-neighbor 
graph. The pseudotime for each cell is determined using the shortest path between the cell 
and a user-defined early cell. As part of the Palantir workflow, the t-SNE algorithm is used to 
visualize the diffusion data in a two-dimensional plot. 

• Cyclum3 is a recently developed neural network algorithm that uses an autoencoder to project 
cells onto a non-linear, periodic trajectory. 

Among the algorithms designed to infer time trajectories from static data a notable mention is 
Cycler12, an algorithm designed to extract cell cycle information from images of fixed cells. Cycler 
uses single cell measurements of DNA content, DNA replication and pattern, nuclear area, and local 
cell crowding. It constructs an ensemble of l-out-of-k-nearest neighbor graphs, calculates the cell 
trajectory for each graph separately, and makes use of waypoints to construct the final trajectory. In 
its current version, Cycler requires quantification of DNA amount and DNA replication, which are not 
available from tissue imaging experiments (see section 2.1 above for a detailed discussion on this 
subject). Hence, we were not able to process the t-CyCIF data through Cycler.  

 
2.4.2 Comparison of methods across datasets 



We ran the ccD-CMD, SCORPIUS, Palantir and Cyclum on three exemplar CyCIF datasets from 
different experimental sources:  

1) on tissue-based CyCIF data from a breast tumor tissue sample from Fig. 2a 

2) on plate-based CyCIF data from unperturbed MCF10A cells 

3) on synthetic data generated from a mathematical model of the mammalian cell cycle16 

The results of the comparisons are shown in Extended Data Figure 5. Overall, we found that the 
results from Palantir and Cyclum did not recapitulate the cell cycle dynamics in any of the 
experimental settings. Palantir is designed to model cell differentiation into terminal states, which 
does not describe the trajectory of cell cycle dynamics. Cyclum uses an autoencoder with non-linear 
periodic transformation functions to infer a latent circular trajectory. Although Cyclum is designed for 
cell cycle dynamics, it does not appear to be able to detect any discernible structure in multiplexed 
imaging data. The expected input for Cyclum is scRNA-seq data, which has a) three orders of 
magnitude more features than our datasets, and b) an extremely different type of noise than imaging 
data. Additionally, because Palantir and Cyclum use non-linear dimensionality reduction methods, 
they are significantly slower than CMD scaling, which makes them less suitable for the high-
throughput analysis of large datasets.  

The time ordering output from SCORPIUS closely resembles the ccD-CMD output. However, the 
ccD-CMD reduced dimensionality representation is strikingly different from the SCORPIUS output. 
While the data points in the ccD-CMD representation formed a torus, which allowed us to parametrize 
the representation and derive the “cell cycle coherence” metrics above, the cloud output from 
SCORPIUS could not be similarly parametrized. 

Comparison of specific datasets: 

1. Tissue data - Extended Data Fig. 5f,h 
The ordering of tissue data by Cyclum and Palantir does not capture the basic tenets of cell 
cycle protein dynamics. In addition, the t-SNE representation of the Palantir output shows a 
branched structure, which is incompatible with the cell cycle. These observations are true for 
all of the datasets we describe below. SCORPIUS and the ccD-CMD ordering are comparable, 
but a direct comparison is not possible as the ground truth cell cycle ordering in tissues is 
unknown.  
 

2. Culture cell line data - Extended Data Fig. 5g 
The ccD-CMD cell ordering appears comparable to the SCORPIUS ordering when run with 
single cell data from unperturbed cells (MCF10A). In both orderings, there is a clear inverse 
relationship between CDT1 and Geminin as well increasing DNA content as the cell cycle 
progresses. However, many of the markers show the drawbacks of the non-cyclical path 
derived from SCORPIUS. For example, Geminin, phospho-Rb, and Cyclin B show a rise from 
low to high through time but do not show the drop from high to low that is expected in the 
cyclical pattern of cell cycle dynamics. ccD-CMD is able to better capture this cyclical pattern. 
 

3. Synthetic data - Extended Data Fig. 5c-e 
To obtain a dataset that has a ground truth of cell ordering within the cell cycle, we simulated 
cell cycle protein dynamics with a system of ordinary differential equations (ODEs) based on 
the model by Csikasz-Nagy and Tyson16 and generated values of nine cell cycle markers over 
time. We ran both ccD-CMD and SCORPIUS on this data and compared the reconstructed 
orderings with the known ordering from the differential equation numerical solution. We found 
that the ccD-CMD analysis outperformed SCORPIUS. In the ccD-CMD ordering, 93% of cells 
were within 1% of their correct ordering as opposed to 36% of the cells in the SCORPIUS 
ordering. It is notable that the two-dimensional representation generated from ccD-CMD has 



cells tightly distributed along the circle with the exception of a gap where M phase is expected 
to be (Extended Data Fig. 5d). The ccD-CMD ordering also shows the most disordering in M 
phase/early G1 (Extended Data Fig. 5d-e) which reflects the difficulty of detecting and ordering 
cells in M phase that is also seen in the multiplexed imaging data (see section 2.3.5 above on 
“Interpretation of the ccD-CMD representation: closed torus vs point cloud”). 

 
2.4.3 Comparison summary 

These comparisons show that the ccD-CMD algorithm orders cells efficiently and that the resulting 
dynamics are congruent with results on cell cycle biology published in the scientific literature. Both 
Palantir and Cyclum do not seem able to recapitulate the basic tenets of cell cycle protein dynamics, 
especially in the tissue exemplar dataset. Time inference obtained using SCORPIUS and the ccD-
CMD is comparable. In experimental data (either cell line or tissue data), the ground truth information 
is not available, and hence quantifying the differences in precision between ccD-CMD analysis and 
SCORPIUS is not possible. However, on synthetic data ccD-CMD has a higher ordering precision 
compared to SCORPIUS.  

Finally, the main advantage of the ccD-CMD representation over the other time inference algorithms 
is the ability to provide a reduced-dimensional representation of “coherence” in cell cycle dynamics. In 
control settings such as cells growing freely in cell culture, the ccD-CMD representation forms the 
torus-shaped that inspired the circle fit approximation (see section 2.3.3). The reduced representation 
of cell cycle marker correlation generated by other algorithms does not show an ‘actionable’ and 
readily interpretable topology (Extended Data Fig. 5f-h), either because of a lack of reduced 
dimension representation (Cyclum), a lack of topological shape (SCORPIUS), or a disconnected and 
branched topology (Palantir). In tissues we detected quantifiable differences in the ccD-CMD 
representation topology across patients that can be interpreted in the context of changes observed in 
cell culture using growth factor withdrawal (resulting in high CFD) or cell cycle block using palbociclib 
or nocodazole (resulting in high IOV) (Fig. 3g-l). We present ccD-CMD representations from three 
patient samples to portray the range of topologies observed in human tissues (Fig. 4b,c). However, 
the SCORPIUS and Palantir outputs from the same data show no discernible difference between the 
three datasets (Extended Data Fig. 5h). 
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