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1 Introduction

This supplement to “Vivarium: an interface and engine for integrative multiscale modeling
in computational biology” includes detailed examples, additional descriptions of libraries
used in the main text, tables with key terms and Vivarium methods, and coding examples.
Section 2 goes into detail as it builds an example system, starting with a deterministic model
of unregulated gene expression, and then adding complexity through stochastic multi-time
stepping, division, and hierarchical embedding in a shared environment. This example is
built up incrementally, highlighting key features of the methodology that enable incremental
construction of complex models. Section 3 introduces the individual libraries used to build
the multi-paradigm composite in the main text. This includes the vivarium-cobra, vivarium-
bioscrape, and vivarium-multibody libraries. The appendices include tools for debugging,
performance profiling of different models, references for software availability with urls, tables
with key terms and methods, and code examples for building Vivarium models.

2 Interface basics

This section introduces the elements and methodology of Vivarium by working through
an example system of unregulated gene expression. We provide supplementary Jupyter
notebooks (links are provided in supplementary materials 5.1) that implement each of the
examples in executable code – technical readers are encouraged to have these notebooks open
as they read through this section.

The guiding example separates gene expression into two processes: transcription – in
which a gene is transcribed to form mRNA, and translation – in which the mRNA is trans-
lated to form a protein. We start by representing each of these functions as simply as possible
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Table S2: Elements of the Vivarium framework. Some of these elements have software
analogs, which are referenced in monospaced code format.

Term Definition
Process A modular sub-model that encodes a biological mechanism and can be

composed with other processes to create a larger composite model. Par-
ticular process instances are created as subclasses of the Process class.

Store A collection of state variables read by the processes, which contains meth-
ods for applying updates. State variables in stores that are shared by
multiple processes are the only means of communication between those
processes. A Store instance can be automatically constructed based on
the processes’ declared ports, variables, and their schema.

Port A named connector on a process that gets connected to a store. Processes
can declare one or more port, and the state variables they want to receive
through these ports.

Schema A state variable’s declared data type, default value, and methods such
as updaters and dividers, by which updates to the variable are handled.
Schemas are declared by the processes’ and are used to initialize stores at
the start of a simulation.

Topology Short for “process-store interaction topology”, this is a bipartite network
that declares how to connect processes to stores. It is declared as a Python
dictionary for each process, with port names mapped to paths where stores
are expected.

Composite An integrated model with multiple processes whose connections to stores
are specified by a topology. A Composite class has processes and a topol-
ogy; it is passed to the engine to create the required stores.

Composer A composer (subclass of Composer) generates composites by initializing a
processes and specifying a topology for how they are wired together.

Step Step is a subclass of Process. Step instances runs after the other processes
and calculate additional state values from other available state variables
– for example, concentrations from molecular counts. These are used to
offload complexity from the dynamical processes.

Flow A directed acyclic graph (DAG) – a type of workflow that declares the
dependencies between Steps. A flow run is triggered between time steps,
running the steps in the order determined by their dependencies. (See
Listing S4)

Compartment A store that contains inner stores and processes. Processes can connect
to other compartments through boundary stores.

Hierarchy A hierarchical network of nested stores. A hierarchy can be updated during
simulation runtime by the processes with update methods such as divide,
move, and add.

Engine Engine is a discrete-event simulation engine. It takes processes, steps,
topology, and flow as input arguments, connects them to a store hierarchy,
and runs the integrated model forward in time.
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with difference equations, and run them on their own. We then integrate them in a com-
posite model and simulate them together. Next, we replace the deterministic transcription
process with a stochastic process, and run a hybrid deterministic/stochastic simulation of
gene expression that includes variable time steps. Finally, processes for cell growth and
division are added, which allow the system to split into many separate agents that run in
parallel in the simulation.

2.1 Transcription process

The transcription process used here is called “Tx”, and models mRNA synthesis from DNA.
We define a system with a single mRNA species, C, transcribed from a single gene, G. The
chemical reaction network (CRN) – which specifies reactants, products, and a set of reactions
– takes the form:

G
ktx−→ G+ C,

C
kdeg−−→ ∅.

