Structural and Mechanistic Basis for Redox Sensing by the Cyanobacterial Transcription Regulator RexT

Bin Li¹, Minshik Jo¹, Jianxin Liu¹, Jiayi Tian¹, Robert Canfield¹⁻², and Jennifer Bridwell-Rabb¹

Corresponding Author: jebridwe@umich.edu

¹Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 ²Current Address: Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045

Supplementary Figures and Tables:

Supplementary Fig. 1. RexT is a dimer. Supplementary Fig. 2. Structure comparison of RexT with ArsR-SmtB superfamily members. **Supplementary Fig. 3.** The ability of RexT to bind DNA is not impacted by the presence of metal ions. Supplementary Fig. 4. RexT resembles the ArsR-SmtB protein NoIR. Supplementary Fig. 5. An electrophoretic mobility shift assay for RexT and its variants allows for probing interaction with DNA. Supplementary Fig. 6. Two chloride ions serve as a mimic of the DNA backbone in the crystal structure of RexT. Supplementary Fig. 7. Mass spectrometry reveals key insights into disulfide bond formation. Supplementary Fig. 8. Circular dichroism experiments reveal a similar architecture in the presence and absence of H₂O₂. Supplementary Fig. 9. Crystal packing likely prevents disulfide bond formation in chain A. Supplementary Fig. 10. A significant conformational change occurs in the RexT structure following oxidation. **Supplementary Fig. 11.** The structure of RexT reveals key structural features for responding to H_2O_2 . Supplementary Fig. 12. The HTH ArsR-SmtB-type DNA-binding domain and related protein families were used to generate a sequence similarity network (SSN). Supplementary Fig. 13. Sequence alignment of previously characterized members of ArsR-SmtB family. Supplementary Fig. 14. The sub-sequence similarity network with genomic neighborhood information annotated for the RexT cluster. Supplementary Fig. 15. Sequence alignment of RexT homologs reveals complete conservation of Cvs41. Supplementary Fig. 16. A rooted phylogentic tree for RexT homologs from three orders of Cvanobacteria.

Supplementary Fig. 17: Alignment of RexT with CyeR shows conservation of Cys41.

Supplementary Fig. 18. Comparison of RexT with other ArsR-SmtB members in different states suggests possible mechanism of regulation.

Supplementary Table 1. The sequence of DNA duplex probe used for EMSA.

Supplementary Table 2. Binding constants of RexT and its variants to DNA duplex fluorescence probe. **Supplementary Table 3.** Primers used for mutagenesis.

Supplementary Table 4. Key ArsR-SmtB members highlighted in the sequence similarity network.

Supplementary Table 5. 105 sequences of RexT-like regulators that control Trx expression.

Supplementary Fig. 1. RexT is a dimer. (a) Size exclusion chromatography shows that RexT exists in a dimeric form in solution. The protein standard (Bio-Rad) contains thyroglobin (670 kD), γ -globin (158 kD), ovalbumin (44 kD), myoglobin (17 kD) and vitamin B12 (1.35 kD). Tag-free RexT based on our purification protocol after TEV-cleavage has a calculated monomeric molecular weight of 12.8 kD based on the amino acid sequence. RexT elutes between ovalbumin and myoglobin, suggesting that it exists in a dimeric form (25.6 kD as a dimer). (b) The dimer interface of RexT is made up by the coiled-coil interaction between the α 1 helices, and between the α 5_b helices. The interacting residues are identified by the ePISA server¹ and are colored in light blue on chain A and light pink on chain B. The interacting residues are Leu14, Pro15, Leu18, Tyr19, Leu21, Gly22, Asp23, Pro24, Arg26 and Leu27 on the α 1 helix and Leu87, Phe88, Pro89, Gly90, Leu91, Ala94, Val95, Arg97, Ser98, Ala99, Gln100 on the α 5_b helix. Polar interactions at the dimeric interface are indicated with dashed lines and the distances are labeled.

Supplementary Fig. 2. Structure comparison of RexT with ArsR-SmtB superfamily members. (a) Sequence alignment of four ArsR-SmtB transcription factors identified by the Dali server² with RexT shows a well conserved wHTH architecture. Secondary structure labeling is based on the consensus. Colored boxes highlight functional residues that could bind an environmental stimulator, such as a metal ion (green and blue), an arsenite ion (pink), form a disulfide bond in RexT (orange), or an unknown species (purple). (b) RexT (gray) is overlaid with VcHlyU³ (PDB ID: 4K2E, purple). In VcHlyU Cys38 on the α 2 helix is in the sulfenic acid form and is pointing towards Cys104, suggesting that disulfide bond formation may be important to regulation. The root mean squared deviation (rmsd) is 1.82 Å over 396 atoms. (c) RexT (gray) is overlaid with SaCadC⁴ (PDB ID: 1U2W, blue). SaCadC uses a regulatory cadmium site (dashed circle).

The rmsd is 1.45 Å over 404 atoms. (d) RexT (gray) is overlaid with $AfArsR^5$ (PDB ID: 6J05, pink). AfArsR uses three Cys residues on the C-terminus to bind As³⁺ (purple sphere). The rmsd is 1.33 Å over 365 atoms. (e) RexT (gray) is overlaid with SeSmtB⁶ (PDB ID: 1R22, light purple). In this protein, two Zn²⁺ (gray sphere) ions at the dimer interface are found coordinated to Asp and His residues from the α 5 helix of one subunit, and His and Glu residues from the other subunit (only a monomer is shown here). The rmsd is 2.05 Å over 426 atoms. In all panels, the overlay of RexT was performed in COOT⁷ using the SSM superimpose feature to align the models based on C α positions and visualized by PyMOL. *Af, Acidithiobacillus ferrooxidans; Se, Synechococcus elongatus* PCC 7942; Sa, *Staphylococcus aureus*; Vc, *Vibrio cholerae*.

Supplementary Fig. 3. The ability of RexT to bind DNA is not impacted by the presence of metal ions. (a) A DNA probe (20 nM) was incubated with RexT (100 nM) and 1, 2.5, or 5 equivalents of As(III), Cd^{2+} , and Zn^{2+} . This electrophoretic mobility shift assay (EMSA) showed that RexT binds to DNA similarly in the absence (lane 2) and presence of the different tested metal ions (lanes 3-11). (b) A labeled DNA probe shows changes in fluorescence anisotropy following the addition of RexT. These differences allowed for calculation of the K_d for RexT in the presence (orange) and absence (gray) of Cd^{2+} (see Supplementary Table 2). As shown in panel A, adding a metal ion to RexT in a 2.5-fold excess does not markedly change its ability to bind DNA. Each data point for the experiments is shown as an open shape. In panel b, data was measured using n=3 independent experiments and is presented with the individual measurements (open shapes) and as the mean value of these measurements ± SD (closed shapes). Source data are provided as a Source Data file.

Supplementary Fig. 4. RexT resembles the ArsR-SmtB protein NoIR. An overlay of RexT with NoIR⁸ (PDB: 4ON0) based on their Cα atoms. RexT is shown in light gray and NoIR is shown in blue. Dashed and dotted lines show the distance between mid-points of the recognition helix and between the tip of the "wing" (dark gray label for RexT and blue label for NoIR).

Supplementary Fig. 5. An electrophoretic mobility shift assay for RexT and its variants allows for probing interaction with DNA. (a) The DNA probe (20 nM) was incubated with 25, 50 and 100 nM of wild type (WT) dimeric RexT and the R26A, K50A variants at room temperature for 30 min. Both variants impact the ability of RexT to interact with DNA. (b) The DNA probe (20 nM) was also incubated with 25, 50 and 100 nM WT dimeric RexT and the C40S and C41S variants at room temperature for 30 min. The C40S variant doesn't show much difference in DNA-binding relative to WT RexT whereas C41S showed decreased DNA-binding affinity. In both panels, the 0 nM lane is the negative control where no protein was added.

Supplementary Fig. 6. Two modeled chloride ions serve as a mimic of the DNA backbone in the crystal structure of RexT. (a) Two chloride ions are found in the crystal structure of reduced RexT, between Cys40 and Cys41. The chloride ions interact with the protein backbones, side chains, and water molecules in chain A (blue, bottom left panel) and chain B (white, bottom right panel). Dashed gray lines show conserved interactions in both chains A and B, including the interaction with the Cys41 backbone amide nitrogen and His75 backbone carbonyl oxygen and amide nitrogen. Red dotted lines show subunit-specific interactions. In chain A, the chloride interacts with a nearby water and the side chain oxygen of Asn74. In chain B, the chloride may have a weak interaction with the sulfur atom of Cys40. (b) The 2Fo-Fc (gray) and Fo-Fc (green/red) electron density map calculated for the refined structure of RexT around the modeled chloride ion. These maps are shown contoured at 1.0 σ and ±3.0 σ , respectively. (d) The 2Fo-Fc (gray) and Fo-Fc (gray) and Fo-

Supplementary Fig. 7. Mass spectrometry reveals key insights into disulfide bond formation. (a) To probe the identity of the disulfide bond forming Cys residues, mass spectrometry experiments were performed on wild-type (WT) RexT and each of its Cys variants in the presence of H_2O_2 . The mass of RexT with a disulfide bond should be 2 Da less than when a disulfide bond is not formed. (b) As disulfide bond formation proceeds through formation of a sulfenic acid moiety, mass spectrometry was also used to look for incorporation of the small molecule dimedone into RexT following the addition of H_2O_2 . This experiment was performed to identify the peroxidatic Cys residue. Incorporation of one molecule of dimedone into RexT results in a 138 Da increase in the mass of the protein. (c) The mass spectrometry experiments are shown for WT RexT in the absence of H_2O_2 (left), presence of H_2O_2 (middle), and presence of H_2O_2 and dimedone (right). These experiments show formation of a disulfide bond (middle), formation of a disulfide bond and the incorporation of a disulfide bond (middle) and the incorporation of a disulfide bond (middle), formation of a di

Supplementary Fig. 8. Circular dichroism experiments reveal that RexT has a similar architecture in the presence and absence of H_2O_2 . (a) Circular dichroism (CD) data shows that the RexT (black) when combined with one equivalent of H_2O_2 does not remarkably change in structure over time (orange, red, and purple). (b) Similarly, CD data shows that the RexT (black) when combined with two equivalents of H_2O_2 does not remarkably change in structure over time (orange, red, and purple). (b) Similarly, CD data shows that the RexT (black) when combined with two equivalents of H_2O_2 does not remarkably change in structure over time (orange, red, and purple).

