

Figure S1: Proliferating cells in murine scRNA-Seq and *Fn1* **expression in whole-mount TMs. Related to Figure 1.** (A) tSNEs from the murine TM epidermis and fibrous/mucosal fraction showing expression of *Top2a* and *Mki67*. (B) Left and middle: ISH for *Fn1* in whole-mount TMs. Right: ISH for negative control probes targeting bacterial transcripts. Images were acquired in tiles and stitched and are maximum projections of z-stacks.

Figure S2: Mesenchymal cells in the murine fibrous/mucosal scRNA-Seq. Related to Figure 1. (A) For each population marker, expression tSNE is on top and IF in a whole-mount TM is below. Images are maximum projections of z-stacks. (B) Heat-map showing expression of genes differentially expressed between mesenchyme clusters. (C) tSNEs showing expression of *Gpx3* and *Igfbp3*. (D) ISH for *Gpx3* and *Igfbp3* in TM sections. Epidermis is oriented upward. Images were acquired in tiles and stitched.

Figure S3: Mucosal cells in the murine fibrous/mucosal scRNA-Seq. Related to Figure 1. (A) tSNE showing expression of *Sox2* (left), and IF for Sox2 in a whole-mount TM (right). Image is a maximum projection of a z-stack. (B) tSNEs and dot plot showing expression of genes associated with ciliated epithelium. (C) tSNE of *Krt19* expression in the fibrous/mucosal and epidermal fractions. Right: pars flaccida section from a lineage traced Krt19-CreERT;mT/mG mouse, with epidermis oriented upward. Image was acquired in tiles and stitched.

Figure S4: EdU incorporation demonstrates TM cell proliferation, migration, and response to perforation. Related to Figure 3. (A) Left: experimental timeline. Mice received a single injection of EdU and TMs harvested 2 hours to 16 days later. Right: whole-mount TMs from the indicated timepoints with EdU labeled. Images are maximum projections of z-stacks. (B) Mid-malleus sections of control and perforated TMs from the same animals at timepoints following wounding, stained for EdU and Vimentin (IF). (C) ISH for *Fn1* in sections at 3 days and 1 week post-perforation. In the perforated TMs, the border between keratinocytes and fibroblasts is indicated with a dashed white line. In panels B and C, the epidermis is oriented upward in all sections, and images were acquired in tiles and stitched.

Figure S5: Quantification of Krt5-CreERT2;R26R-Confetti TMs. Related to Figure 6. Top: a representative TM harvested 3 months after recombination. The image was acquired in tiles and stitched and is a maximum projection of a z-stack. A grid of 5,000 μ m² boxes was superimposed over the projection and the number of fluorescent proteins (1, 2, or 3) expressed in each box was manually annotated. Bottom: cumulative data. At each timepoint, the numbers of TMs quantified was: 3 days—2 TMs, 1 month—3 TMs, 3 months—3 TMs, 6 months—5 TMs. Histogram shows mean and error bars standard deviation.

Figure S6: Compound treatment in TMs explants. Related to Figure 7. (A) Data from Figure 7B in an expanded format. Positive control compounds are in red. Compounds that ablated proliferation in both experimental TMs are in blue. (B) 48-hour concentration-response experiments for indicated compounds. In both panels, each dot is a TM and error bars show mean and standard deviation.

Figure S7: Signaling mediators in the TM. Related to Figure 7. (A) Dot plots showing expression of ligands and receptors in the murine TM scRNA-Seq. Fgfr, Igf1r, and Tgfbr mediators are highlighted. (B) Organoid cultures of human TM fibroblasts (FB) and keratinocytes (KC), seeded separately or in co-culture. Co-cultures were treated with the indicated inhibitors. (C) H&E stained sections of the organoids treated with Fgfr inhibitors. Images were acquired in tiles and stitched. (D) Quantification of organoid size. p-values are in comparison to untreated KC+FB organoids. (E) UMAPs showing expression of FGF7 in all human TM and FGFR1/2 in human TM keratinocytes.

Table S4: Gene sets from MSigDB enriched in human keratinocyte cluster 2 relative to the other keratinocyte clusters. Related to Figure 2. Genes with at least 1.5-fold increased expression in human keratinocyte cluster 2 relative to the other keratinocyte clusters that met a significance threshold of p < 0.05 were used to compute overlaps with gene sets in the Molecular Signatures Database. The top 50 gene sets are shown here. The top 25 are also included in Figure 2C.

