Electronic Supporting Information (ESI)

Photoactivatable *bis*(thiosemicarbazone) derivatives for copper-64 radiotracer synthesis

Daniel F. Earley,[†] Jose Esteban Flores,[†] Amaury Guillou, and Jason P. Holland*

University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland

[†] Authors contributed equally

* **Corresponding Author:** Prof. Dr Jason P. Holland Tel: +41.44.63.53.990 E-mail: jason.holland@chem.uzh.ch Website: www.hollandlab.org

Table of Contents

Synthesis and characterisation data	5
Compound 1	5
Compound 2	5
Compound 3	5
Compound 4	6
Compound 5, H ₂ ATSM/en-Boc	6
Compound 6, H ₂ ATSM/en	7
Compound 7, H ₂ ATSM/en-ArN ₃	7
Compound 9	
Compound 10	9
Compound 11	9
Compound 12	
Compound 13	
Compound 8 , H ₂ ATSM-PEG ₃ -ArN ₃	11
Metalation of compounds 6, 7 and 8	11
Zn-6	11
Cu-6	12
Zn-7	12
Cu-7	12
Cu-8	
Figure S1. ¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of compound 2	
Figure S2. ¹³ C { ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) spectrum of compound 2	14
Figure S3. HR-ESI-MS spectrum of compound 2	
Figure S4. ¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of compound 3	15
Figure S5. ¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) spectrum of compound 3	15
Figure S6. HR-ESI-MS spectrum of compound 3	
Figure S7. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 4	
Figure S8. ¹³ C { ¹ H} NMR (101 MHz, DMSO-d ₆ , 298 K) spectrum of compound 4	
Figure S9. HR-ESI-MS spectrum of compound 4	
Figure S10. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 5	
Figure S11. ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆ , 298 K) spectrum of compound 5	
Figure S12. HR-ESI-MS spectrum of compound 5	
Figure S13. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 6	
Figure S14. ${}^{13}C{}^{1}H$ NMR (101 MHz, DMSO-d ₆ , 298 K) spectrum of compound 6	
Figure S15. HR-ESI-MS spectrum of compound 6	
Figure S16. ¹ H NMR (500 MHz, DMSO-d ₆ , 298 K) spectrum of compound 7	

Figure S17. ¹³ C { ¹ H} NMR (126 MHz, DMSO-d ₆ , 298 K) spectrum of compound 7	19
Figure S18. HR-ESI-MS spectrum of compound 7	19
Figure S19. ¹ H COSY NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 7	20
Figure S20. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 7.	20
Figure S21 ¹ H NMR (400 MHz, MeOD, 298 K) spectrum of compound 8	21
Figure S22. ¹³ C{ ¹ H} NMR (101 MHz, MeOD, 298 K) spectrum of compound 8	21
Figure S23. HR-ESI-MS spectrum of compound 8	21
Figure S24. ¹ H COSY NMR (400 MHz, MeOD, 298 K) spectrum of compound 8	22
Figure S25. ¹ H– ¹³ C{ ¹ H} HSQC NMR (400 MHz, MeOD, 298 K) spectrum of compound 8	22
Figure S26. ¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of compound 9	23
Figure S27. ¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) spectrum of compound 9	23
Figure S28. HR-ESI-MS spectrum of compound 9	23
Figure S29. ¹ H NMR (500 MHz, CDCl ₃ , 298 K) spectrum of compound 10	24
Figure S30. ¹³ C{ ¹ H} NMR (126 MHz, CDCl ₃ , 298 K) spectrum of compound 10	24
Figure S31. HR-ESI-MS spectrum of compound 10	24
Figure S32. ¹ H NMR (400 MHz, CDCl ₃ , 298 K) spectrum of compound 11	25
Figure S33. ¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) spectrum of compound 11	25
Figure S34. HR-ESI-MS spectrum of compound 11	25
Figure S35. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 12	26
Figure S36. ¹³ C{ ¹ H} NMR (101 MHz, DMSO-d ₆ , 298 K) spectrum of compound 12	26
Figure S37. HR-ESI-MS spectrum of compound 12	26
Figure S38. ¹ H NMR (400 MHz, DMSO-d ₆ , 298 K) spectrum of compound 13	27
Figure S39. ${}^{13}C{}^{1}H$ NMR (101 MHz, DMSO-d ₆ , 298 K) spectrum of compound 13	27
Figure S40. HR-ESI-MS spectrum of compound 13	27
Figure S41. HR-ESI-MS spectrum of compound Zn-6	28
Figure S42. HR-ESI-MS spectrum of compound Cu-6	28
Figure S43. HR-ESI-MS spectrum of compound Zn-7	28
Figure S44. HR-ESI-MS spectrum of compound Cu-7	29
Figure S45. HR-ESI-MS spectrum of compound Zn-8	29
Figure S46. HR-ESI-MS spectrum of compound Cu-8	29
Photochemical activation	30
Figure S47. Irradiation stability for compound 6 and corresponding Zn- 6 and Cu- 6 complexes.	30
Figure S48. Photochemical degradation of compound 8 and Cu-8	30
Figure S49. Photochemical activation kinetics measured by HPLC analysis during the photolys solutions of H ₂ ATSM/en-ArN ₃ (7) and Cu-7 in H ₂ O	is of 31
Figure S50. Photochemical activation kinetics measured by HPLC analysis during the photolys solutions of H_2ATSM /en-ArN ₃ (7) and Cu-7 in DMF	is of 32

Figure S51. Photochemical activation kinetics measured by HPLC analysis during the photolys solutions of H ₂ ATSM/en-PEG ₃ -ArN ₃ (8) and Cu-8 in EtOH.	is of 33
⁶⁴ Cu-Radiolabelling of H ₂ ATSM/en-ArN ₃ derivatives	34
Figure S52. Radiochemical characterisation of [64Cu]Cu-8	34
Figure S53. Radiochemical characterisation data of the [⁶⁴ Cu]Cu-labelled protein conjugate [⁶⁴ Cu]CuATSM/en-azepin-HSA <i>via</i> direct synthesis	35
Figure S54. Radiochemical characterisation data of the [⁶⁴ Cu]Cu-labelled protein conjugate [⁶⁴ Cu]CuATSM/en-PEG ₃ -azepin-HSA <i>via</i> direct synthesis	35