Supplementary Fig. 9. Crystal packing likely prevents disulfide bond formation in chain A. (a) The oxidized structure of RexT (chain A is cyan and chain B is dark cyan) with its crystal symmetry mates (gray). In chain B, there is space for a disulfide bond to be formed between Cys40 and Cys41. In chain A, a symmetry molecule is packed up against where the bond would be formed. (b) Chain B of RexT is overlaid with chain A to show the clash that would occur upon disulfide bond formation.

Supplementary Fig. 10. A significant conformational change occurs in the RexT structure following oxidation. (a) The reduced structure of RexT (gray) has a different conformation than the oxidized in the α 3 helical region. Shown in this panel are the 2Fo-Fc (gray) and Fo-Fc (green/red) electron density maps contoured at 1.0 σ and ±2.0 σ , respectively, when the structure of the reduced RexT is used as a model for the oxidized RexT data. (b) Modeling the oxidized structure (cyan) with a disulfide bond is a better fit of the data. Again, the 2Fo-Fc (gray) and Fo-Fc (green/red) electron density maps contoured at 1.0 σ and ±2.0 σ , respectively. (c) The refined 2Fo-Fc (gray) and Fo-Fc (green/red) electron density maps contoured at 1.0 σ and ±2.0 σ , respectively, around the oxidized structure in the region of the modeled disulfide bond are shown. (d) A Fo-Fc omit (green) electron density map contoured at ±2.0 σ is shown around the α 3 helical region after it was omitted from the refined structure of oxidized RexT. (e) Alignment of the oxidized RexT structure with the DNA-bound NoIR structure (PDB: 40N0)⁸ shows that the wHTH regions of RexT that interact with DNA are highly flexible.

Supplementary Fig. 11. The structure of RexT reveals key structural features for responding to H₂O₂. (a) A surface cavity (blue) is identified that leads from the surface of RexT to the Cys 41 residue. The calculated cavity of chain B in the reduced RexT structure contains a glycerol molecule from the cryoprotectant. (b) The bottom of the calculated cavity that surrounds Cys41 contains residues arranged in a way that suggests they are important players in activation of H₂O₂. (c) The electron density maps for the residues and glycerol molecule shown in panel B are displayed. The refined 2Fo-Fc (gray) and Fo-Fc (green/red) electron density maps contoured at 0.9 σ and ±3.0 σ , respectively. (d) The 2Fo-Fc and Fo-Fc electron density maps for the residues and the structure of reduced RexT. These maps are shown contoured at 0.9 σ and ±3.0 σ , respectively. (e) The 2Fo-Fc (gray) and Fo-Fc (green/red) electron density maps for the residues and H₂O₂ molecule from Fig. 5B are displayed contoured at 0.9 σ and ±3.0 σ , respectively. (f) The 2Fo-Fc and Fo-Fc electron density map calculated from the structure at 0.9 σ and ±3.0 σ , respectively. (f) The 2Fo-Fc and Fo-Fc electron density map calculated from the structure of reduced at 0.9 σ and ±3.0 σ , respectively. (f) The 2Fo-Fc and Fo-Fc electron density map calculated from the structure at 0.9 σ and ±3.0 σ , respectively. (f) The 2Fo-Fc and Fo-Fc electron density map calculated after H₂O₂ was omitted from chain A of the oxidized RexT structure are displayed contoured at 0.9 σ and ±3.0 σ , respectively.

Supplementary Fig. 12. The HTH ArsR-SmtB-type DNA-binding domain and related protein families were used to generate a sequence similarity network (SSN). Proteins and their structures that have an annotated "HTH ArsR-type DNA-binding domain" (IPR001845, large oval shape). This classification encompasses a few protein families, predominantly PF01022 (HTH_5, shaded in pink) and PF12840 (HTH_20, shaded in blue). Notably a few proteins that belong to PF12840 do not have the annotated IPR001845 domain (shaded in blue, outside of the large oval). Proteins and PDB IDs shown in italics do not have an accompanying publication.

		-						() (α1	\rightarrow) α2		- α3	
	NoRexT	1					MR	FLY-HPD	RKDISL	PGVLYA	GDPA	RLETVRL	SK-G	EOCCA-E	- 43
	CqCyeR	1					MAR	KLE-HPS	LAEMNL	NAIMFA	LSDPI	RROILSOL	CGHN	DOACV-	A 45
	EcArsR	1							MLQLTP	LQLFKN	LSDET	RLGIVLLL	REM	GELCVCDL-	C 37
	BsAseR	1						MT	IDVAAM	TRCLKT	LSDQT	RLIMMRLFI	LE	QEYCVCQL-	V 38
Ш	Rv2642	1 MS	NLHPL	PEVASCV			VAPL	VREPLNP	PAAAEM	AARFKA	LADPV	RLQLLSSV	ASRAG	GEACVCDI-	S 64
	CGArsR	1 MT	TLHTI	QLANPTE			CCIL	ATGPLSS	ODDAOT			REFERENCE	AGGC	GPVSVNEL-	T 64
	SpArsR	1					MNT	ADMNVAD	MNVENA	AKVLKE	LASPV	RLALFRIN	/EQEP	TGVAVGOL-	A 45
	Rv0081	1						MESE	PLYKLK	AEFFKT	LAHPA	RIRILELL	/ER	-DRSVGELL	S 41
	BaPagR	1			M	TVFVDHK:	EEY		MSLEDD	AELLKT	манрм	RLKIVNEL	KH	KALNVTQI-	I 48
	XfBigR	1					M	-TREDME	KRANEV	ANLLKT	LSHPV	RLMLVCTL	/EG	-EFSVGEL-	E 43
ш	RcSqrR	1	-MDTAQD	PQDDFDP-	EM	GSDTDER	CAAL	-DAEEMA	TRARAA	SNLLKA	LAHEG	RLMIMCYL	ASG	-EKSVTEL-	E 68
ш	EcYgaV	1				MDVIN	MT	-ELAQLQ	ASAEQA	AALLKA	MSHPK	RLLILCML	GS	PGTSAGEL-	T 45
	SENOLE	1				MEH-AM		-NLÕEME	FEAFTA	ACELSA	MANER		IN	-ELSVGEL-	A 19
	CtAntR	1	-MALEKR	NELPACSLKP	SL		0	DRDLITS	AEAGEV	VVLFKV	LANDT	RLRLLHAL	ARS	GGLCVTDL-	A 63
	MtCmtR	1					MLTC	E	MRESAL	ARLGRA	LADPT	RCRILVAL	D	GVCYPGQL-	A 41
1	Rv2034	1						M	ISTYRSP	DRAWQA	LADGT	RRAIVERLA	\H−−−	GPLAVGEL-	A 37
b	MtKmtR	1					-MYADS	GPDPLPD	DQVCLV	VEVFRM	LADAT	RVQVLWSL	4D	REMSVNEL-	A 48
	MtSmtB	1	MVTS	PSTPTAAHED	VGADEV	GGHQHPAI	DRFAECPT	FPAPPPR	EILDAA	GELLRA		RIAIVLQL	RE	SQRCVHEL-	V 78
	Saczra MtNmtP	1		,	MC	HC1	TECP-NP	DGVDLUG	DILERV	ASTLOA	LGDIN	RIKIMELL		CPL PUTDI	A 53
	SeSmtB	1M	TKPVLOD	GETVVCOGTH	AA	IA	SE	-LOAIAP	EVAOSL	AEFFAV	LADPN	RLRLLSLL	AR	SELCVGDL-	A 66
	SaCadC	1 MKKK	D'	ICEIFCYDEEI	KV		NR	IQGDLQT	VDISGV	SQILKA	IADEN	RAKITYAL	CQD	EELCVCDI-	A 63
а	ObBxmR	1 MSPKSAVNGA	ISQPHQE	NDTPTCDRAHI	LV	DC	SRVGDI	QTQVLNT	AKAQRM	AEFFSL	LGDAN	RLRLVSVL	4K	QELCVCDL-	A 80
	SyZiaR	1 MSKSSLS	KSQSCQN	EEMPLCDQ-PI	LV	HLI	EQVRQV	QPEVMSL	DQAQQM	AEFFSA	LADPS	RLRLMSAL	4R	QELCVCDL-	A 76
	NoAztR	1 MNKHKKKÇ	DLDLIQS	SDTPICDT-H	LV	<u>H</u> LI	DNVRSS	QAQILPT	DKAQQM	AEIFGV	LADTN	RIRLLSAL	AS	SELCVCDL-	A 77
	Conservat	tion								_		1 Ko 10			
	Conserva								-		l and		_	and the later	
								000	121210	222523	98223	*3286117	01	00214327-	-3
					_			_							
		(α_3)	α4			pz -		α5							
	NoRexT	44 FDFAIAKSTM	SNHFKIL	RESGVVLTRKI	EGTQHI	NRLRREDI	LETLFPGL	L	D-AV	LRSAQPI	LLTCD	QSAIV		-K	- 112
	CgCyeR	46 FELPVSKSTS	THHFRVL	REAGLITORY	EGTAIL	SALRSED	AEARFPGL	LTSVMRA	EVEERN	AADLPV					- 112
	EcArsR	38 MALDQSQPKI	SRHLAML	RESGILLDRK	2 <mark>G</mark> KWVH	YRLSPHII	SWAAQII	EQAWLSQ	QDDVQV	IARKLA	SVNCS	GSSKAVCI-			- 117
	BsAseR	39 DMFEMSQPAI	SQHLRKL	KNAGFVNEDRI	R <mark>G</mark> QWRY	YSINGSCI	PEFDTLQL	ILHQIDQ	EDELLN	HIKQKK	TQACC		Q-		- 111
Ш	Rv2642	65 AGVEVSQPTI	SHHLKVL	RDAGLLTSRR	RASWVY		TVLSNLL	SVHADAA	PAL	-GA			PA-		- 126
	AfArsR	44 EHLCOPHNGI	SFHLKNL	OHAGI VTVORI	EGRYOR	VRAAMPW	RALVAVI	TENCCHG	TROCAL	SGE			SPSV	OEGNO	-118
	SpArsR	50 EALQIPGSTL	SHHISAL	MSAGIISORRI	EGRVLY	CVPDYEL	QGLVHFL	ODOCCEG	0						- 105
	Rv0081	42 SDVGLESSNI	SQQLGVL	RRAGVVAARRI	D <mark>GNAMI</mark>	YSIAAPD:	[AE	LLAVAR	KVLAR	VLSDRVAVI	EDLR	AGGSAT	- 114
	BaPagR	49 QILKLPQSTV	SQHLCKM	RGKVL-KRNR	Q <mark>G</mark> LEIY	YSINNPK	/		EG	IIKLLN	PIQ				- 99
	XfBigR	44 QQIGIGQPTI	SQQLGVL	RESGIVETRRI	NIKQIF	YRLTEAK	7		AQ	LVNALY	FIFCA	QEKQA			- 102
ш	FCVGPV	46 RITCL SASAT	SQULARL		DAORTI	VSTENEA	1		AR	T T D TT V Y I	EQECS	GD			- 124
ш	VcHlvU	52 SRLELSOSAL	SOHLAWL	RRDGLVNTRKI	EAOTVF	YTLSSTE	/		KA	MIELLH	RLYCD	ANO			- 108
	SfNolR	50 NKVGLSQSAL	SOHLSKL	RAQNLVSTRRI	DAQTIY	YSSSSDS	/		MK	ILGALS	EIYGA	ATSVVII	EKPFV	-RKSA	- 118
	CtAntR	64 AAVGMKPQAV	SNQLQRL	ADRRILRAAR	GNNIH	YRIVDPC	LRMLELG	ICLIEEA	EQ	Qi	AGG				- 124
	<i>MtCmtR</i>	42 AHLGLTRSNV	SNHLS <mark>C</mark> L	RG <mark>C</mark> GLVVATYI	E <mark>GRQVR</mark>	YALAD SHI	LARALGEL	VQVVLAV	DTDQFC	VAERAA	SGEAV		EM	TGS	- 118
i i	Rv2034	38 RDLPVSRPAV	SQHLKVL	KTARLVCDRP	AGTRRV	YQLDPTG	LAALRTDL	DRFWTRA	LTGYAQ	LIDSI	EGDDT				-107
b	MTKMTR MtCmtP	49 EQVGRPAPSV	SOULARL	KMARLVRTRRI	CDEVI	VDI ADUU	KOTATON	VENALHA	GPGIPR	HHRA	AGGLQ		5v	AKASATKOV	130
	SaCzrA	47 HOLNLSOSNV	SHOLKLL	KSVHLVKAKR	OGOSMT	YSLDDTH	ATMLKOA	THHANHP	KESGL-						- 106
	MtNmtR	54 EAIGMEOSAV	SHOLRVL	RNLGLVVGDR	AGRSIV	YSLYDTH	AQLLDEA	IYHSEHL	HLGLSD	RHPS	AG				- 120
	SeSmtB	67 QAIGVSESAV	SHQLRSL	RNLRLVSYRK	Q <mark>G</mark> RHVY	YQLQDHH	VALYQNA	LDHLQEC	R						- 122
	SaCadC	64 NILGVTIANA	SHHLRTL	YKQGVVNFRKI	EGKLAL	YSLGDEH	RQIMMIA	LAHKKEV	KVNV						- 122
а	ObBxmR	81 ATLGMSESAV	SHQLRAM	RAMRLVSYRK	VGRQVF	YSLLDRH	LELYRAV	AEHLDEE	S						- 136
	SyZiaR Notato	7 AAMKVSESAV	SHQLRIL	KSORLVKYRRV	VGRNVY	YSLADNH	MNLYREV	ADHLQES	D	,					- 132
	NOAZER	O ALLINIDESAV	CUCURTT.	IN THE REPORT OF THE		TOTHDOH	TINDIKSP	A CIMILLI &			-G				- 130
	Conservat	tion 💼 💻		1 H			_								
						224112									
		2161420535	/468429	31227221232	273123	33411014	+								-

Supplementary Fig. 13. Sequence alignment of previously characterized members of the ArsR-SmtB family. Conserved secondary structures are labeled as cylinders (α -helices) and arrows (β -strands) based on the consensus. Key amino acid residues that are implicated in regulatory process are colored: blue, His/Asp/Glu-rich motif for binding of "hard" metal ions such as Ni²⁺ and Zn²⁺; green, Cys-rich motif for binding "soft" metal ions such as Pb²⁺ and Cd²⁺; magenta, Cys-rich motif for binding of arsenite or methylarsenite; purple, key Cys residues that are involved in redox processes to bind RSS or an unknown species; yellow, key Cys residues that are involved in the ROS response; gray, residues that resembles above-mentioned conserved motifs but do not exhibit any function and are likely the remnant of evolution. The residues responsible for regulation in NoIR, *Rv*0081, *Rv*2034 and *Ba*PagR are unknown.

Supplementary Fig. 14. The sub-sequence similarity network with genomic neighborhood information annotated for the RexT cluster. The network is a subset of the network shown in Fig. 6 (the RexT cluster) and consists of 7074 sequences of RexT homologs (the 7085 sequences from Fig. 6 were submitted to the server). It is analyzed in Cytoscape at the cut-off value of e^{-32} . The network is further annotated by the EFI-genome neighborhood tool^{9,10} by checking the ten or three genes upstream and downstream of the RexT homologs. The nodes are color-coded based on the numbering of the multi-node clusters in order of decreasing number of sequences. The Pfam for thioredoxin (PF00085) was used as a query to identify its co-occurrence with the RexT homologs. Of interest to this work, in 121 and 108 instances, a thioredoxin gene was found to be within the ten or three-gene neighborhood of RexT homologs, respectively. However, in only 105 of the identified instances is a thioredoxin gene adjacent to a RexT homolog (large teal nodes). 102 of the 105 RexT homologs are from Cyanobacteria (circled with a solid line), two are from unclassified bacteria and one is from Abditibacteria (circled with a dashed line). RexT from *Nostoc* sp. PCC 7120 (*No*RexT) is highlighted in dark red. *Cg*CyeR is found in a different cluster in this network.

Supplementary Fig. 15. Sequence alignment of RexT homologs reveals complete conservation of **Cys41**. Sequences were aligned by Clustal W and visualized by WebLogo 3¹¹ for the first 106 amino acids positions. Orange dots indicate positions where a Cys residue occurs, even at positions of lower occurrence. Dark blue and magenta dots highlight conserved DNA-binding and H₂O₂ activating residues discussed in the main text. (a) The alignment of 104 RexT homologs that were identified adjacent to a thioredoxin gene reveals that the Cys41 residue is completely conserved. In addition, Arg26, and Lys50, which were shown in this work to be involved in DNA binding are completely conserved. The RexT homolog from *Acaryochloris marina* 11017 (UniProt ID: B0C3H5) has an N-terminal truncation of about 25 amino acids and was omitted in the WebLogo visualization. (b) The alignment of 84 RexT homologs from *Nostocales* reveals the conservation of Cys40 and Cys41. Only one homolog from *Tolypothrix* sp. NIES-4075 (UniProt ID: A0A218QHS2) does not contain Cys40. (c) The sequence alignment of 11 homologs from the *Synechococcales* and Oscillatoriales shows the conservation of Cys41, with occurrence of Cys residues also being found at positions 9, 40, 44, 68, 105.

Supplementary Fig. 16. A rooted phylogentic tree for RexT homologs from three orders of Cyanobacteria. This analysis was conducted in MEGA X^{12,13} and involved 96 RexT homologs. The RexT sequence from *Abditibacterium utsteinense* (UniProt ID: A0A2S8SU85) was used as the outgroup. The evolutionary history was inferred by using the Maximum Likelihood method and JTT matrix-based model¹⁴. The tree with the highest log likelihood (-4801.45) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+*G*, parameter = 0.3614)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The 11 RexT homologs from *Synechococcales* and *Oscillatoriales* are colored in green and the 84 RexT homologs from *Nostocales* are colored in blue. The RexT homolog from *Tolypothrix* sp. NIES-4075 that does not contain Cys40 is highlighted by a pink dot, and RexT homologs from *Nostocales* that contain an additional Cys105 are highlighted by a blue dot. RexT from *Nostoc* sp. PCC 7120 studied in this work is indicated by an arrow.

Supplementary Fig. 17. Alignment of RexT with CyeR shows conservation of Cys41. Yellow dots highlight the position of Cys. The secondary structure illustration is based on RexT structure.

Supplementary Fig. 18. Comparison of RexT with other ArsR-SmtB members in different states suggests possible mechanism of regulation. (a) RexT is shown in its reduced (white) and oxidized states (cyan). Superposition of these two structures resulted an rmsd of 0.38 Å over 1258 atoms. The solid arrow highlights the local conformational change from the reduced state to the oxidized state in chain B that is observed in the crystal structures. The dashed arrow suggests a similar motion is possible in chain A if crystalline restraints were not in place. (b) SaCzrA in its apo form⁶ (wheat, PDB ID: 1R1U) and its Zn²⁺bound form¹⁵ (vellow, PDB ID: 2M30, NMR structure). Superposition of two structures resulted an rmsd of 1.44 Å over 1287 atoms. (c) RcSqrR¹⁶ in its apo form (light pink, PDB ID: 608K) and tetrasulfide-bound form (dark pink, PDB ID: 608N). Superposition of the two structures resulted in an rmsd of 0.74 Å over 1185 atoms. Solid arrows suggest possible motions of the protein upon tetrasulfide formation. (d) SaCzrA in its Zn²⁺-bound form¹⁵ (yellow) and DNA-bound form¹⁷ (orange, PDB ID: 2KJB, NMR solution structure). Superposition of two structures resulted an rmsd of 4.39 Å over 2972 atoms. Arrows suggest the possible motion of SaCzrA switching from the DNA-bound state to the Zn²⁺-bound state. (e-f) The DNA binding domain (DBD) of CgOxyR¹⁸ shows a significant conformational change when OxyR transitions from the reduced state (PDB: 6G1D) to its oxidized state (PDB: 6G1B). The regulatory domains (RD) show little global movement. CqOxyR is a tetramer, but a dimeric representation is shown here to better visualize the change in the DBD.

Supplementary Table 1. The sequence of DNA duplex probe used for EMSA and fluorescence anisotropy (FA)

DNA probe sequence EMSA	GCTTGCTAACAATCGCACAATCTCCAATCGCGCTGGATCACCTAAGG CATACAGCACTCCTGGTAAAGAAATATCTTTTCGGTCTGGATGATACA GAAATCTCATAGTTGCATTATCTCTGAAAATAAATTATATTTTTATT <u>ATT</u> <u>CG</u> ATAATATCGAATAAA <u>CGAAT</u> TAAGGGGCAAGTAATATGTCATCCAT TACAAATGTTACAGAAGCCACATTCAAGCAAGAAGTTCTGGATAGCAA CGTTCCAGTTCTAGTGGACTTTTGGGCCCCTTGGTGTGGCCCCTTGTC GGATGGTAGCGCCGGTTGTGGATGAAGTTGCTAGCGA
DNA probe sequence FA	TTATT ATTCG ATAAAAACGAATAAACCGAAATTAAGG

Note: The sequence is shown from 5' to 3' only. The palindromic DNA-binding sites¹⁹ are in bold and underlined.