Gene Set Name	p-value
PASINI_SUZ12_TARGETS_DN	1.92E-23
GO_CYTOSKELETON_ORGANIZATION	1.01E-16
GO SUPRAMOLECULAR POLYMER	1.65E-16
GO SUPRAMOLECULAR COMPLEX	9.22E-16
GO CYTOSKELETAL PROTEIN BINDING	3.22E-15
CHARAFE BREAST CANCER LUMINAL VS BASAL DN	1.77E-14
GO POLYMERIC CYTOSKELETAL FIBER	2.29E-14
GO ACTIN FILAMENT BASED PROCESS	3.24E-14
GO ACTIN FILAMENT	4.36E-14
KOINUMA TARGETS OF SMAD2 OR SMAD3	1.29E-13
KIM WT1 TARGETS UP	2.27E-13
GO ACTIN BINDING	2.61E-13
CHICAS RB1 TARGETS CONFLUENT	2.85E-13
LEL MYB TARGETS	3 51E-13
GO CONTRACTILE FIBER	5.04E-13
LILI PROSTATE CANCER DN	1 30E-12
GO SUPRAMOLECULAR EIBER ORGANIZATION	2 38E-12
DASAKI VDVI TADGETS LID	2.38E-12 4 20E 12
DASARI_IDAI_IARGEIS_UP	4.20E-12
HALLMARK_EPTIHELIAL_MESENCHYMAL_IRANSITION	4.90E-12
ADDEL WOVA DDCA1 TADCETS	3.13E-12
APRELIKUVA_BRCAI_IARGEIS	2.10E-11
UNDER_CDH1_TARGETS_2_DN	2.14E-11
GO_LOCOMOTION	2.35E-11
GO_ANCHORING_JUNCTION	3.13E-11
GO_CELL_MOTILITY	3.68E-11
AMIT_EGF_KESPONSE_480_HELA	4.29E-11 4.67E-11
GO_STRUCTURAL_MOLECULE_ACTIVITY	4.07E-11
WANG TUMOR INVASIVENESS UP	6.24E-11
NAKAMURA TUMOR ZONE PERIPHERAL VS CENTRAL UP	1.12E-10
KARLSSON_TGFB1_TARGETS_UP	2.45E-10
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN	4.10E-10
GO_CELL_JUNCTION	8.26E-10
DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN	8.90E-10
GO_ACTOMITOSIN MCREVAN DIREPTAL REFAST 6 7WK DN	9.23E-10 9.23E-10
WANG METHYLATED IN BREAST CANCER	9.60E-10
KEGG HYPERTROPHIC CARDIOMYOPATHY HCM	1.25E-09
RICKMAN_TUMOR_DIFFERENTIATED_WELL_VS_POORLY_DN	1.42E-09
REACTOME_SMOOTH_MUSCLE_CONTRACTION	1.48E-09
LU_AGING_BRAIN_UP	1.77E-09
KEGG_DILATED_CARDIOMYOPATHY	2.05E-09
GO_INTERSPECIES_INTERACTION_BETWEEN_ORGANISMS	2.23E-09
REN ALVEOLAR RHARDOMYOSARCOMA DN	2.30E-09 2.64E-09
GO STRUCTURAL CONSTITUENT OF MUSCLE	2.82E-09
GO WOUND HEALING	2.99E-09
SMID_BREAST_CANCER_LUMINAL_B_DN	3.83E-09
GO_MUSCLE_CELL_DEVELOPMENT	4.18E-09
GO_SARCOMERE_ORGANIZATION	4.48E-09

Table S5: Compounds evaluated in the explant screen. Related to Figure 7. A custom library of small molecule inhibitors was purchased from Selleckchem. The inhibitor names and their protein targets. This library was used to treat murine TMs in explant culture and assess for loss of proliferation. The results are in Figure 7B.

Product Name	Target(s)	Product Name	Target(s)
Risperidone	5-HT Receptor	IMD 0354	IĸB/IKK
BRL-15572(dihydrochloride)	5-HT Receptor	TPCA-1	IkB/IKK
Istradefylline	Adenosine Receptor	Decernotinib (VX-509)	JAK
SCH58261	Adenosine Receptor	Ruxolitinib (INCB018424)	JAK
Timolol Maleate	Adrenergic Receptor	(+)-MK 801 maleate	NMDAR
ICI-118551 Hydrochloride	Adrenergic Receptor	FRAX597	PAK
A-769662	AMPK	CP-673451	PDGFR
Tozasertib (VX-680, MK-0457)	Aurora Kinase	Crenolanib (CP-868596)	PDGFR
PD173955	Bcr-Abl	Enzastaurin (LY317615)	РКС
GNF-5	Bcr-Abl	Go 6983	РКС
RO4929097	Beta Amyloid, Gamma-secretase	GW9662	PPAR
MK-0752	Beta Amyloid, Gamma-secretase	FH535	PPAR, Wnt/beta-catenin
PHA-665752	c-Met	Fasudil (HA-1077) HCl	ROCK
SU11274	c-Met	GSK429286A	ROCK
Palbociclib (PD-0332991) HCl	CDK	Thiazovivin	ROCK
SNS-032 (BMS-387032)	CDK	Y-27632 2HC1	ROCK
AG-1478 (Typhostin AG-1478)	EGFR	Ozanimod (RPC1063)	S1P Receptor
PD168393	EGFR	PF-543	S1P Receptor
CP-724714	EGFR,HER2	Bosutinib (SKI-606)	Src
Bosentan Hydrate	Endothelin Receptor	APTSTAT3-9R	STAT
Sitaxentan sodium	Endothelin Receptor	HO-3867	STAT
Zibotentan (ZD4054)	Endothelin Receptor	SH-4-54	STAT
Fulvestrant	Estrogen/progestogen Receptor	R406 (free base)	Syk
PF-573228	FAK	LDN-193189 HC1	TGF-beta/Smad
TAE226 (NVP-TAE226)	FAK	RepSox	TGF-beta/Smad
AZD4547	FGFR	SB431542	TGF-beta/Smad
SSR128129E	FGFR	K02288	TGF-beta/Smad
LY411575	Gamma-secretase	GSK2193874	Trpv4 inhibitor
Semagacestat (LY450139)	Gamma-secretase	SAR131675	VEGFR
CHIR-99021 (CT99021)	GSK-3	Lenvatinib (E7080)	VEGFR
SB216763	GSK-3	ICG-001	Wnt/beta-catenin
SB415286	GSK-3	IWP-L6	Wnt/beta-catenin
TWS119	GSK-3	LGK-974	Wnt/beta-catenin
BMS-833923	Hedgehog/Smoothened	PRI-724	Wnt/beta-catenin
PF-5274857	Hedgehog/Smoothened	Wnt agonist 1	Wnt/beta-catenin
GSK1904529A	IGF-1R	Wnt-C59 (C59)	Wnt/beta-catenin
Linsitinib (OSI-906)	IGF-1R	XAV-939	Wnt/beta-catenin
	•		