This CRN can be simulated with the difference equation

∆C = (ktxG− kdegC)∆t,

with C expressed from G at rate ktx, and degraded at rate kdeg. Quantities are in concentra-
tions (mg/mL) – this comes in useful later when converting to concentrations from counts.
For pedagogical reasons, this model ignores gene copy number, RNA polymerase abundance,
strength of gene promoters, and availability of nucleotides – features that could potentially
be added later to improve the model’s realism.

2.1.1 Ports.

An illustration of Tx is shown in Fig S2a. G and C are read through different ports,
“DNA” and “mRNA”, which are connected to two different stores, also called “DNA” and
“mRNA”. By default, a process’s ports connect to stores that have the same name – the next
subsection demonstrates more complex mappings. For a small model with only two variables
splitting the variables into separate ports might seem excessive, but for larger models this
is a useful design principle. Generally, port design should be used to organize variables by
useful categories: locations such as cytoplasm, membrane, chromosome; molecule groups
such as metabolites, proteins, chromosomes; or by other categories such as global variables,
fluxes, concentrations.
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Listing S1: Python implementation of the minimal transcription process, Tx. This demon-
strates the Vivarium process interface. Defaults correspond to default parameter values
which can be overwritten in the Process constructor. Unit conversions are supported by the
pint library [7]. States are Python dictionaries which encode the file structure of a Vivarium
model. Updates are similarly returned as in the same hierarchical dictionary format.

class Tx(Process):
defaults = {

'ktx': 1e−2,
'kdeg': 1e−3}

def ports schema(self):
return {

'mRNA': {
'C': {

' default': 100 ∗ units.mg/units.mL,
' updater': 'accumulate',
' emit': True,

}},
'DNA': {

'G': {
' default': 10 ∗ units.mg/units.mL,

}}}

def next update(self, time step, state):
# Retrieve the state variables through the ports
G = state['DNA']['G']
C = state['mRNA']['C']

# Run the model
dC = (self.parameters['ktx']∗G − self.parameters['kdeg']∗C) ∗ time step

# Return an update
return {

'mRNA': {
'C': dC,

}
}

2.1.2 Process interface.

Listing S1 shows Python code for the Tx process – an instance of the Process class. Making
a process requires implementing the process interface, which involves the following constant
and methods: 1) defaults: This class constant declares expected parameter names and
values – even if only with empty values that get replaced upon initialization. The pro-
cess constructor ( init ) accepts a list of parameters when a process is initialized, which
override the defaults. 2) ports schema: This method declares a process’ ports (“RNA”
and “DNA”), the variables that are accessed through those ports (C and G), and their re-
quired schemas (Supplementary materials, Table S9). Any type of value can be used in the
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Figure S2: Tx – a transcription process. (a) The system’s topology, with process Tx wired
to two stores – DNA and mRNA – through ports of the same name. (b) Simulation output.
The DNA G remains fixed at its initial value, and the mRNA C increases up to a steady
state.

schema, such as integers, arrays, or more complex data structures. For novel data types,
new schema methods such as updaters and dividers might be required – these are modular
and can be defined by users. Updaters and dividers available with vivarium-core are listed in
(Supplementary materials, Tables S10 and S11). 3) next update(): This method contains
the dynamical model. The steps of this method involves retrieving the variables through
the ports, applying the encoded mechanism for the time step’s duration, and returning the
update for each port.

2.1.3 Simulating a process.

The output of Tx is shown in Fig S2b. Individual processes can be run on their own
by the simulation engine, which initializes the stores, runs the simulation, and saves the
output. Each simulation is configured with an emitter, which logs the state of variables
marked to emit during runtime – marking a variable to emit can be declared in the process’
port schema. If the emitter is connected a database (we use mongoDB), the saved data can
be retrieved from the database for visualization and analysis at any time during or after a
simulation run.

2.2 Transcription/Translation composite

Next, we integrate the Tx transcription process with a translation process called “Tl”, whose
implementation is not shown here but is available in the supplementary notebook. Tl takes
a similar form to Tx, but with protein X translated from mRNA C and degraded:

∆X = (ktlC − kdeg,XX)∆t.

As before, units are in concentrations (mg/mL). As a simplifying assumption, translation
rate considers ribosome availability, strength of ribosome binding to mRNA, availability of
tRNAs and free amino acids to all be part of one lumped constant.
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Fig S3a illustrates the composite model called “TxTl”, with Tx and Tl both wired to a
shared store called mRNA. This couples the two processes, so that mRNAs synthesized by
Tx impacts the expression of proteins by Tl.

2.2.1 Composer interface.

Composer is a class that generates composites. A given composer’s inherited generate()

method calls generate processes() to construct the processes, generate steps() to con-
struct the steps, generate topology() to wire the processes to the stores, generate flow()

to declare the dependencies between steps. When called, it returns a composite that is ready
for simulation. Making a composer involves the following class attributes: 1) Composers have
their own defaults for parameters, which can override the default parameters for individual
processes, thus providing easy access for parameter scans and learning algorithms to adjust
the full composite’s behavior. 2) The generate processes() method constructs a compos-
ite’s processes in a dictionary, which maps each of their names to the instantiated process
objects. 3) The generate steps() method constructs a composite’s steps in a dictionary,
which maps each of their names to the instantiated step objects – steps declared in gener-
ate processes() are automatically detected and used with a sequential dependencies based
on the order they are declared in the dictionary. 4) The generate topology() method
returns a topology dictionary that declares how each process’s ports connect to stores in
the hierarchy. 5) The generate flow() method returns a topology dictionary that declares
each step’s dependencies on other steps (see Listing S4).

The TxTl composite is specified in listing S2. Default parameters are empty so the
processes will use their own defaults if none are supplied. Each process is constructed in
generate processes(), and wired together in generate topology(). Tx’s DNA port maps
to a store called “DNA”, Tl’s protein port maps to a store called “Protein”, and both Tx
and Tl get wired to the same “mRNA” store containing the state variable “C”, thus coupling
the two processes together.

2.2.2 Using the Vivarium engine

The vivarium engine runs TxTl to produce the simulation output shown in Fig S3b, where
the mRNA reaches a steady-state as before while the protein concentration increases over
time following a logistic-like curve.

Composite models are run with vivarium-core’s Engine class. It is a discrete-event simu-
lation engine that can accept either processes and a topology (the attributes of a Composite

class) and generates the store hierarchy, or a pre-generated Store with the hierarchy already
made. Some additional keyword arguments to engine let you pass in an initial state, emitter
time steps, experiment name, and emitter type (for example print to console, save to RAM,
save to database). Listing S3 shows how to take a composer, generate a composite, pass its
processes and topology to the engine, and run a simulation.
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Listing S2: Python code for the TxTl Composer. This demonstrates the composer constants
and interface methods. Processes are initialized in generate processes and their ports
are wired to stores by declaring a topology in generate topology. Listing S7 in the Sup-
plementary materials includes more advanced examples of generate topology, including
connecting ports to stores at different levels of the hierarchy, splitting a port into multiple
stores, and connecting variables with different names.

class TxTl(Composer):
defaults = {

'Tx': {},
'Tl': {}}

def generate processes(self, config):
return {

'Tx': Tx(config['Tx']),
'Tl': Tl(config['Tl'])}

def generate topology(self, config):
return {

'Tx': {
'DNA': 'DNA',
'mRNA': 'mRNA'},

'Tl': {
'mRNA': 'mRNA',
'Protein': 'Protein'}}

2.3 Adding complexity with a stochastic process

Importantly, Vivarium enables users to compare competing models of a given process, sim-
ply by exchanging one for the other and simulating the resulting behaviors. The interface
introduced above makes it easier to define and integrate process modules – now we demon-
strate how changes in the sub-models, building off prior model design, can provide additional
model functionality.

We begin by replacing the deterministic transcription process, Tx, with a stochastic
process called “stochastic Tx”. The biological reasoning for this might be that in individual
cells many genes are transcribed at low expression rates and synthesize small counts of
mRNA, which leads to stochastic behavior. We use the Gillespie algorithm [4] – a discrete
and stochastic method for systems with few reactants – to simulate individual reactions. The
Gillespie algorithm can be broken into two steps – one for calculating the time which elapses
before an event occurs, and the other for determining the nature of that event. Stochastic
simulations require variable time steps; for example, the distribution of time steps in a
simulation using stochastic Tx is shown in Fig S4c.

2.3.1 Steps.

The Gillespie algorithm operates on molecular counts – every reaction event increases the
counts of the products and decreases the counts of the substrates. Thus, the model needs to
convert the molecular counts from the stochastic Tx process to concentrations for input to

8



(a)

DNA

mRNA

mRNA

Protein

Tx

Tl

DNA

mRNA

Protein
(b)

0

200

400

600
Protein: X (milligram / milliliter)

0

50

100
mRNA: C (milligram / milliliter)

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

9.5

10.0

10.5
DNA: G (milligram / milliliter)

Figure S3: The TxTl composite with Tx transcription and Tl translation. (a) The model’s
topology and process declaration. Tx is the same as in Fig S2, and Tl is a new process
with ports for mRNA and protein. Both processes are wired to the same mRNA store, thus
coupling them together. (b) The simulation output of this model is the same as in Fig S2
showing DNA G and mRNA C, but with added protein X also being expressed.

the Tl process. To perform this conversion, we add an auxiliary step process.
Step is a subclass of Process, but without a time components. These instances run

after the dynamic processes, and in a dependency graph called a flow (like a workflow). For
example, if there were processes A and B with dt=1, C with dt=2, and two steps D1 and
D2 with D2 depending on D1, the run order would be something like:

t0 : D1, D2

t0 → t1 : A,B,D1, D2

t1 → t2 : A,B,C,D1, D2

There are many uses for steps. These could act as translators that adapt different model-
ing formats, lift and restriction operators that translate between scales, and helper processes
to offload complexity.

The vivarium-core library provides several general-purpose steps. In the current exam-
ple we instantiate a step called “counts to mg/mL” in Fig S4 – this step calculates new
concentrations from counts after every step.

2.3.2 Multiple timescales.

For processes to operate at different timescales, the simulation engine handles updates on a
per-process basis. At the start of each process’ time step, the engine retrieves the process’
required time step by calling its calculate timestep method with the current state of the
system. By default, the process returns a fixed time step that can be declared in their
parameters, but stochastic Tx calculates a new time step by using the Gillespie algorithm.
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Listing S3: Running a composite with Engine. This listing demonstrates how to initialize
a composer by passing in parameters, how to generate a composite using a composer, and
how to pass a composite’s processes and topology into the simulation engine. The engine is
then run for a length total time, and its output data is retrieved from the emitter.

# define configuration, to override default parameters
config = {

'Tx': {'ktsc': 1e−2},
'Tl': {'ktrl': 1e−3}}

# initialize TxTl composer with the config
composer = TxTl(config)

# generate the composite, within initialized processes
composite = composer.generate()

# define an initial state, to override default values
initial state = {

'DNA': {'G': 10.0 ∗ units.mg / units.mL},
'mRNA': {'C': 0.0 ∗ units.mg / units.mL},
'Protein': {'X': 0.0 ∗ units.mg / units.mL}}

# initialize a simulation with the composite's processes and topology
experiment = Engine(
processes=composite.processes,
topology=composite.topology,
initial state=initial state)

# run the experiment
total time = 20000
experiment.update(total time)

# get the simulation output
output = experiment.emitter.get data()

After retrieving the time step, the engine calls the process’ next update method with the
current state of the system. When the system time reaches the end of the process’ time step,
it retrieves the update and applies it to the system state. This way, all processes can run at
their preferred timescales. With the current version of the engine, the user needs to make
sure the time steps of the processes are synchronized with each other to avoid numerical
issues. Future versions can introduce a specialized adaptor process to handle the processes’
time steps in a way that automatically ensures coordination.

2.4 Hierarchical embedding

Up to this point, each model had a fixed number of processes and stores, with a fixed
topology. In contrast, cell division requires a hierarchy with agents embedded in a shared
environment, within which the cell agents can grow and divide. The hierarchy needs to
launch new processes and stores for each agent created during runtime.
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Figure S4: Stochastic transcription with deterministic translation. The stochastic process
adjusts its time step based on the total propensity of the system, which is recalculated at
every step. (a) The topology, showing the stochastic Tx process, the counts to mg/mL
concentration step, and the deterministic Tl process. Counts to mg/mL is connected to a
“global” store, which holds the volume variable required to calculate concentrations. (b) The
simulation output shows stochastic dynamics of mRNA, and the impact of this stochasticity
on the protein concentration. (c) Histogram shows the variable time steps resulting from
running stochastic Tx on its own for 10, 000 seconds. Tl on its own runs at fixed 1 second
intervals.

Agents and environments. When one compartment is nested in another, the inner
compartment can be considered an agent and the outer compartment its environment. Cou-
pling between an agent and an environment is supported by their processes sharing variables
in boundary stores. For example, agent processes can update boundary variables required by
environmental process such as agent volume, shape, motile forces, and uptake of molecules.
Environmental processes can update the boundary conditions of agents’ internal processes;
for example, local molecular concentrations, and temperature. In the current example, a
process called “colony volume” is added to the environment to calculate the volume of all
the agents together (Fig S5a). This derived population-level state variable could in principle
be used to drive other mechanisms – for example if simulated in a gut microenvironment,
bacterial colony volume variable could be used to impact the host’s digestion.

Advanced process-store topology. Up to this point, the system comprised a single
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compartment (i.e., a single cell). Accordingly, each topology specified a simple path from
each port to a store in the same compartment – a “flat” network. Now, we model the
environment as an outer compartment which can contain one or more cells. This requires
advanced specifications in a composer’s generate topology that connect a processes’ ports
to stores further up or down the hierarchy. A port connects to a store in the hierarchy by
specifying a path, which could go up the hierarchy to stores in outer compartments; or down
the hierarchy to stores contained in inner compartments. generate topology also supports
splitting ports to draw from variables in separate stores, merging ports to draw from the
same store, and aliasing names to variables to connect models with different variable names.
A few technical examples of these advanced topology methods are included in Supplementary
materials section 5.6.

In the current example, the colony volume process reads the counts of all molecules
through an “agents” store, which contains all of the individual agent instances – each with
its own DNA, mRNA, and Protein, and global stores. Colony volume is configured to read
the volumes in the individual global stores, and calculates total colony volume.

Division. To enable a compartment to divide during runtime, Vivarium provides a
division process that is configured with a divide condition, which when true triggers division.
A configurable condition means the process could be reused for more sophisticated cell
models, for example based on the completion of chromosome segregation or the formation of
a septum. Upon division, the mother’s variables’ states are divided between daughter agents
based on those variables’ ’divider’ schema methods (Table S11).

For our example system, we initialize agents at 1000 fg, and trigger division when they
double that mass. Fig S5c shows how the output over four generations of growth and division,
starting off with a single stochastic TxTl instance that splits into two independent instances
and then four and then eight – each of which exhibits its own distinctive behavior.

Compartment hierarchy updates. In biological systems, the nesting of compartments
can be rearranged over time with behaviors such as engulfing, merging, and division. To
support these behaviors, hierarchies in Vivarium can also be restructured during runtime.
There are several built-in hierarchy update methods including move, add, delete, divide, and
generate. Processes can trigger these in different combinations to generate a wide range of
possible behaviors including merge, two neighboring compartments combine into one; burst,
a compartment combines with its environment; engulf, one compartment is moved inside of
a neighboring compartment; and expel, a compartment moves to be a neighbor of its outer
compartment. All of these are available in vivarium-core.

Fig S5a shows the hierarchy after one division event, with two agents embedded in the
top-level “agents” store. This requires the simulation to instantiate new agents – remove
the mother agent, and generate two daughter agents with the mother’s composer, and an
inherited state.
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# make txtl composite with agent id ”0”
agent id = '0'
txtl composer = TxTlDivision(agent config)
agent0 = txtl composer.generate(

{'agents': agent id})
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Figure S5: Hierarchical embedding and division. (a) Topology plot of the embedded hi-
erarchy, with two cell agents. This plot was generated after one division event occurred,
to illustrate how embedding works in Vivarium. Solid edges reflect hierarchy’s directory
structure, with “agents” at the top level. Dashed edges are topology connections between
processes and the stores. (b) A script for making a composite model from a TxTl agent and
a colony-level process to measure total colony volume. Agent 0 agent is placed within an
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the end of the simulation. The bottom plot shows the total colony volume, calculated from
the full set of cell models within the environmental compartment.

13



3 Individual paradigms of Section 3

The main text demonstrates the integrative capabilities of of Vivarium by building a large
multi-paradigm composite model of glucose-lactose diauxie in a colony of growing and di-
viding E. coli agents. The individual processes were built with wrappers around existing
popular modeling libraries, which were imported into the glucose-lactose diauxie project and
wired together into the large integrative model.

The individual processes are available for re-use in the Vivarium Collective: vivarium-
cobra, vivarium-bioscrape, and vivarium-multibody. The PIPy versions used for this paper
are vivarium-cobra==0.0.18, vivarium-bioscrape==0.0.0.7, vivarium-multibody==0.0.13.
This section describes each of these libraries individually, shows their processes run on their
own, and provides the parameters used to configure the example in Section 3.

3.1 Flux-balance analysis with COBRA

Flux balance analysis (FBA) is an optimization-based metabolic modeling approach that
takes network reconstructions of biochemical systems, represented as a matrix of stoichio-
metric coefficients and a set of flux constraints, and applies linear programming to determine
flux distributions, for example those that maximize the production of biomass based on the
known composition of metabolic end-products [6]. A strength of FBA is its capacity to
simulate whole-network flux distributions using a minimal set of parameters. FBA is made
dynamic (called dFBA) by iteratively re-optimizing the objective with updated constraints
at every time step [11]; these constraints change with environmental nutrient availability,
gene regulation, or enzyme kinetics. Many useful tools related to building and simulating
FBA models have been developed and made freely available in the COBRA toolbox, which
is also available in python as COBRApy [2].

For this work, we developed a Vivarium process that provides a wrapper around CO-
BRApy, and is located in the vivarium-cobra library (Fig S6a). This process, called “CO-
BRA”, can be initialized with a BiGG model from the BiGG model database [5]. BiGG
models are genome-scale metabolic models, which are available for dozens of E. coli strains,
as well as many other cell types. The model used here is iAF1260b, which includes 2382
reactions, controlled by 1261 genes, and with an objective that includes the production of
67 molecules.

For purposes of integration with Vivarium, we pass the COBRApy results into internal
metabolite pools that are available for other processes to utilize. The COBRA process
includes a “flux bounds” port, which allows other processes to dynamically modify the flux
constraints on the FBA problem. Accordingly, some additional processes were developed so
that the COBRA process could support dFBA (shown in Fig S6a). These processes include
“local field” to model the external environment with dynamic molecular concentrations, and
“mass step” to convert the internal metabolite counts into a total mass.

Thus, when COBRA is run as a composite with the local field and mass step processes
(Fig S6b), it takes up metabolites from the environment and grows its internal pools of
metabolites, exponentially increasing in mass and reproducing the expected 40 minute dou-
bling time in minimal glucose media.
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Figure S6: Demonstration of the COBRA composite’s dynamic FBA. (a) Topology of the
COBRA composite, which models metabolism with the COBRA process, and additional
processes “local field” and “mass step” and help make the system into a dynamic FBA
with an external environment, and total compartment mass based on individual metabolite
pools and their molecular weights. The COBRA process has ports connected to “reactions”,
“internal counts”, “external” (which are in concentrations), “flux bounds”, and “global”.
(b) