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Figure S1. Breast cancer prognosis may be heavily influenced by subtype. Subtypes may be classified by membrane 

proteins that afford hormone sensitivity but may be further delineated by other aspects of the proteome and metabolic 

phenotype. TNBC affects non-Hispanic black women more frequently than any other race, but the exact reasons for 

this discriminatory behavior are not currently known. 



 
Figure S2. (A) Input for the MLP neural network classification model. All n spectra are labeled as strings which are 

stored in target vector Y with n categorical variables. All spectra contain the same number of features, so that the final 

input matrix has size n x m corresponding to number of spectra, and wavenumber variables, respectively. (B) MLP model 

for multiclass prediction of breast cancer subtypes and metabolic phenotypes. Raman intensities are sent to the input 

layer, multiplied by a weight vector of the same size as wavenumbers, and summed in each hidden layer neuron. A ReLU 

activation function determines what value is sent to the output layer, where the hidden layer neuron outputs are summed 

for each class. Softmax calculates the predicted target class ŷ based on the which z corresponds to the highest probability. 

The model learns by minimizing cross-entropy loss in which the gradient 𝑊𝑖+1 = 𝑊𝑖 − 𝜖∇𝐿𝑜𝑠𝑠𝑊
𝑖  . 

 

Raman spectra from 450cm-1 to 3150cm-1 share very similar patterns with previous studies aimed 

at high throughput single cell analysis of lipid droplets, with the more aggressive triple negative 

subtype having a relatively weaker lipid presence 17. These spectra were then fed into a simple 



ReLu neural network for classification. The results demonstrate that Raman spectroscopy of lipid 

droplets achieved a label-free classification accuracy of 82% with 200 iterations in a 10-fold 

cross validation shown in Figure 6. Of note is the poorer distinction between the MDA-MB-231 

cells that were supplied excess methionine (denoted by “high Met”) and those that were not. This 

indicates that TNBC may potentially be less demanding of methionine or less responsive to it. 

 
Figure S3. Confusion matrix illustrating the 10-fold cross validation accuracy of the ReLU neural network. 100 neurons in the 

hidden layer and 200 iterations with the Adam solver achieved AUC: 0.9811, CA: 0.82, F1: 0.812, Precision: 0.823, Recall: 0.82. 

Classification between dietary methionine concentrations in TNBC cell line MDA-MB-231 was the poorest. 

 

Table S1. 2-way ANOVA of figure 4B shows significant interaction term Insulin*Methionine in TNBC.  

 
 
Table S2. 2-way ANOVA of figure 5A-B. Relative lipid metabolism characterized by the ratio of de novo synthesized and total 

lipids was not significantly sensitive to methionine concentration in normal-like breast cells, while there is a significant 

interaction term Insulin*Methionine in TNBC. In both cell types, methionine concentration was the significant independent 

variable in terms of relative lipid and protein synthesis. 



 

 
 

Figure S4. Quantitative summary of flavin autofluorescence from TPF image analysis. Excess methionine 

generally decreased flavin autofluorescence, whereas higher insulin concentrations generally increased 

flavin autofluorescence. 

 

 

 

 