Supplementary Table 2. Binding constants of RexT and its variants to DNA duplex fluorescence probe

Protein	K _d (µM)	A _{max} (Initial)	A _{max} (Fitted)
WT	1.08±0.07	1.000	1.048±0.017
C40S	0.95±0.05	1.001	1.019±0.013
C41S	1.35±0.11	1.004	1.019±0.021
R26A	5.18±1.22	0.967	0.980±0.065
K50A	5.29±1.86	0.938	0.900±0.088
WT + 2.5 eq. Cd ²⁺	1.20±0.10	0.999	1.017±0.022

Variants		Primer sequence				
C 408	F	5'-GCAAAGGCGAGCAG <mark>AGC</mark> TGCGCGGAATTC-3'				
C405	R	5'-GAATTCCGCGCAGCTCTGCTCGCCTTTGC-3'				
0440	F	5'-GGCGAGCAGTGCAGCGCGGAATTCG-3'				
6415	R	5'-CGAATTCCGCGCTGCACTGCTCGCC-3'				
01050	F	5'-CCGCTGCTGACCAGCCAACAGAGCG-3'				
C1055	R	5'-CGCTCTGTTGGCTGGTCAGCAGCGG-3'				
	F	5'-GGGCGACCCGGCGGCTCTGGAGATTGTT-3'				
R20A	R	5'-AACAATCTCCAGAGCCGCCGGGTCGCCC-3'				
KEOA	F	5'-TCGATTTTGCGATCGCGGCGAGCACCATGAGCAACC-3'				
KOUA	R	5'-GGTTGCTCATGGTGCTCGCGCGCGATCGCAAAATCGA-3'				
	F	5'-GCAACCACTTCAAAATTCTGGCTGAGAGCGGTGTGGT-3'				
ROTA	R	5'-ACCACACCGCTCTCAGCCAGAATTTTGAAGTGGTTGC-3'				
TCOA	F	5'-GCGGTGTGGTTCTG <mark>GCC</mark> CGTAAGGAAGGC-3'				
100A	R	5'-GCCTTCCTTACGGGCCAGAACCACACCGC-3'				
0744	F	5'-CCGTAAGGAAGGCACCGCACACATCAACCGTCTG-3'				
Q74A	R	5'-CAGACGGTTGATGTGTGCGGTGCCTTCCTTACGG-3'				
	F	5'-GTAAGGAAGGCACCCAAGCCATCAACCGTCTGCGTC-3'				
П/ЭА	R	5'-GACGCAGACGGTTGATGGCTTGGGTGCCTTCCTTAC-3'				
	F	5'-GGCACCCAACACATCGCCCGTCTGCGTCGTGA-3'				
IN//A	R	5'-TCACGACGCAGACGGGCGATGTGTTGGGTGCC-3'				

Supplementary Table 3. Primers used for mutagenesis

Supplementary Table 4. Key ArsR-SmtB members highlighted in the sequence similarity network

Name	UniProt ID	PDB ID	Amino acid sequence	Sensory site					
	Metal-binding								
SeSmtB	P30340	1SMT, 1R22, 1R1T, 1R23	MTKPVLQDGETVVCQGTHAAIASELQAIAPEVAQSLAEFFAVLADPNR LRLLSLLARSELCVGDLAQAIGVSESAVSHQLRSLRNLRLVSYRKQGR HVYYQLQDHHIVALYQNALDHLQECR	α5C					
MtSmtB	P9WMI5	1	MVTSPSTPTAAHEDVGADEVGGHQHPADRFAECPTFPAPPPREILDA AGELLRALAAPVRIAIVLQLRESQRCVHELVDALHVPQPLVSQHLKILK AAGVVTGERSGREVLYRLADHHLAHIVLDAVAHAGEDAI	α5C					
SaCzrA	O85142	1R1U, 1R1V, 2KJB, 2KJC, 2M30, 4GGG, 6CDA, 6CDB	MSEQYSEINTDTLERVTEIFKALGDYNRIRIMELLSVSEASVGHISHQLN LSQSNVSHQLKLLKSVHLVKAKRQGQSMIYSLDDIHVATMLKQAIHHAN HPKESGL	α5C					
BsCzrA	O31844	1	MTEFRETEQSAADLDEETLFLVAQTFKALSDPTRIRILHLLSQGEHAVN GIAEKLNLLQSTVSHQLRFLKNLRLVKSRREGTSIYYSPEDEHVLDVLQ QMIHHTQHD	α5C					
ObBxmR	Q76L30	1	MSPKSAVNGAISQPHQENDTPTCDRAHLVDCSRVGDIQTQVLNTAKA QRMAEFFSLLGDANRLRLVSVLAKQELCVCDLAATLGMSESAVSHQL RAMRAMRLVSYRKVGRQVFYSLLDRHVLELYRAVAEHLDEES	α3N+α5C					
SyZiaR	Q55940	1	MSKSSLSKSQSCQNEEMPLCDQPLVHLEQVRQVQPEVMSLDQAQQM AEFFSALADPSRLRLMSALARQELCVCDLAAAMKVSESAVSHQLRILRS QRLVKYRRVGRNVYYSLADNHVMNLYREVADHLQESD	α3N+α5C					
NoAztR	Q8ZS91	1	MNKHKKKQDLDLIQSSDTPTCDTHLVHLDNVRSSQAQILPTDKAQQMA EIFGVLADTNRIRLLSALASSELCVCDLAALTKMSESAVCHQLRLLKAMR LVSYRREGRNVYYSLADSHVINLYRSLVENNTYATGTG	α3N					
SaCadC	P20047	1U2W, 3F72	MKKKDTCEIFCYDEEKVNRIQGDLQTVDISGVSQILKAIADENRAKITYAL CQDEELCVCDIANILGVTIANASHHLRTLYKQGVVNFRKEGKLALYSLGD EHIRQIMMIALAHKKEVKVNV	α3N					
MtNmtR	O69711	2LKP	MGHGVEGRNRPSAPLDSQAAAQVASTLQALATPSRLMILTQLRNGPLP VTDLAEAIGMEQSAVSHQLRVLRNLGLVVGDRAGRSIVYSLYDTHVAQ LLDEAIYHSEHLHLGLSDRHPSAG	α5C					
MtKmtR	O53838	1	MYADSGPDPLPDDQVCLVVEVFRMLADATRVQVLWSLADREMSVNEL AEQVGKPAPSVSQHLAKLRMARLVRTRRDGTTIFYRLENEHVRQLVID AVFNAEHAGPGIPRHHRAAGGLQSVAKASATKDVG	α5C					
MtCmtR	P9WMI9	2JSC	MLTCEMRESALARLGRALADPTRCRILVALLDGVCYPGQLAAHLGLTR SNVSNHLSCLRGCGLVVATYEGRQVRYALADSHLARALGELVQVVLA VDTDQPCVAERAASGEAVEMTGS	α4C					

CtAntR	A0A096F4H2	6UVU	MALEKRNELPACSLKPSLQDRDLITSAEAGEVVVLFKVLANDTRLRLLH ALARSGGLCVTDLAAAVGMKPQAVSNQLQRLADRRILRAARCGNNIH YRIVDPCVLRMLELGLCLIEEAEQQAGG	
			Arsenite-binding	-
EcArsR	P15905	/	MLQLTPLQLFKNLSDETRLGIVLLLREMGELCVCDLCMALDQSQPKISR HLAMLRESGILLDRKQGKWVHYRLSPHIPSWAAQIIEQAWLSQQDDVQ VIARKLASVNCSGSSKAVCI	α3
AfArsR	B7J952	6J05	MEPLQDPAQIVARLEALASPVRLEIFRLLVEQEPTGLVSGDIAEHLGQPH NGISFHLKNLQHAGLVTVQREGRYQRYRAAMPVVRALVAYLTENCCHG TRDCALSGETRSPSVQEGNQ	α5C
CgArsR	A0A5H1ZR36	6J0E	MTTLHTIQLANPTECCTLATGPLSSDESEHYADLFKVLGDPVRLRILSQL AAGGCGPVSVNELTDLMGLSQPTISHHLKKMTEAGFLDRVPEGRVVLH RVRPELFAELRTVLQIGSMELLE	α3N
SpArsR	E6XPL1	1	MNIADMNVADMNVENAAKVLKELGHPTRLALFRLLVKGGYTGVAVGQL QEALQIPGSTLSHHISALMSAGIISQRREGRVLYCVPDYELLQGLVHFLQ DQCCSGQ	α5
BsAseR	P96677	1	MTIDVAAMTRCLKTLSDQTRLIMMRLFLEQEYCVCQLVDMFEMSQPAIS QHLRKLKNAGFVNEDRRGQWRYYSINGSCPEFDTLQLILHQIDQEDELL NHIKQKKTQACCQ	α3
MtRv2642	P71941	1	MSNLHPLPEVASCVVAPLVREPLNPPAAAEMAARFKALADPVRLQLLSS VASRAGGEACVCDISAGVEVSQPTISHHLKVLRDAGLLTSRRRASWVYY AVVPEALTVLSNLLSVHADAAPALGAPA	α3(N)
			Redox (?)	-
XfBigR	Q9PFB1	3PQJ, 3PQK	MVNEMRDDTRPHMTREDMEKRANEVANLLKTLSHPVRLMLVCTLVEGE FSVGELEQQIGIGQPTLSQQLGVLRESGIVETRRNIKQIFYRLTEAKAAQL VNALYTIFCAQEKQA	α2+α5
RcSqrR	D5AT91	608K, 608L, 608M, 608N, 6080	MDTAQDPQDDFDPEMGSDTDERCAALDAEEMATRARAASNLLKALAHE GRLMIMCYLASGEKSVTELETRLSTRQAAVSQQLARLRLEGLVQSRREG KTIYYSLSDPRAARVVQTVYEQFCSGD	α2+α5
VcHlyU	A0A3Q0L222	3JTH, 5ZNX	MNLKDMEQNSAKAVVLLKAMANERRLQILCMLHNQELSVGELCAKLQLS QSALSQHLAWLRRDGLVTTRKEAQTVYYTLKSEEVKAMIKLLHSLYCEE	α2+α5
VvHlyU	P52695	400I, 4K2E	MPYLKGAPMNLQEMEKNSAKAVVLLKAMANERRLQILCMLLDNELSVGE LSSRLELSQSALSQHLAWLRRDGLVNTRKEAQTVFYTLSSTEVKAMIELL HRLYCQANQ	α2+α5
EcYgaV	P77295	3CUO	MTELAQLQASAEQAAALLKAMSHPKRLLILCMLSGSPGTSAGELTRITGL SASATSQHLARMRDEGLIDSQRDAQRILYSIKNEAVNAIIATLKNVYCP	α2+α5
CgCyeR	Q8NLA4	/	MARKLEHPSLAEMNLNAIMFALSDPIRRQILSQLSCGHNDQACVAFELPV SKSTSTHHFRVLREAGLITQRYEGTAILSALRSEDMEARFPGLLTSVMRA EVEERNAADLPV	?

[·		
NoRexT	Q8YVV6	This work	MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQCCAEFDFAIAKS	α3
			TMSNHFKILRESGVVLTRKEGTQHINRLRREDLETLFPGLLDAVLRSAQPL	
			LTCQQSAIVK	
			Other	
RfNoIR	Q83TD2	40MY, 40MZ, 40N0	MEHAMQPLSPEKHEEAEIAAGFLSAMANPKRLLILDSLVKEEMAVGALA	?
			NKVGLSQSALSQHLSKLRAQNLVSTRRDAQTIYYSSSSDSVMKILGALS	
			EIYGAATSVVIEKPFVRKSA	
BaPagR	O31178	2ZKZ	MTVFVDHKIEYMSLEDDAELLKTMAHPMRLKIVNELYKHKALNVTQIIQIL	?
_			KLPQSTVSQHLCKMRGKVLKRNRQGLEIYYSINNPKVEGIIKLLNPIQ	
MtRv0081	P9WMI7	6JMI	MESEPLYKLKAEFFKTLAHPARIRILELLVERDRSVGELLSSDVGLESSN	?
			LSQQLGVLRRAGVVAARRDGNAMIYSIAAPDIAELLAVARKVLARVLSD	
			RVAVLEDLRAGGSAT	
MtRv2034	O53478	/	MSTYRSPDRAWQALADGTRRAIVERLAHGPLAVGELARDLPVSRPAV	?
			SQHLKVLKTARLVCDRPAGTRRVYQLDPTGLAALRTDLDRFWTRALT	
			GYAQLIDSEGDDT	
SrDepR2	A0A2D1UFR6	/	MPENENAPRGEKTPHPRHPGDDDRKLHTVDARTLRAIAHPLRIRLLNA	?
			LREFGPATASKLGERLGESSGATSYHLRQLAESGLVEDAPELGKGRE	
			RWWRAVHEGSIFESADFLAHTDPEVRGAIGVVMHEVATTHAQELNTW	
			LGTMSEWPQEWRQSSDMSDFKVRLTPELARELSAKLHAVVESYRDV	
			VPEDTEGSAVVRTHLHTFPRPSE	
PfHSR	Q8U030	2P4W	MGEELNRLLDVLGNETRRRILFLLTKRPYFVSELSRELGVGQKAVLEHL	?
			RILEEAGLIESRVEKIPRGRPRKYYMIKKGLRLEILLTPTLFGSEMYEAK	
			GVRKSPEYEQAKELIKSQEPINVKMRELAEFLHELNERIREIIEEKRELE	
			EARILIETYIENTMRRLAEENRQIIEEIFRDIEKILPPGYARSLKEKFLNINI	
PH1932	O59595	1ULY	MAKKVKVITDPEVIKVMLEDTRRKILKLLRNKEMTISQLSEILGKTPQTIY	?
			HHIEKLKEAGLVEVKRTEMKGNLVEKYYGRTADVFYINLYLGDEELRYI	
			ARSRLKTKIDIFKRLGYQFEENELLNIMDRMSQKEFDATVRISKYIEEKE	
			DALKDFSNEDIIHAIEWLSTAELARDEEYLELLKRLGSILKR	

Note: Regulatory residues are colored. Cyan: residues in the Asp/Glu and His-rich metal binding motifs; Green: residues in the Cys-rich metalbinding motifs; Pink: Cys residues that bind arsenite or methyl-arsenite; Purple: Cys residues that bind an RSS or an unknown species; Yellow: Cys residues that bind an ROS; Gray, residues that resembles above-mentioned conserved motifs but do not exhibit any function and are likely the remnant of evolution.

Supplementary Table 5. 105 sequences of RexT-like regulators that may control Trx expression

UniProt ID	Organism	Taxonomic lineage	Amino Acid Sequence
	Nostocales		MRFLHHPDRKHISLAAVLYALGDPVRLEIVRRLALEGEHCCADFD
	cyanobacterium		FAIAKSTMSNHFKILRESGVVLSRKEGTQHINMLRKEDLEALFPGL
A0A1Y0RN61	HT-58-2	Bacteria>Cyanobacteria>Nostocales	LDAVLRAAKPLSICSSSSQQTASQQF
	Anabaenopsis	Bacteria>Cyanobacteria>Nostocales	MRFLYHPDKKDISLSAVLYALGDPVRLEIVRLLATKGEQCCADFD
	circularis NIES-	>Aphanizomenonaceae>Anabaenop	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEMLFPGL
A0A1Z4GKH3	21	sis	LEAVLRSAQPLFLCQKSMVNSQ
	Nodularia		MKFLYHPDRKDISLPEVLYALGDPVRLEIVRLLATEGEQCCAGFD
	spumigena	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRQADLEAMFPG
A0A161VQF9	CENA596	>Aphanizomenonaceae>Nodularia	LLDAVLQSAQPLRLYQQSTINTR
			MKFLYHPDRKDISLPGVLYALGDPVRLEIVRLLASEGEQCCAGFD
	Nodularia sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRQEDLEALFPGL
A0A218Q2F8	NIES-3585	>Aphanizomenonaceae>Nodularia	LDAVLGSAQPFIFYQQSSVNSR
	Nodularia		MKFLYHPDRKDISLPGVLYALGDPVRLEIVRLLATQGEQCCAGFD
	spumigena	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRQADLEAMFPG
A0ZIB8	CCY9414	>Aphanizomenonaceae>Nodularia	LLDAVLQSAQPLRLYQQSTINTR
	Calothrix		MRFLYHPDRKDITLVGVLYALGDPVRLEIVRLLATKGEQCCAGFD
	brevissima	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEARFPGL
A0A1Z4JT76	NIES-22	>Calotrichaceae>Calothrix	LDAVLQSAQPLNI <mark>C</mark> ATAGKYGA
	Calothrix		MRFLYHPEQKNISLAGVLYALGDPVRLEIVRQLATKKEQCCGDFD
	parasitica NIES-	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVLTRKEGTQHINTLRIEDLEELFPGLL
A0A1Z4LZV3	267	>Calotrichaceae>Calothrix	EAILNSAQPFIISGKEPVVSQ
			MRFLYHPDRKDMTLPGVLYALGDPVRLEIVRLLATRGEQCCAGF
	Calothrix elsteri	Bacteria>Cyanobacteria>Nostocales	DFAIAKSTMSNHFKILRESGVVLTRKEGTQHINSLRRNDLDTLFPG
A0A2A2TC89	CCALA 953	>Calotrichaceae>Calothrix	LLNAILLAAQPLEI <mark>C</mark> AAAKEAIAIANN
	Calothrix		MRFLYHPDQKDMTLAGVLYALGDPVRLEIVRQLAVTGEQCCAGF
	desertica PCC	Bacteria>Cyanobacteria>Nostocales	DFAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRRNDLEVLFPG
A0A3S5K375	7102	>Calotrichaceae>Calothrix	LLDAVLRSALPLEFTTTDREASREPAIASSN
			MRFLYHPDRKDMTLAGVLYAFGDPVRLEIVRQLATIGEQCCAGF
	Calothrix sp.	Bacteria>Cyanobacteria>Nostocales	DFAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRRDDLEILFPG
K9UZI4	PCC 6303	>Calotrichaceae>Calothrix	LLDAVLRSAQPLPICTEEAPEVPVLVSN
		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKHISLAGVLYALGDPVRLEIVRQLATRGEQCCAGFE
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREELEVLFPG
A0A0T7BYV6	336/3	ied Calothrix	LLDAVLRSAQPMVNQESLVNS

		Bacteria>Cvanobacteria>Nostocales	
	Calathrix on HK		
A0A104BSC0		ind Calothriv	
AUATQ4N3CU	00		
	Colothriv	Bacteria > Cyanobacteria > Nostocales	
4044745000	Calounitix sp.		
AUA 1Z4FPD3	NIES-2098		
		Bacteria>Cyanobacteria>Nostocales	
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEALFPGL
AUA1Z4H3E5	NIES-2100	led Calothrix	
		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKDISLAGVLYALGDPVRLEIVRQLATRGEQCCAGFD
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINILRRDDLNLLFPGLL
A0A1Z4NEH8	NIES-3974	ied Calothrix	DAILASAQSSTGFPPEERQSQNGISVVGAVQ
		Bacteria>Cyanobacteria>Nostocales	MQGMRFLYHPDRKDMALAGVLYALGDPVRLEIVRLLATKGEQCC
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	AGFDFAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRRDDLETL
A0A1Z4R8I5	NIES-4101	ied Calothrix	FPGLLDAILRSAIPLEVCASSKEVVGVGVGAANN
		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDQKDMTLAGVLYALGDPVRLEIVRQLAVTGEQCCAGF
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	DFAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRRNDLEVLFPG
A0A1Z4SLC9	NIES-4105	ied Calothrix	LLDAVLRSAHPMEITTATDREPAIASSN
		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDQKDMTLAGVLYALGDPVRLEIVRQLAVTGEQCCAGF
	Calothrix sp.	>Calotrichaceae>Calothrix>unclassif	DFAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRRNDLEVLFPG
A0A2H2X5M9	NIES-4071	ied Calothrix	LLDAVLRSAHPMEITTATDREPAIASSN
		Bacteria>Cvanobacteria>Nostocales	
	Calothrix sp	>Calotrichaceae>Calothrix>unclassif	FAIAKSTMSNHEKII RESGVVI SRKEGTOHINKI REEDI DMI EPGI
K9PMI 9	PCC 7507	ied Calothrix	I DAVI OSAKPI GVCPSVVIGNROIGK
	Chlorogloeonsis	Bacteria>Cvanobacteria>Nostocales	
	fritschii PCC	>Chlorogloeonsidaceae>Chlorogloe	
A0A3S1AN91	6912	onsis	
	0012		
	Aulociro Java	Bactoria>Cyanobactoria>Nostocalos	
		Sertio20202010000000000000000000000000000000	
A0A1240DG3	Hanalasinhanaa		
	параюзірнонас		
		Destarias Over abastarias Nasta salas	
A 0 A 0001000	cyanobacterium	Bacteria>Cyanobacteria>INostocales	
A0A3281829	JJU2	>Hapalosiphonaceae	
			MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	⊢ischerella sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSIMSNHFKILRESGVVWIRKEGIQHINSLRREDLEQLFPG
AUAUS3TLG6	NIES-3754	>Hapalosiphonaceae>Fischerella	
			MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	Fischerella	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A1U7H1B7	major NIES-592	>Hapalosiphonaceae>Fischerella	LLDVVLRSAQPLLSQESMLKSR

			MRFLYHPEQQHISLAGVLYALGDPVRLEVVRQLALKGEQCCADF
	Fischerella sp.	Bacteria>Cvanobacteria>Nostocales	DFAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEESFP
A0A1Z4TTY8	NIES-4106	>Hapalosiphonaceae>Fischerella	GLLDVVLRAAQPLMIQESMVKNN
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	muscicola	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A2N6K1N1	CCMEE 5323	>Hapalosiphonaceae>Fischerella	LLDVVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A2N6K9Y8	CCMEE 5268	>Hapalosiphonaceae>Fischerella	LLDAVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A2N6KVH3	CCMEE 5273	>Hapalosiphonaceae>Fischerella	LLDVVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGELCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVIWTRKEGTQHINSLRREDLEQLFPGL
A0A2N6LCH9	CCMEE 5318	>Hapalosiphonaceae>Fischerella	LDAVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGELCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVIWTRKEGTQHINSLRREDLEQLFPGL
A0A2N6LYB7	CCMEE 5205	>Hapalosiphonaceae>Fischerella	LDAVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A2N6MBZ3	CCMEE 5201	>Hapalosiphonaceae>Fischerella	LLDAVLRSAQPLLSQESMLKSR
	Fischerella		MRFLFHPEQKHISLAGVLYALGDPVRLEIVRQLATKGEQCCADFD
	thermalis	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVWTRKEGTQHINSLRREDLEQLFPG
A0A2N6MDS7	CCMEE 5330	>Hapalosiphonaceae>Fischerella	LLDVVLRSAQPLLSQESMLKSR
		Bacteria>Cyanobacteria>Nostocales	MRLLYHPEQKHISLAGVLYALGDPVRLEVVRQLAVKGEQ <mark>CC</mark> ADF
	Hapalosiphon	>Hapalosiphonaceae>Hapalosiphon	DFAIAKSTMSNHFKILRESGVIWTRKEGTQHINSLRREDLEKLFPG
A0A0M0SU60	sp. MRB220	>unclassified Hapalosiphon	LLDVVLRSAQPLMSQESMVTTIQN
	Mastigocladus	Bacteria>Cyanobacteria>Nostocales	MRFLYHPEQQHISLAGVLYALGDPVRLEIVRQLAVKGEQCCADF
	laminosus	>Hapalosiphonaceae>Mastigocoladu	DFAIAKSTMSNHFKILRESGVIWTRKEGTQHINSLRREDLEELFPG
A0A4D9CHS4	UU774	S	LLDVVLRSPQPLITQESMVKSH
			MRFLYHPDQRDITLPGVLYALGDPVRLEIVRLLAEKGEQCCADFD
	Mastigocoleus	Bacteria>Cyanobacteria>Nostocales	FVISREGSAPRTIAKSTMSNHFKILRESGVVFTRKEGTQHINKLRR
A0A0V7ZSD4	testarum BC008	>Hapalosiphonaceae>Mastigocoleus	QDLEGLFPGLLEAVLSSAKPLATSQGELTKQAASSFG
			MRFLYHPEQQHISLAGVLYALGDPVRLEIVRQLAVKGEQCCADF
	Westiellopsis	Bacteria>Cyanobacteria>Nostocales	DFAIAKSTMSNHFKILRESGVIWTRKEGTQHINSLRREDLEELFPG
A0A4V2JNZ2	prolifica IICB1	>Hapalosiphonaceae>Westiellopsis	LLDVVLRSPQPLITQESMVKSH
		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQCCAEFD
	Anabaena sp.	>Nostocaceae>Anabaena>Unclassifi	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINRLRYEDLEALFPGL
A0A1W5CB68	39858	ed Anabaena	LDAVLRSAQPLLTCQQSVIVK

		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQCCAEFD
	Anabaena sp.	>Nostocaceae>Anabaena>Unclassifi	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINRLRYEDLEALFPGL
A0A5Q0GAJ5	YBS01	ed Anabaena	LDAVLRSAQPLLTCQQSVIVK
	Cylindrospermu		MRFLYHPDRKDICLPGVLYALGDPVRLEIVRLLATKGEQCCAEFN
	m stagnale PCC	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRCEDLEALFPGL
K9WYV3	7417	>Nostocaceae>Cylindrospermum	LGAVLRSAQPLLVESSTVKKSVSQMW
	Cylindrospermu	Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKDISLPGVLYALGDPVRLEIVRLLATEGEQCCAGFD
	m sp. NIES-	>Nostocaceae>Cylindrospermum>u	FAIAKSTMSNHFKILRESGVVLTRKEGTHHINQLRSGDLEALFPGL
A0A1Z4QTA1	4074	nclassified Cylindrospermum	LDAVLQSTQPLCVSPSTAKQGVSQMR
			MRFLYHPDRKDISLPAVLYALGDPVRLEIVRLLASKGEQCCADFD
	Nostoc piscinale	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLELLFPGL
A0A0M4SSD5	CENA21	>Nostocaceae>Nostoc	LEAVLRSAQPLLFQKSMAKSQ
			MRFLYHPDRKDISLPAVLYALGDPVRLEIVRLLASKGEQCCADFD
	Nostoc sp. MBR	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLELLFPGL
A0A1C0VHB2	210	>Nostocaceae>Nostoc	LEAVLRSAQPLL <mark>C</mark> QKSMVKSQ
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCARFD
	Nostoc sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGMVFTRKEGTQHINILRREDLEMLFPGL
A0A1E2WIY2	KVJ20	>Nostocaceae>Nostoc	LDAVLKAAQPLPVVPASAKQTASRI
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLASEGEQCCARFD
	Nostoc calcicola	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVFTRKEGTQHINILRREDLEMLFPGL
A0A1U7I345	FACHB-389	>Nostocaceae>Nostoc	LDAVLKAAQPLSVDPASTKQTASTRGRGQGW
			MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGKQCCAGFD
	Nostoc carneum	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINSLRREDLEALFPGL
A0A1Z4HQ07	NIES-2107	>Nostocaceae>Nostoc	LDAVLRSAQPLNI <mark>C</mark> TSANKQTASKVS
			MRFLYHPDRKDILLPGVLYALGDPVRLEIVRLLATKGEQCCADFD
	Nostoc sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVMTRKEGTQHINRLRCEDLEVLFPG
A0A1Z4ICG4	NIES-2111	>Nostocaceae>Nostoc	LLEAVLRSAQPLLI <mark>C</mark> QQSIVVK
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLASEGEQCCAKFD
	Nostoc linckia	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVFTRKEGTQHINILRREDLEMLFPGL
A0A1Z4L2J2	NIES-25	>Nostocaceae>Nostoc	LDAVLKAARPL <mark>C</mark> VDPATTRQTASTKVGG
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATKGEQCCAEFD
	Nostoc sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEALFPGL
A0A1Z4S5G4	NIES-4103	>Nostocaceae>Nostoc	LDAVLRSAQPLMICNQSKVPVKVVQRQSDR
	Nostoc sp.		
	'Peltigera		MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAQFD
	membranacea	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVLTRKEGTHHINILRREDLEMLFPGLL
A0A235HTK1	cyanobiont' 213	>Nostocaceae>Nostoc	DAVLKAAQPLSI <mark>C</mark> PGTKQTASRI
	Nostoc sp.		MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAKFD
	'Peltigera	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVLTRKEGTHHINILRREDLEVLFPGLL
A0A235HY70	membranacea	>Nostocaceae>Nostoc	DVVLKAAQPLPVEPASTKQTASRI

	cyanobiont' 210A		
A0A235IS72	Nostoc sp. 'Peltigera membranacea	Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAQFD FAIAKSTMSNHFKILRESGIVFTRKEGTHHINILRREDLEMLFPGLL
A0A2501072		Bacteria>Cyanobacteria>Nostocales	MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGEQCCAGFD FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRREDLEALFPGL
A0A252DG98	Nostoc sp. 109	>Nostocaceae>Nostoc	LDAVLQSAQPLNICASADKQTASTA MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGEQCCAGFD FAIAKSTMSNHEKII REAGVVI THKEGTOHINRI RREDI EVI EPGI
A0A252DU84	RF31YmG	>Nostocaceae>Nostoc	
A0A252E5W4	Nostoc sp. 106C	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	FAIAKSTMSNHFKILREAGVVLTHKEGTQHINRLRREDLEVLFPGL LDAVLQSAQPLNICASADQQTASQV
A0A2C6W6J5	Nostoc linckia z16	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLASEGEQCCARFD FAIAKSTMSNHFKILRESGVVFTRKEGTQHINMLRREDLEMLFPG LLDAVLKAAQPLSVDSSSSKQTASSTSRRLGW
A0A2H6LDX9	Nostoc cycadae WK-1	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MRFLYHPDKKDISLSAVLYALGDPVRLEIVRLLATKGEQCCADFD FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLQMLFPG LLEAVLRSAQPLFLCQKSMVNSQ
A0A2I8AG27	Nostoc sp. CENA543	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MKFLYHPDRKDITLPGVLYALGDPVRLEMVCLLAAKGEQCCGDF DFAIAKSTMSNHFKILRESGVVFSRKEGTQHINRLRQEELEELFP GLLDAVLRSAKSIVNSQ
A0A2K8T0K6	Nostoc flagelliforme CCNUN1	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MRFLYHPDRKNISLPGVLYALGDPVRLEIVRRLATEGEQCCASFD FAIAKSTMSNHFKILRESGIVLTRKEGTQHINILRREDLEVLFPGLL DAILKAAQPLPVSPASIKQTASRN
A0A2L2NET1	Nostoc sp. 'Peltigera membranacea cyanobiont' N6	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAQFD FAIAKSTMSNHFKILRESGIVLTRKEGTHHINILRREDLEMLFPGLL DAVLKAAQPLSICPGTKQTASRI
	Nostoc sp. 'Lobaria		
A0A2L2NQS8	(5183) cyanobiont'	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	FAIAKSTMSNHFKILRESGIVFTRKEGTHHINILRREDLETLFPGLL DAVLKAAQPLPVSSVSDKQTASRI
A0A2R5FQ90	Nostoc commune NIES- 4072	Bacteria>Cyanobacteria>Nostocales >Nostocaceae>Nostoc	MRFLYHPDRKNISLPGVLYALGDPVRLEIVRRLATEGEQCCASFD FAIAKSTMSNHFKILRESGIVFTRKSGTQHINILRREDLEVLFPGLL DAILKAAQPLPVSPASTKQTASRI

			MRFLYHPDKKDISLSAVLYALGDPVRLEIVRLLATKGEQCCADFD
	Nostoc sp. HK-	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEMLFPGL
A0A2Z6CMH7	01	>Nostocaceae>Nostoc	LEAVLRSAQPLFLCQKSMVNSQ
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLASEGEQCCARFD
	Nostoc sp.	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVFTRKEGTQHINILRREDLEMLFPGL
A0A367QMX8	ATCC 43529	>Nostocaceae>Nostoc	LDAVLKAAQPLSVDPTSSKQTASTKV
	Nostoc		MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAKFD
	punctiforme	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVLTRKEGTHHINILRREDLEVLFPGLL
A0A367RM59	NIES-2108	>Nostocaceae>Nostoc	DVVLKAAQPLPVSPVSTKQIASRI
			MRFLYHPDRKDISLPGVLYALGDPVRLEIVRLLATKGEQCCAEFD
	Nostoc minutum	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRHEDLEALFPGL
A0A367RP87	NIES-26	>Nostocaceae>Nostoc	LDAVLRSAQPLLV <mark>C</mark> HQSTVNSR
	Nostoc		MKFLYHPDRKNISLPGVLYALGDPVRLEIVRRLATEGEQCCASFD
	sphaeroides	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVLTRKEGTHHINMLRREDLEVLFPELL
A0A5P8VUG6	CCNUC1	>Nostocaceae>Nostoc	DAILKAAQPLPIEPASTKQTAFRI
			MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAKFD
	Nostoc sp.	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVFTRKEGTHHINILRREDLEMLFPGLL
A0A6P1KRA4	ATCC 53789	>Nostocaceae>Nostoc	DAVLKAAQPLPVSPASDKQTASRI
	Nostoc		
	punctiforme		
	(strain ATCC		MRFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATEGEQCCAQFD
	29133 / PCC	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGIVFTRKEGTHHINILRREDLEVLFPGLL
B2IWZ7	73102)	>Nostocaceae>Nostoc	DAVLKAAQPLPVSPASDKQTASRV
	,		MRFLYHPDKKDISLSAVLYALGDPVRLEIVRLLATKGEQCCADFD
	Nostoc sp. PCC	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINQLRREDLEMLFPGL
K9Q8R8	7107	>Nostocaceae>Nostoc	LEAVLRSAQPLFL <mark>C</mark> QKSMVKSQ
	Nostoc sp.		
	(strain ATCC		MKFLYHPDRKNISLPGVLYALGDPVRLEIVRLLATKGEQCCADFD
	29411 / PCC	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLSRKEGTQHINKLRKEDLEALFPGL
K9QTD2	7524)	>Nostocaceae>Nostoc	LDAVLRSAPPMLV <mark>C</mark> Q
	Nostoc sp.		
	(strain PCC		
	7120 / SAG		MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQ <mark>CC</mark> AEFD
	25.82 / UTEX	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINRLRREDLETLFPGL
Q8YVV6	2576)	>Nostocaceae>Nostoc	LDAVLRSAQPLLT <mark>C</mark> QQSAIVK
	Trichormus		MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQCCAEFD
	variabilis NIES-	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINRLRREDLETLFPGL
A0A1Z4KEV0	23	>Nostocaceae>Trichormus	LDAVLRSAQPLLT <mark>C</mark> QQSAIVK

	Trichormus		
	variabilis (strain		MRFLYHPDRKDISLPGVLYALGDPARLEIVRLLASKGEQCCAEFD
	ATCC 29413 /	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINRLRYEDLEALFPGL
Q3M3S7	PCC 7937)	>Nostocaceae>Trichormus	LDAVLRSAQPLLT <mark>C</mark> QQSVIVK
	Fremyella		MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGQQCCAGFD
	diplosiphon	Bacteria>Cyanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRREDLEALFPGL
A0A1Z4M5J8	NIES-3275	>Rivulariaceae>Microchaete	LDAVLRSAQPLNICASANKQTASKVS
		Bacteria>Cvanobacteria>Nostocales	MRFLYHPEQKNISLAGVLYALGDPVRLEIVRQLAKKKEQCCGDFD
	Rivularia sp.	>Rivulariaceae>Rivularia>unclassifie	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINTLRTEDLEELFPGL
K9R5Y5	PCC 7116	d Rivularia	LEAVLNSAQPFVIAQEAVKQTV
	Scvtonema		MRFLHHPDRKHISLAGVLYALGDPVRLEIVRRLAVKEEQCCADFD
	tolypothrichoide	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINMLRKEDLDALFPGL
A0A0C2Q9A4	s VB-61278	>Scvtonemataceae>Scvtonema	LDAVLRSAKPLSAKIRQENVIGSSTEPM
	Scvtonema		MKFLYHPDKKNISLPGVLYALGDPVRLEIVRRLATEGEQCCGDFD
A0A139WRQ	hofmannii PCC	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVILTRKEGTQHINILRREDLELLFPELLD
0	7110	>Scvtonemataceae>Scvtonema	VVLRSAKPLQLTMSRGLGIGDWG
		Bacteria>Cvanobacteria>Nostocales	MRLLYHPDRKHISLAGVLYALGDPVRLEIVRRLATQGEHCCADED
	Scvtonema sp.	>Scytonemataceae>Scytonema>unc	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINMLRTEDLEALFPGL
A0A1Z4IW70	HK-05	lassified Scytonema	LDAVLRSAKPLCVGSSSYQKAGSQQVL
		Bacteria>Cvanobacteria>Nostocales	MRLLYHPDRKHISLAGVLYALGDPVRLEIVRRLATKGEHCCADED
	Scytonema sp.	>Scytonemataceae>Scytonema>unc	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINMLRTEDLDALFPGL
A0A1Z4Q644	NIES-4073	lassified Scytonema	LDAVLRSAKPLCVGSSSYQKAGSQ
	Tolypothrix		MKFLYHPDKKNISLPGVLYALGDPVRLEIVRRLATEGEQCCGDFD
	bouteillei	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVILTRKEGTQHINILRREDLELLFPELLD
A0A0C1N473	VB521301	>Tolypothrichaceae>Tolypothrix	VVLRSAKPLQLTVSRGLSVGDWG
	Tolypothrix		MRLLYHPDRKHISLAAVLYALGDPVRLEIVRRLATQGEHCCADFD
	campylonemoid	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTRKEGTQHINMLRTEDLDALFPGL
A0A0C2QBQ3	es VB511288	>Tolypothrichaceae>Tolypothrix	LDAVLRSAKPLCVGSSSYQKAGSQQVF
			MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGKQCCAGFD
	Tolypothrix	Bacteria>Cvanobacteria>Nostocales	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINSLRREDLEALFPGL
A0A1Z4MZN9	tenuis PCC 7101	>Tolypothrichaceae>Tolypothrix	LDAVLRSAQPLNICTSANKQTASKVS
		Bacteria>Cvanobacteria>Nostocales	MRFLYHPDRKDISLAGVLYALGDPVRLEIVRLLATQGQQCCAGFD
	Tolypothrix sp.	>Tolypothrichaceae>Tolypothrix>unc	FAIAKSTMSNHFKILRESGVVLTHKEGTQHINRLRREDLEALFPGL
A0A0D6KPE7	PCC 7601	lassified Tolypothrix	LDAVLRSAQPLNICASANKQTASKVS
		Bacteria>Cvanobacteria>Nostocales	MRFLYHPDRKDISLSGVLYALGDPVRLEIVRLLATVGAQPCAGFD
	Tolypothrix sp.	>Tolypothrichaceae>Tolypothrix>unc	FAIAKSTMSNHFKILRESGVVFTRKEGTQHINMLRRQDIDELFPGL
A0A218QHS2	NIES-4075	lassified Tolypothrix	LDAVLRSAQPMQICQEGTAVKSVSL
	Acarvochloris	Bacteria>Cyanobacteria>Synechoco	
	marina (strain	ccales>Acaryochloridaceae>Acarvoc	MRLDIVNQLAASGELTCNAFDCEIAKSTLSHHFKILRESGVIYSRK
B0C3H5	MBIC 11017)	hloris	EGTQHLNSLRREELDNLFPGLLASVLGSLSASA

		Bacteria>Cyanobacteria>Synechoco	MKLLYHPD <mark>C</mark> SQISLAGVLYALGDPVRLQVVQQLAADGELT <mark>C</mark> NAF
	Acaryochloris	ccales>Acaryochloridaceae>Acaryoc	DCDVAKSTMSHHFKILRESGVIRSRKEGTQHVNSLRQDELQELF
A0A2W1K015	sp. RCC1774	hloris>unclassified Acaryochloris	PGLLDAVLQSSACGAVTG
		Bacteria>Cyanobacteria>Synechoco	MRPIPHPNCQDIALEGVLYALGDPVRLEIVQRLAANHELSCSDLD
	Leptolyngbya	ccales>Leptolyngbyaceae>Leptolyng	LGVAKSTLSHHFKILREAGVLHCRKQGTQHMNSLRRDDLEAAFP
A0A2W7A0F1	sp.	bya	GLLDTILQAAQGIKGDR
		Bacteria>Cyanobacteria>Synechoco	MRPIHHPNCQDIALEGVLYALGDPVRLEIVQRLASNDELCCSDLD
A0A2W7BWP	Leptolyngbya	ccales>Leptolyngbyaceae>Leptolyng	LGVAKSTLSHHFKILREAGVLHCRKQGTQHMNSLRRDDLEAAFP
3	sp.	bya	GLLDSILKAAQTQVER
	Leptolyngbya	Bacteria>Cyanobacteria>Synechoco	MRLLYHPNQKDISLAGVLYALGDPVRLEIVRCLAEKGELPCAALD
	sp. IPPAS B-	ccales>Leptolyngbyaceae>Leptolyng	CDVPKSTMSHHLRVLREAGVLRCRKEGTQHINSLRQSDLDSLFP
A0A3M9Z491	1204	bya	GLLEVVLRSMRPPALDGLPDAVATSLSIGANP
		Bacteria>Cyanobacteria>Synechoco	MRPISHPDTNQITLAEVLYALGDPVRLKIVKTIAQKGEQACRSCG
	Leptolyngbya	ccales>Leptolyngbyaceae>Leptolyng	GDEIAKSTLSHHFKILREAGIVHTEKVGTQHLNSLRVDELEAKFPG
K9EQK9	sp. PCC 7375	bya	VLASVLAAADDGEV <mark>C</mark> EE
	Leptolyngbya	Bacteria>Cyanobacteria>Synechoco	MRPIFHPDTTQITLADVLYALGDPVRLKIVKTIAQKGEQACRSCGG
	sp. Heron Island	ccales>Leptolyngbyaceae>Leptolyng	DDIAKSTLSHHFKILREAGIVHTQKVGTQHLNSLRLDELEARFPGV
U9VKF5	J	bya	LPSVLAAATDIEV <mark>C</mark> DE
		Bacteria>Cyanobacteria>Synechoco	MRLLYHPDKKELSLAGVLYALGDPVRLEIVRRLAEKGELSCCEAL
	Stenomitos	ccales>Leptolyngbyaceae>Stenomit	EAQVAKSTLSHHFKVLRESGVLYCRKEGTQHMNSLRRADLDERF
A0A2T1ES82	frigidus ULC18	os	PGLLNTVLQAIEPLKA
		Bacteria>Cyanobacteria>Synechoco	MRSIPHPNCQDIALEGVLYALGDPVRLEIVQRLAANHELSCSDLD
A0A2W4WN4	Shackletoniella	ccales>Oculatellaceae>Shackletonie	LGVAKSTLSHHFKILREAGVLHCRKQGTQHMNSLRRDDLEAAFP
2	antarctica	lla	GLLDTILQAAQGIKGDR
	Cyanothece sp.	Bacteria>Cyanobacteria>Oscillatorio	
	(strain PCC	phycideae>Oscillatoriales>Cyanothe	MRLIHHPDRKDISLAGVLYALGDPVRLEIVKRLAEKGELPCAALDV
	7425 / ATCC	caceae>Cyanothece>unclassified	PAPKSTLSHHFKILREAGVLFCRKEGTQHLNSLRKDDLEARFPGL
B8HSU5	29141)	Cyanothece	LAVVLQATHQPH
		Bacteria>Cyanobacteria>Oscillatorio	
		phycideae>Oscillatoriales>Microcole	MRLLYHPDPKDISLAGVLYALGDPVRLEIVRRLATKGEQPCAAFD
	Microcoleus sp.	aceae>Microcoleus>unclassified	LAIARSTMSHHFKVLRESGVLYCRKEGTQHLNSLRREDLDALFPG
K9WKU2	PCC 7113	Microcoleus	LLEAVLQAAPQSLAVDHTPTPET
		Bacteria>Cyanobacteria>Oscillatorio	MRPIHHPNCQDIALEGVLYALGDPVRLEIVQRLASNDELSCSDLD
	Phormidium	phycideae>Oscillatoriales>Oscillatori	LGVAKSTLSHHFKILREAGVLHCRKQGTQHMNSLRRDDLEAAFP
A0A1U7JBT6	tenue NIES-30	aceae>Phormidium	GLLDSILKAAQTQVER
	filamentous		MRPIYHPDCKDITIEGVLYALGDPIRLEIVKRLAQEDEIPCSALDLP
	cyanobacterium		VAKSTLSHHFKILREAGVITCRKQGTQHLNSLRLQELQAKFPDLL
A0A2P8VLR4	CCT1	Bacteria>Cyanobacteria	DTVLRASNGTSPYAPLDRPGNH

	filomontous		
	marneritous		
	cyanobacterium		
A0A2P8VVL2	CCI1	Bacteria>Cyanobacteria	GLLDSILKAARAKVES
	filamentous		MRPIYHPDCKDITIEGVLYALGDPIRLEIVKRLAQEDEIPCSALDLP
A0A2P8WDA	cyanobacterium		VAKSTLSHHFKILREAGVITCRKQGTQHLNSLRLQELQAKFPDLL
8	CCP5	Bacteria>Cyanobacteria	DTVLRASNGTSPYAPLDRPGNH
	filamentous		MRPIHHPNPQDIALAGVLYALGDPVRLEIVQRLAANDELSCSDLD
	cyanobacterium		LGVAKSTLSHHFKILREAGVLHCRKQGTQHMNSLRRDDLEAAYP
A0A2T2W547	CCP3	Bacteria>Cyanobacteria	GLLDTILRSAQVSEAKP
	Cyanobacteria		MRLLYHPDKKDISLASVLYALGDPVRLEIVKQLAQKGELSCAALA
	bacterium		MPVAKSTLSHHFKVLRESGVLHCRKEGTQHINSLRRQDLDDRFP
A0A3B8JDY8	UBA8553	Bacteria>Cyanobacteria	GLLDTVLQSAMTTDN
	Cyanobacteria		MRLIYHPDRKDISLAGVLYALGDPVRLEIVK <mark>C</mark> LATKGEQP <mark>C</mark> AAMY
	bacterium		FSIPKSTMSHHFKVLRESGTISCRKQGTQHLNSLRREDLDALFPG
A0A3D1P7C9	UBA11049	Bacteria>Cyanobacteria	LLDAVLQAAGSYLQPSSGDGTD
		Bacteria>Abditibacteriota>Abditibact	MRELHHPSCESLSLPQVLHALSDPIRLCIAAQLDCRGDLPCGTFC
A0A2S8SU85	Abditibacterium	eria>Abditibacteriales>Abitibacteriac	ESAAKSTMSHHFKVLRLAGVINQRTEGTSCFNTLRRADLDARFP
	utsteinense	eae>Abditibacterium	GLLDAILRASNRW
			MRELHHPSRDSISLPQVLHALSDPIRLCIVAELDNRGDLPCGTFC
	Unclassified		ENAAKSTMSHHFKVLRLAGVILQRNEGTSCFNTIRRADLDARFPG
A0A4Q3X1T0	bacteria	Bacteria	LLDAIFQAESKNS
			MRELHHPPRECLELTQVLHALSDPIRLCIVRQLALGEALACGTFC
A0A4V1ZK08	Unclassified		ETAPKSTMSHHFKVLRLSGVIHQRSEGTSCFNTLRRGDLDARFP
	bacteria	Bacteria	GLLDAIVREEVGACGNSVWEEDSR

Supplementary References

- 1 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. *J Mol Biol* **372**, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
- 2 Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. *Nucleic Acids Res* **38**, W545-549, doi:10.1093/nar/gkq366 (2010).
- 3 Mukherjee, D., Datta, A. B. & Chakrabarti, P. Crystal structure of HlyU, the hemolysin gene transcription activator, from Vibrio cholerae N16961 and functional implications. *Biochim Biophys Acta* **1844**, 2346-2354, doi:10.1016/j.bbapap.2014.09.020 (2014).
- 4 Ye, J., Kandegedara, A., Martin, P. & Rosen, B. P. Crystal structure of the Staphylococcus aureus pl258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. *J Bacteriol* **187**, 4214-4221, doi:10.1128/JB.187.12.4214-4221.2005 (2005).
- 5 Prabaharan, C., Kandavelu, P., Packianathan, C., Rosen, B. P. & Thiyagarajan, S. Structures of two ArsR As(III)-responsive transcriptional repressors: Implications for the mechanism of derepression. *J Struct Biol* **207**, 209-217, doi:10.1016/j.jsb.2019.05.009 (2019).
- 6 Eicken, C. *et al.* A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. *J Mol Biol* **333**, 683-695, doi:10.1016/j.jmb.2003.09.007 (2003).
- 7 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**, 2126-2132, doi:10.1107/S0907444904019158 (2004).
- 8 Lee, S. G., Krishnan, H. B. & Jez, J. M. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NoIR. *Proc Natl Acad Sci U S A* **111**, 6509-6514, doi:10.1073/pnas.1402243111 (2014).
- 9 Gerlt, J. A. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. *Biochemistry* **56**, 4293-4308, doi:10.1021/acs.biochem.7b00614 (2017).
- 10 Zallot, R., Oberg, N. O. & Gerlt, J. A. 'Democratized' genomic enzymology web tools for functional assignment. *Curr Opin Chem Biol* **47**, 77-85, doi:10.1016/j.cbpa.2018.09.009 (2018).
- 11 Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. *Genome Res* **14**, 1188-1190, doi:10.1101/gr.849004 (2004).
- 12 Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol Biol Evol* **35**, 1547-1549, doi:10.1093/molbev/msy096 (2018).
- 13 Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. *Mol Biol Evol* **37**, 1237-1239, doi:10.1093/molbev/msz312 (2020).
- 14 Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. *Comput Appl Biosci* **8**, 275-282, doi:10.1093/bioinformatics/8.3.275 (1992).

- 15 Chakravorty, D. K. *et al.* Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods. *J Biomol NMR* **56**, 125-137, doi:10.1007/s10858-013-9729-7 (2013).
- 16 Capdevila, D. A. *et al.* Structural basis for persulfide-sensing specificity in a transcriptional regulator. *Nat Chem Biol* **17**, 65-70, doi:10.1038/s41589-020-00671-9 (2021).
- 17 Arunkumar, A. I., Campanello, G. C. & Giedroc, D. P. Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. *Proc Natl Acad Sci U S A* **106**, 18177-18182, doi:10.1073/pnas.0905558106 (2009).
- 18 Pedre, B. *et al.* Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing. *Proc Natl Acad Sci U S A* **115**, E11623-E11632, doi:10.1073/pnas.1807954115 (2018).
- 19 Ehira, S. & Ohmori, M. The redox-sensing transcriptional regulator RexT controls expression of thioredoxin A2 in the cyanobacterium Anabaena sp. strain PCC 7120. *J Biol Chem* **287**, 40433-40440, doi:10.1074/jbc.M112.384206 (2012).