Synthesis and characterisation data

Compound 1

To a cooled (0 °C) solution of ethylenediamine (4.59 mL; 68.5 mmol; 0.25 M) in CHCl₃ (275 mL) was added dropwise a solution of di*-tert*-butyl dicarbonate (Boc₂O; 2.99 g; 13.7 mmol, 0.5 M) in CHCl₃ (27.5 mL) over period of 2 h. The reaction mixture was allowed to warm to rt and stirred for a further 3 h. After this time, the reaction mixture was filtered and concentrated under reduced pressure. The crude residue was dissolved in EtOAc (400 mL), washed with brine (3 × 150 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (SiO₂; DCM:MeOH; 9:1 (v:v) + 1% NH₃OH) to afford compound 1 (1.95 g; 89% yield) as a colourless oil. $R_f = 0.31$ (DCM:MeOH; 9:1); ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 4.86 (1H, br s, N<u>H</u>), 3.17 (2H, m, C<u>H₂), 2.80 (2H, t, ³J_{HH} = 6.0 Hz, C<u>H₂</u>) 1.44 (9H, s, C(C<u>H₃</u>)₃), 1.36 (2H, s, N<u>H₂</u>).</u>

Compound 2

To a stirred solution of compound **1** (1.43 g; 8.9 mmol; 1 equiv) and triethylamine (1.25 mL; 8.9 mmol; 1 equiv) in EtOH (30 mL) was added CS₂ (0.54 mL; 8.9 mmol; 1 equiv) dropwise, whilst maintaining the reaction at rt. After 2 h, methyl iodide (0.56 mL, 8.9 mmol; 1 equiv) was added and the resulting mixture was stirred for a further 2 h. After this time, the solvent was removed under reduced pressure and the resulting residue was suspended in EtOAc (30 mL), washed with 1 M aq HCl (30 mL), sat aq NaHCO₃ (30 mL), H₂O (30 mL) and brine (30 mL), dried over MgSO₄ and concentrated *in vacuo* to furnish compound **2** (2.03 g; 91% yield) as an off-white solid. ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 8.32 (1H, br s, NHC=S), 4.98 (1H, br s, CH₂NHC=S), 3.79 (2H, q, ³*J*_{HH} = 4.9 Hz, NHC=O), 3.42 (2h, t, *J* = 5.4 Hz, CH₂NHC=O), 2.59 (3H, s, SCH₃), 1.45 (9H, s, C(CH₃)₃). ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K): δ (ppm) 199.3 (C=S), 157.8 (C=O), 80.7 (C(CH₃)₃), 49.7 (CH₂NHC=S), 39.2 (CH₂NHC=O), 28.5 (C(CH₃)₃), 18.1 (SCH₃) ppm. HR-ESI-MS (ESI+): *m/z* calcd. for C₉H₁₈N₂O₂S₂ [M+H]⁺ 251.08825, found 251.08808, [M+Na]⁺ 273.07019, found 273.06992.

Compound 3

To a solution of compound 2 (2.03 g; 8.11 mmol; 1 equiv) in EtOH (30 mL) was added hydrazine hydrate (0.57 mL; 11.4 mmol; 1.4 equiv) and the reaction stirred under reflux for 3 h. After this time, the solvent was removed under reduced pressure and the resulting white

residue was dissolved in CHCl₃ (20 mL). This solution was loaded on a plug of silica, washed with CHCl₃ (20 mL) and then eluted with MeOH (30 mL). The MeOH fraction was then concentrated *in vacuo* to afford compound **3** (1.79 g; 94% yield) as a colourless oil, which solidified over a few days. ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 7.80 (1H, br s, N<u>H</u>NH₂), 7.63 (1H, br s, CH₂N<u>H</u>C=S), 5.03 (1H, br s, N<u>H</u>CO₂C(CH₃)₃), 3.82 (2H, br s, NHN<u>H</u>₂), 3.75 (2H, q, ³*J*_{HH} = 5.8 Hz, C<u>H</u>₂NHC=S), 3.37 (2H, q, ³*J*_{HH} = 6.0 Hz, C<u>H</u>₂NHCO₂C(CH₃)₃), 1.43 (9H, s, C(C<u>H</u>₃)₃). ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K): δ (ppm) 183.0 (C=S), 153.8 (C=O), 79.8 (<u>C</u>(CH₃)₃), 44.7 (C<u>H</u>₂NHC=S), 40.3 (C<u>H</u>₂NHC=O), 28.5 (C(<u>C</u>H₃)₃). HR-ESI-MS (ESI+): *m/z* calcd. for C₉H₁₈N₄O₂S [M+H]⁺ 235.12239, found 235.12232.

Compound 4

A cooled (0 °C) solution of 4-methylthiosemicarbazide (2.00 g; 19 mmol; 1 equiv) in H₂O (100 mL) was acidified with conc aq HCl (~700 μ L; 12.5 M), to which diacetyl (2,3-butanedione; 10.8 mL; 124 mmol; 6.5 equiv) was added rapidly. A suspension was formed instantly and stirring was continued for 1 h. After this time, the reaction mixture was filtered and the resulting solid was washed with H₂O (5 × 20 mL) and dried under high-vacuum to furnish compound **4** (2.50 g; 76% yield) as a white solid. ¹**H NMR** (300 MHz, DMSO-d₆, 298 K): δ (ppm) 10.64 (1H, br s, C=SN<u>H</u>N), 8.62 (1H, m, CH₃N<u>H</u>C=S), 3.05 (3H, d, ³*J*_{HH} = 4.5 Hz, CH₃NHC=S), 2.42 (3H, s, CH₃C=O), 1.96 (3H, s, CH₃C=N). ¹³C{¹H} NMR (126 MHz, DMSO-d₆, 298 K): δ (ppm) 198.0 (C=O), 179.5 (C=S), 146.0 (C=N), 31.9 (CH₃NHC=S), 25.2 (CH₃C=O), 10.5 (CH₃C=N). **HR-ESI-MS** (ESI–): *m*/*z* calcd. for C₇H₁₃N₃OS [M–H]⁻ 172.05501, found 172.05499.

Compound 5, H₂ATSM/en-Boc

To a stirred suspension of compound 4 (183 mg; 0.8 mmol; 1 equiv) in EtOH (33 mL) at 50 °C was added compound **3** (135 mg; 0.8 mmol; 1 equiv) portion-wise over 30 min. After this time, the reaction mixture was acidified with conc aq HCl (~100 μ L; 12.5 M) and the reaction was stirred under reflux for 5 h. After this time, the reaction mixture was allowed to cool to rt and was poured into cold water (20 mL) to produce a white precipitate. The precipitate was then collected by vacuum filtration, washed with H₂O (2 × 10 mL), Et₂O (5 mL) and dried under reduced pressure to afford H₂ATSM/en-Boc, compound **5** (254 mg; 83% yield) as an off-white solid. ¹H NMR (400 MHz, DMSO-d₆, 298 K): δ (ppm) 10.28 (2H, br s, 2 x N<u>H</u>N=C), 8.45

(1H, t,³ J_{HH} = 5.0 Hz, CH₂N<u>H</u>C=S), 8.38 (1H, q, ³ J_{HH} = 4.5 Hz, CH₃N<u>H</u>C=S), 7.03 (1H, t, ³ J_{HH} = 5.0 Hz, N<u>H</u>CO₂C(CH₃)₃), 3.59 (2H, td, ³ J_{HH} = 5.5, 5.0 Hz, C<u>H</u>₂NHC=S), 3.18 (2H, td, ³ J_{HH} = 5.5, 5.0 Hz, C<u>H</u>₂NHCO₂C(CH₃)₃), 3.02 (3H, d, ³ J_{HH} = 4.5 Hz, C<u>H</u>₃NHC=S), 2.23 (3H, s, C<u>H</u>₃C=N), 2.21 (3H, s, C<u>H</u>₃C=N), 1.36 (9H, s, C(CH₃)₃). ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K): δ (ppm) 178.5 (C=S), 178.0 (C=S), 156.2 (C=O), 148.3 (CH₃C=N), 148.0 (CH₃C=N), 77.9 (<u>C</u>(CH₃)₃), 44.4 (<u>C</u>H₂), [39.1 (<u>C</u>H₂) from DEPT-135 spectrum – see inset], 31.2 (S<u>C</u>H₃), 28.2 (C(<u>C</u>H₃)₃), 11.7 (<u>C</u>H₃C=N), 11.7 (<u>C</u>H₃C=N). HR-ESI-MS (ESI+): *m/z* calcd. for C₁₄H₂₇N₇O₂S₂ [M+H]⁺ 390.17404, found 390.17412, [M+Na]⁺ 412.15599, found 412.15611.

Compound 6, H₂ATSM/en

H₂ATSM/en-Boc, compound **5** (222 mg; 0.6 mmol; 1 equiv) was treated with TFA (3 mL; 22 mmol; 36 equiv) and the resulting colourless solution was stirred at rt for 2 h. After this time, the solvent was removed under reduced pressure and sat. aq NaHCO₃ (3 mL) was added slowly to produce a white suspension. After 20 min of stirring at rt the solid was collected by vacuum filtration and washed with H₂O (3 × 10 mL), Et₂O (2 × 10 mL) and dried under reduced pressure to furnish the TFA salt of H₂ATSM/en, compound **6** (126 mg; 76% yield) as an off-white solid. ¹H NMR (400 MHz, DMSO-d₆, 298 K): δ (ppm) 10.19 (1H, br s, N<u>H</u>N=C), 8.44 (1H, br s CH₃N<u>H</u>C=S), 8.35 (1H, br s, CH₂N<u>H</u>C=S), 7.78 (3H, br s, N<u>H</u>₃⁺), 3.38 (2H, br s, C<u>H</u>₂NHC=S), 3.01 (5H, C<u>H</u>₃NHC=S and C<u>H</u>₂NH₃⁺), 2.22 (6H, br s, 2 x C<u>H</u>₃C=N). ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K): δ (ppm) 178.5 (C=S), 177.7 (C=S), 148.0 (CH₃C=N), 147.7 (CH₃C=N), 46.2 (<u>C</u>H₂), 40.3 (<u>C</u>H₂), 31.2 (<u>C</u>H₃NHC=S), 11.7 (<u>C</u>H₃C=N), 11.7 (<u>C</u>H₃C=N). Reverse-phase HPLC: *R*_t 7.28 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. HR-ESI-MS (ESI+): *m*/z calcd. for C₉H₁₉N₇S₂ [M+H]⁺ 290.12161, found 290.12136.

Compound 7, H₂ATSM/en-ArN₃

4-Azidobenzoic acid (16 mg; 0.1 mmol; 1.3 equiv) and BOP (41 mg; 0.1 mmol; 1.3 equiv) were added to a solution of H₂ATSM/en, compound **6** (21.3 mg; 0.074 mmol) in anh DMF (3 mL), followed by the addition of DIPEA (20 μ L; 0.14 mmol; 2 equiv) in the dark and the reaction mixture was stirred at rt for 12 h. After this time, H₂O (10 mL) was added and the resulting precipitate was filtered, washed with H₂O (3 × 5 mL), EtOH (3 mL) and Et₂O (2 × 5mL), and dried under high-vacuum to furnish H₂ATSM/en-ArN₃, compound **7** (23 mg;

56% yield) as an off-white solid. ¹**H** NMR (500 MHz, DMSO-d₆, 298 K): δ (ppm) 10.30 (1H, br s, N<u>H</u>C=N), 10.22 (1H, br s, N<u>H</u>C=N), 8.71 (1H, t, ${}^{3}J_{HH}$ = 5.0 Hz, CH₂N<u>H</u>C=S), 8.59 (1H, t, ${}^{3}J_{HH}$ = 5.0 Hz, N<u>H</u>C=O), 8.38 (1H, q, ${}^{3}J_{HH}$ = 4.5 Hz, CH₃N<u>H</u>C=S), 7.90 (2H, d, 8.5 Hz, Ar-CH) 7.20 (2H, d, 8.5 Hz, Ar-CH), 3.75 (2H, q, ${}^{3}J_{HH}$ = 6.5 Hz, C<u>H</u>₂NHC=S) 3.52 (2H, q, ${}^{3}J_{HH}$ = 6.5 Hz, C<u>H</u>₂NHC=S), 3.02 (3H, d, ${}^{3}J_{HH}$ = 4.5 Hz, C<u>H</u>₃NHC=S), 2.22 (3H, s, C<u>H</u>₃C=N), 2.21 (3H, s, C<u>H</u>₃C=N). ¹³C{¹H} NMR (126 MHz, DMSO-d₆, 298 K): δ (ppm) 178.5 (C=S), 178.1 (C=S), 166.0 (C=O), 148.4 (C=N), 148.0 (C=N), 142.3 (Ar-Cq), 131.2 (Ar-CH), 130.7 (Ar-Cq), 129.2 (Ar-CH), 119.2 (Ar-CH), 118.9 (Ar-CH), 44.3 (CH₂), 38.7 (CH₂), 31.2 (CH₃NH), 11.8 (CH₃C=N), 11.6 (CH₃C=N). **Reverse-phase HPLC**: *R*₁ 9.62 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): *m/z* calcd. for C₁₆H₂₂N₁₀OS₂ [M+H]⁺ 457.13090, found 457.13103.

Scheme S1. Synthesis of ATSM-PEG₃-ArN₃, compound **8**. *Reagents and conditions:* a) Boc₂O, CH₂Cl₂, rt, 16 h (70% yield); b) CS₂, Et₃N, methyl iodide, EtOH, rt, 4 h (84% yield); c) H₂NNH₂·H₂O, EtOH, reflux, 3 h (96% yield); d) 3 M aq HCl, EtOH, reflux, 5 h (32% yield); f) TFA, CH₂Cl₂, rt, 2 h (80% yield); g) 4-azidobenzoic acid, HATU, DIPEA, DMF, rt, 16 h (20% yield).

Compound 9

4,7,10-Trioxa-1,13-tridecanediamine (6.06 g; 26.7 mmol; 1.6 equiv) was dissolved in CH₂Cl₂ (240 mL) to which a prepared solution of di-*tert*-butyl dicarbonate (3.80 g; 16.9 mmol; 1 equiv) in CH₂Cl₂ (60 mL) was added dropwise over 3 h. The reaction mixture was then stirred at rt for 16 h. After this time, the reaction mixture was washed with sat aq NaHCO₃ (3 × 100 mL) and concentrated under reduced pressure to afford compound **9** (3.78 g; 70% yield) as a colourless oil. ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 3.50 – 3.67 (9H, m, CH₂), 3.22 (2H, q, ³J_{HH} = 6.4 Hz, CH₂), 2.83 (1H, t, ³J_{HH} = 6.6 Hz, CH₂), 1.94 (1H, s, CH₂), 1.75 (3H, p, ³J_{HH} = 6.3 Hz, CH₂), 1.43 (9H, s, C(CH₃)₃). ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K): δ (ppm) 156.2 (C=O), 79.1 (C(CH₃)₃) 70.7 (CH₂), 70.7 (CH₂), 70.7 (CH₂), 70.4 (CH₂), 70.3 (CH₂), 70.3 (CH₂), 69.7 (CH₂), 69.6 (CH₂), 39.8 (CH₂), 29.8 (CH₂), 28.6 (C(CH₃)₃). HR-ESI-MS (ESI+):

m/z calcd. for C₁₅H₃₂N₂O₅ [M+H]⁺ 321.2384, found 321.2386.

Compound 10

To a solution of compound 9 (3.6 g; 11.2 mmol; 1 equiv) in EtOH (100 mL) was added CS₂ (0.8 mL;13 mmol; 1.2 equiv) dropwise, followed by Et₃N (1.9 mL; 13.4 mmol; 1.2 equiv) and the reaction stirred at rt. After 1.5 h, methyl iodide (1.9 mL, 13.4 mmol; 1.2 equiv) was added and stirred for a further 2 h. Then, the reaction mixture was concentrated under reduced pressure and the crude residue was suspended in EtOAc (100 mL) and washed with 1 M aq HCl (100 mL), sat aq NaHCO3 solution (100 mL) and H2O (100 mL), dried over MgSO4 and concentrated under reduced pressure to furnish compound 10 (3.80 g; 84% yield) as a paleyellow oil. ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 8.52 – 8.09 (1H, m, CH₂N<u>H</u>C=S), 4.94 (1H, s, NHCO₂C(CH₃)₃), 3.85 (1H, q, ${}^{3}J_{HH} = 5.6$ Hz, CH₂), 3.69 – 3.56 (7H, m, CH₂), 3.53 (2H, t, ${}^{3}J_{\text{HH}} = 6.0$ Hz, CH₂), 3.21 (2H, t, ${}^{3}J_{\text{HH}} = 6.4$ Hz, CH₂), 2.59 (1H, s, SCH₃), 1.92 $(1H, p, {}^{3}J_{HH} = 5.7 \text{ Hz}, C\underline{H}_{2}-\beta N), 1.74 (2H, td, {}^{3}J_{HH} = 6.3, 2.3 \text{ Hz}, C\underline{H}_{2}-\beta N), 1.43 (9H, s, C\underline{H$ C(CH₃)₃). ¹³C{¹H} NMR (101 MHz, CDCl₃ 298 K): δ (ppm) 198.2 (C=S), 156.2 (C=O), 79.1 (C(CH₃)₃), 70.7 (CH₂), 70.7 (CH₂), 70.5 (CH₂), 70.5 (CH₂), 70.4 (CH₂), 69.7 (CH₂), 46.8 (CH₂αNHC=S), 38.8 (CH₂-αNHC=O), 29.8 (CH₂-βN), 28.6 (C(CH₃)₃), 27.7 (CH₂-βN), 18.0 (SCH₃). **HR-ESI-MS** (ESI+): m/z calcd. for C₁₇H₃₄N₂O₅S₂ [M+H]⁺ 411.1982, found 411.1974; [M+Na]⁺ 433.1801, found 433.1792.

Compound 11

To a solution of compound **10** (3.8 g; 9.25 mmol; 1 equiv) in EtOH (100 mL) was added hydrazine hydrate (1.90 mL; 13.9 mmol; 1.5 equiv) and the mixture was stirred under reflux for 3 h. After this time, the solvent was removed under reduced pressure and the crude residue was dissolved in CHCl₃ (20 mL). This solution was loaded on a plug of silica, washed with CHCl₃ (20 mL) and the product was eluted with MeOH (30 mL). The MeOH fraction was then concentrated *in vacuo* to afford compound **11** (3.5 g; 96% yield) as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) 7.88 (1H, s, CH₂N<u>H</u>C=S), 7.21 (1H, s, NHC=SN<u>H</u>NH₂), 4.99 (1H, s, N<u>H</u>CO₂C(CH₃)₃), 3.89 (1H, s, NHC=SNHN<u>H</u>₂), 3.75 (1H, q, ³*J*_{HH} = 5.9 Hz, C<u>H</u>₂- α N), 3.62 (7H, ddt, ³*J*_{HH} = 15.9, 10.3, 4.2 Hz, C<u>H</u>₂), 3.53 (2H, q, ³*J*_{HH} = 6.0 Hz, C<u>H</u>₂), 3.21 (2H, p, ³*J*_{HH} = 6.4 Hz, C<u>H</u>₂), 1.89 (1H, p, ³*J*_{HH} = 5.9 Hz, C<u>H</u>₂- β N), 1.75 (2H, p, ³*J*_{HH} = 6.5 Hz, C<u>H</u>₂- β N), 1.43 (9H, s, C(C<u>H</u>₃)₃). **HR-ESI-MS** (ESI+): *m*/*z* calcd. for C₁₆H₃₄N₄O₅S [M+H]⁺ 395.2323, found 395.2325.

Compound 12

To a suspension of compound 11 (1.70 g; 4.3 mmol; 1 equiv) was suspended in EtOH (50 mL) at 50 °C was added compound 4 (0.75 g; 4.3 mmol; 1 equiv) was added portions-wise over 1 h. After this time, the reaction mixture was acidified with 3 M ag HCl and stirred under reflux for 4 h. After this time, the reaction mixture was allowed to cool to rt and was poured into cold water (100 mL) to produce a white precipitate. The precipitate was then collected by vacuum filtration, washed with water $(3 \times 50 \text{ mL})$ and Et₂O $(3 \times 50 \text{ mL})$, and dried under high vacuum to furnish compound 12 (0.76 g; 32% yield) as a white solid. ¹H NMR (400 MHz, DMSO-d₆, 298 K): $\delta = 10.18$ (1H, s, NHN=C), 8.44 – 8.34 (2H, m, CH₂NHC=S, CH₃NHC=S), 6.73 (1H, t, ${}^{3}J_{HH} = 5.6$ Hz, N<u>H</u>CO₂C(CH₃)₃), 3.62 (2H, q, ${}^{3}J_{HH} = 6.7$ Hz, C<u>H</u>₂- α N), 3.53 – 3.43 (10H, m, CH_2), 3.39 - 3.31 (6H, m, CH_2), 3.02 (3H, d, ${}^{3}J_{HH} = 4.6$ Hz, CH_3 NHC=S), 2.95 (2H, q, ${}^{3}J_{HH} =$ 6.6 Hz, CH₂), 2.20, 2.19 (6H, 2 x s, 2 x CH₃C=N), 1.82 (2H, p, ${}^{3}J_{HH} = 6.5$ Hz, CH₂- β N), 1.58 $(2H, p, {}^{3}J_{HH} = 6.6 \text{ Hz}, C\underline{H}_{2}-\beta N), 1.37 (9H, s, C(C\underline{H}_{3})_{3}) \text{ ppm}. {}^{13}C{}^{1}H} NMR (101 \text{ MHz}, DMSO$ d_{6} , 298 K): $\delta = 178.47$ (C=S), 177.7 (C=S), 155.6 (C=O), 148.0 (CH₃C=N), 147.8 (CH₃C=N), 77.4 (<u>C</u>(CH₃)₃), 69.8 (<u>C</u>H₂), 69.8 (<u>C</u>H₂), 69.6 (<u>C</u>H₂), 69.5 (<u>C</u>H₂), 68.6 (<u>C</u>H₂), 68.1 (<u>C</u>H₂), 41.7 (<u>CH</u>₂-αNHC=S), 37.2 (<u>C</u>H₂-αNHC=O), 31.2 (S<u>C</u>H₃), 29.7 (<u>C</u>H₂-βN), 28.9 (<u>C</u>H₂-βN), 28.3 $(C(\underline{CH}_3)_3)$, 11.7 $(\underline{CH}_3C=N)$, 11.6 $(\underline{CH}_3C=N)$ ppm. HR-ESI-MS (ESI+): m/z calcd. for C₂₂H₄₃N₇O₅S₂ [M+H]⁺ 550.2840, found 550.2846.

Compound 13

To a solution of compound **12** in CH₂Cl₂ (20 mL) was added TFA (5 mL) and the reaction mixture was stirred at rt for 2 h. After this time, the solvent was removed under reduced pressure and the crude residue was co-evaporated several times with cyclohexane to afford the TFA salt of compound **13** (0.54 g; 80% yield) as a white solid. ¹H NMR (400 MHz, DMSO-d₆, 298 K): δ (ppm) 8.38 (2H, s, CH₂N<u>H</u>C=S, CH₃N<u>H</u>C=S), 6.68 (3H, s, NH₂, N<u>H</u>N=C), 3.66 – 3.57 (2H, m, C<u>H</u>₂- α N), 3.53 – 3.38 (12H, m, C<u>H</u>₂), 3.02 (3H, d, ³*J*_{HH} = 4.0 Hz, C<u>H</u>₃NHC=S), 2.56 (2H, t, ³*J*_{HH} = 6.8 Hz, C<u>H</u>₂), 2.20 (6H, d, ³*J*_{HH} = 4.6 Hz, 2 x C<u>H</u>₃C=N), 1.82 (2H, p, ³*J*_{HH} = 6.6 Hz, C<u>H</u>₂- β N), 1.55 (2H, p, ³*J*_{HH} = 6.5 Hz, C<u>H</u>₂- β N). ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K): δ (ppm) 178.5 (C=S), 177.7 (C=S), 148.0 (CH₃C=N), 147.8 (CH₃C=N), 69.8 (CH₂), 69.7 (CH₂), 69.6 (CH₂), 69.5 (CH₂), 68.6 (CH₂), 68.4 (CH₂), 41.7 (CH₂- α NHC=S), 38.7 (CH₂- α NHC=O), 33.2 (CH₂- β N), 31.2 (SCH₃), 30.7 (CH₂- β N), 28.8 (impurity – C_q), 11.7

(<u>C</u>H₃C=N), 11.6 (<u>C</u>H₃C=N) ppm. **HR-ESI-MS** (ESI+): *m/z* calcd. for C₁₇H₃₅N₇O₃S₂ [M+H]⁺ 450.2316, found 450.2321.

Compound 8, H₂ATSM-PEG₃-ArN₃

A solution of 4-azidobenzoic acid (54 mg; 0.33 mmol: 1.5 equiv) and HATU (127 mg; 0.33 mmol; 1.5 equiv) in anh DMF (4 mL) were stirred under an inert atmosphere at rt for 20 min. A solution of compound 13 (100 mg; 0.22 mmol; 1 equiv) in anh DMF (1 mL) was then added and the mixture was stirred for a further 10 min. Then, DIPEA (155 µL; 0.88 mmol; 4 equiv) was added and the reaction mixture stirred at rt for 16 h. After this time, the reaction mixture was concentrated under reduced pressure and the crude residue was washed with H2O $(3 \times 25 \text{ mL})$, taken up in and concentrated under reduced pressure. The crude residue was then purified by reversed-phase flash chromatography (C18, 0 to 100% MeOH/H₂O with 0.1% TFA) to afford compound 8 as a yellow solid (26 mg; 20% yield). ¹H NMR (400 MHz, MeOD, 298 K): $\delta = 7.84$ (2H, d, ${}^{3}J_{HH} = 8.7$ Hz, Ar-C<u>H</u>), 7.13 (2H, d, ${}^{3}J_{HH} = 8.6$ Hz, Ar-C<u>H</u>), 3.76 (2H, t, ${}^{3}J_{\text{HH}} = 6.6$ Hz, CH₂- α NHC=S), 3.65 – 3.55 (12H, m, 6 x CH₂), 3.46 (2H, t, ${}^{3}J_{\text{HH}} = 6.8$ Hz, $CH_2-\alpha NHC=O$), 3.35 (s, MeOH), 3.15 (3H, s, SCH₃), 2.19 (6H, d, ${}^{3}J_{HH} = 3.2 \text{ Hz}$, 2 x CH₃C=N), 1.90 (4H, m, 2 x CH₂-βN) ppm. ¹³C{¹H} NMR (101 MHz, MeOD, 298 K): δ = 169.0 (C=O), 148.8 (C=S), 148.6 (C=S), 144.8 (Ar-C_a), 132.3 (Ar-C_a), 130.2 (Ar-CH), 120.0 (Ar-CH), 71.6 (<u>CH</u>₂), 71.5 (<u>CH</u>₂), 71.3 (<u>CH</u>₂), 71.3 (<u>CH</u>₂), 70.5 (<u>CH</u>₂), 70.3 (<u>CH</u>₂), 49.9 (MeOH), 43.5 (<u>CH</u>₂- α NHC=S), 38.8 (<u>CH</u>₂- α NHC=O), 31.2 (S<u>C</u>H₃), 30.4 (<u>C</u>H₂- β N), 30.0 (<u>C</u>H₂- β N), 11.1 (<u>CH</u>₃C=N), 11.0 (<u>C</u>H₃C=N) ppm. **HR-ESI-MS** (ESI+): m/z calcd. for C₂₄H₃₉N₁₀O₄S₂ [M+H]⁺ 595.25917, found 595.25933.

Metalation of compounds 6, 7 and 8

Zn-6

To a stirred suspension of ATSM/en, compound **6** (34.6 mg; 0.12 mmol; 1 equiv) in MeOH (3.5 mL) was added Zn(AcO)₂·2H₂O (31.6 mg; 0.144 mmol, 1.2 equiv) and the reaction mixture was stirred for 1 h, resulting in a yellow solution. The reaction mixture was diluted with H₂O, and Et₃N (~150 μ L; 3 drops) was added producing a dark yellow precipitate. The suspension was filtered, washed with H₂O (3 × 5 mL), Et₂O (2 × 3 mL) and dried under high-vacuum to afford Zn-**6** (30.7 mg; 73% yield) as a yellow solid. **Reverse-phase HPLC**: *R*_t 7.28 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1% TFA): start 30% MeCN, hold until 1 min,

gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): m/z calcd. for C₉H₁₇N₇S₂Zn [M+H]⁺ 352.03511, found 352.03511.

Cu-6

To a stirred suspension of ATSM/en, compound **6** (16.6 mg; 0.057 mmol; 1 equiv) in MeOH (1.5 mL) was added Cu(OAc)₂ (11.3 mg; 0.062 mmol) and the reaction mixture was stirred for 1 h, resulting in a dark brown solution. The reaction mixture was diluted with H₂O, and Et₃N (~100 μ L; 2 drops) was added producing a dark brown precipitate. The suspension was filtered, washed with H₂O (3 × 5 mL), Et₂O (2 × 3 mL) and dried under high-vacuum to furnish Cu-**6** (17.0 mg; 85% yield) as a dark brown solid. **Reverse-phase HPLC**: *R*t 5.44 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): *m/z* calc. for C₉H₁₇N₇S₂Cu [M+H]⁺ 351.03556, found 351.03526.

Zn-7

To a stirred suspension of H₂ATSM/en-ArN₃, compound 7 (26.7 mg; 0.0614 mmol; 1 equiv) in MeOH (6 mL) was added Zn(OAc)₂·2H₂O (33.7 mg; 0.154 mmol; 2.5 equiv) and the reaction mixture was stirred for 16 h under reflux, resulting in a yellow solution. The reaction mixture was diluted with H₂O (4.5 mL) and the organic solvent was removed under reduced pressure. The remaining aqueous solution was extracted with EtOAc (3 × 15 mL) and the combined organic fractions were dried over MgSO₄, concentrated under reduced pressure and dried under high-vacuum to furnish Zn-7 (23.2 mg; 76% yield) as a yellow solid. UV/vis: $\lambda_{max} = 430$ nm. **Reverse-phase HPLC**: *R*t 9.62 min. Method: 0.9 mL/min (MeCN/H₂O 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): *m/z* calcd. for C₁₆H₂₀N₁₀OS₂Zn [M+H]⁺ 497.06272, found 497.06261.

Cu-7

To a solution of $H_2ATSM/en-ArN_3$, compound 7 (3.2 mg; 7.40 µmol; 1 equiv) in DMF (0.2 mL) was added Cu(AcO)₂ (1.6 mg; 8.50 µmol; 1.2 equiv) and the mixture was stirred at rt for 1 h, resulting in a dark red/brown solution. The reaction mixture was diluted with H_2O (5 mL),

affording a dark red precipitate. The solid was collected by vacuum filtration, washed with H₂O (3 × 5 mL), Et₂O (2 × 3 mL) and concentrated under reduced pressure to furnish Cu-7 (2.75 mg; 75% yield) as a red/brown solid. **UV/vis**: $\lambda_{max} = 476$ nm. **Reverse-phase HPLC**: *R*_t 8.32 min. Method: 0.9 mL/min (MeCN/H₂O 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): *m/z* calcd. for C₁₆H₂₀N₁₀OS₂Cu [M+Na]⁺ 518.04512, found 518.04445.

Zn-8

To a stirred suspension of H₂ATSM-PEG₃-ArN₃, compound **8** (3.0 mg; 0.005 mmol; 1 equiv) in MeOH (1 mL) was added Zn(OAc)₂·2H₂O (2.8 mg; 0.013 mmol; 2.5 equiv) and the reaction mixture was stirred for 16 h under reflux, resulting in a yellow solution. The reaction mixture was diluted with H₂O (1 mL) and the organic solvent was removed under reduced pressure. The remaining aqueous solution was extracted with EtOAc (3 × 5 mL) and the combined organic fractions were dried over MgSO₄, concentrated under reduced pressure and dried under high-vacuum to furnish Zn-7 (3.2 mg; 97% yield) as a yellow solid. UV/vis: $\lambda_{max} = 430$ nm. **Reverse-phase HPLC**: *R*_t 11.89 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. **HR-ESI-MS** (ESI+): *m/z* calcd. for C₂₄H₃₆N₁₀O₄S₂Zn [M+H]⁺ 657.17288, found 657.17266.

Cu-8

To a solution of ATSM-PEG₃-ArN₃, compound **8** (3.0 mg; 0.005 mmol; 1 equiv) in DMF (1 mL) was added Cu(AcO)₂ (1.1 mg; 0.006 mmol; 1.2 equiv) and the mixture was stirred at rt for 1 h, resulting in a dark red/brown solution. The reaction mixture was diluted with H₂O (5 mL), affording a dark red precipitate. The solid was collected by vacuum filtration, washed with H₂O (3 × 5 mL), Et₂O (2 × 3 mL) and concentrated under reduced pressure to furnish Cu-7 (2.75 mg; 75% yield) as a red/brown solid. UV/vis: $\lambda_{max} = 476$ nm. Reverse-phase HPLC: *R*t 10.84 min. Method: 0.9 mL/min (MeCN/H₂O with 0.1%TFA): start 30% MeCN, hold until 1 min, gradient to 95% MeCN at 15 min, hold until 17 min. HR-ESI-MS (ESI+): *m/z* calcd. for C₂₄H₃₆N₁₀O₄S₂Cu [M+H]⁺ 656.17340, found 656.17312.

Figure S1. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 2

Figure S2. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2

Figure S3. HR-ESI-MS spectrum of compound 2

Figure S4. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 3

Figure S5. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 3

Figure S6. HR-ESI-MS spectrum of compound 3

Figure S7. ¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 4

Figure S8. ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K) spectrum of compound 4

Figure S9. HR-ESI-MS spectrum of compound 4

Figure S10. ¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 5

Figure S11. ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K) spectrum of compound 5

Figure S12. HR-ESI-MS spectrum of compound 5

Figure S13. ¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 6

Figure S14. ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K) spectrum of compound 6

Figure S15. HR-ESI-MS spectrum of compound 6

Figure S16. ¹H NMR (500 MHz, DMSO-d₆, 298 K) spectrum of compound 7

Figure S17. ¹³C{¹H} NMR (126 MHz, DMSO-d₆, 298 K) spectrum of compound 7

Figure S18. HR-ESI-MS spectrum of compound 7

Figure S19. ¹H COSY NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 7

Figure S20. ¹H-¹³C{¹H} HSQC NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 7

Figure S21 ¹H NMR (400 MHz, MeOD, 298 K) spectrum of compound 8

Figure S22. ¹³C{¹H} NMR (101 MHz, MeOD, 298 K) spectrum of compound 8

Figure S23. HR-ESI-MS spectrum of compound 8

Figure S24.¹H COSY NMR (400 MHz, MeOD, 298 K) spectrum of compound 8

Figure S25. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (400 MHz, MeOD, 298 K) spectrum of compound 8

Figure S26. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 9

Figure S27. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 9

Figure S28. HR-ESI-MS spectrum of compound 9

Figure S29. ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 10

Figure S30. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 10

Figure S31. HR-ESI-MS spectrum of compound 10

Figure S32. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 11

Figure S33. ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 11

Figure S34. HR-ESI-MS spectrum of compound 11

Figure S35. ¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 12

Figure S36. ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K) spectrum of compound 12

Figure S37. HR-ESI-MS spectrum of compound 12

Figure S38.¹H NMR (400 MHz, DMSO-d₆, 298 K) spectrum of compound 13

Figure S39. ¹³C{¹H} NMR (101 MHz, DMSO-d₆, 298 K) spectrum of compound 13

Figure S40. HR-ESI-MS spectrum of compound 13

NL: 2.5188 20_hoQEx_0371#34-67 RT: 0.34-0.66 AV: 17 SB: 26 0.03-0.24 , 0.70-0.95 T: FTMS + p ESI Full lock ms [100.0000-1500.0000]

 $\begin{array}{l} \text{NL:} \\ 5.50\text{E5} \\ \text{C}_9\,\text{H}_{18}\,\text{N}_7\,\text{S}_2\,\text{Cu:} \\ \text{C}_9\,\text{H}_{18}\,\text{N}_7\,\text{S}_2\,\text{Cu}_1 \\ \text{c}\,(\text{gss.}_8\,\text{p:40})(\text{Val})\,\text{Chrg}\,1 \\ \text{R:}\,70000\,\text{Res}\,.\text{Pwr}\,.\,\text{@FWHM} \end{array}$

Figure S42. HR-ESI-MS spectrum of compound Cu-6

Figure S43. HR-ESI-MS spectrum of compound Zn-7

Figure S44. HR-ESI-MS spectrum of compound Cu-7

Figure S45. HR-ESI-MS spectrum of compound Zn-8

Figure S46. HR-ESI-MS spectrum of compound Cu-8

Photochemical activation

Figure S47. Irradiation stability for compound **6** (black: before; and grey: after irradiation) and corresponding metal complexes Zn-**6** (dark red: before; and red: after irradiation) and Cu-**6** (dark blue: before; and blue: after irradiation) in EtOH, before and after irradiation at 365 nm for 15 mins at pH 4.4. Electronic absorption spectra of (A) compound **6**, (B) Zn-**6**, (C) Cu-**6**, and (D) reverse-phase HPLC data ($\lambda = 254$ nm) for compounds **6**, Zn-**6**, and Cu-**6**.

Figure S48. Photochemical degradation of compound **8** (black: before; and grey: after irradiation) and Cu-**8** (dark blue: before; and blue: after irradiation) in EtOH, before and after irradiation at 365 nm for 15 mins at pH 4.4. Electronic absorption spectra of (A) compound **8**, (B) Cu-**8**, and (C) reverse-phase HPLC data ($\lambda = 254$ nm) for compounds **8**, Zn-**8**, and Cu-**8**.

Figure S49. Photochemical activation kinetics measured by HPLC analysis during the photolysis of solutions of H₂ATSM/en-ArN₃ (7) and Cu-7 in H₂O at 365 nm for up to 100 seconds at room temperature. (A) Stack plots showing the change in the reverse-phase HPLC chromatograms of (A) 7, and (C) Cu-7 *versus* irradiation time. The corresponding kinetic plots produced from integration and normalisation of the peak intensity associated with the starting materials are show for (B) 7, and (D) Cu-7. All data points are the mean (with error bars representing 1 standard deviation) derived from independent measurements that were performed in triplicate. Data were fitted with a mono-exponential function to derive the experimentally observed first-order rate constants, k_{obs} / s^{-1} , for photoinduced degradation.

Figure S50. Photochemical activation kinetics measured by HPLC analysis during the photolysis of solutions of H₂ATSM/en-ArN₃ (7) and Cu-7 in DMF at 365 nm for up to 120 seconds at room temperature. (A) Stack plots showing the change in the reverse-phase HPLC chromatograms of (A) 7, and (C) Cu-7 *versus* irradiation time. The corresponding kinetic plots produced from integration and normalisation of the peak intensity associated with the starting materials are show for (B) 7, and (D) Cu-7. All data points are the mean (with error bars representing 1 standard deviation) derived from independent measurements that were performed in triplicate. Data were fitted with a mono-exponential function to derive the experimentally observed first-order rate constants, k_{obs} / s^{-1} , for photoinduced degradation.

Figure S51. Photochemical activation kinetics measured by HPLC analysis during the photolysis of solutions of H₂ATSM/en-PEG₃-ArN₃ (**8**) and Cu-**8** in EtOH at 365 nm for up to 900 seconds at room temperature. (A) Stack plots showing the change in the reverse-phase HPLC chromatograms of (A) **8**, and (C) Cu-**8** versus irradiation time. The corresponding kinetic plots produced from integration and normalisation of the peak intensity associated with the starting materials are show for (B) **8**, and (D) Cu-**8**. All data points are the mean (with error bars representing 1 standard deviation) derived from independent measurements that were performed in triplicate. Data were fitted with a mono-exponential function to derive the experimentally observed first-order rate constants, k_{obs} / s^{-1} , for photoinduced degradation.

⁶⁴Cu-Radiolabelling of H₂ATSM/en-ArN₃ derivatives

Figure S52. Radiochemical characterisation of [⁶⁴Cu]Cu-8. (A) Radio-iTLC chromatograms developed in 50 mM DTPA pH7.4 of [⁶⁴Cu]Cu-8 produced by direct synthesis from 8 (blue trace), as well as the sample of the reaction mixture measured after irradiation of [⁶⁴Cu]Cu-8 at 365 nm for 15 minutes from either direct synthesis (green trace) or transmetallation (red trace). The profile of [⁶⁴Cu]CuCl₂ as a control is shown in the black trace. (B) Radio-HPLC chromatograms of the reaction mixtures of [⁶⁴Cu]Cu-8 produced by direct synthesis (blue radiotrace) and after irradiation (green radiotrace), as well as the elution profile of 'free' ⁶⁴Cu²⁺ ions (black radiotrace) shown as a control.

Figure S53. Radiochemical characterisation data of the [⁶⁴Cu]Cu-labelled protein conjugate [⁶⁴Cu]CuATSM/enazepin-HSA *via* direct synthesis by (A) radio-iTLC (eluent: 50 mM DTPA pH7.4), and (B) radio-PD-10.

Figure S54. Radiochemical characterisation data of the [⁶⁴Cu]Cu-labelled protein conjugate [⁶⁴Cu]CuATSM/en-PEG₃-azepin-HSA *via* direct synthesis by (A) radio-iTLC and (B) radio-PD-10. Note: radio-iTLC chromatograms were developed by using a DTPA eluent (50 mM, pH7.4) where the [⁶⁴Cu]CuCl₂ complex forms the [⁶⁴Cu][Cu(DTPA)]^{3–} complex *in situ*.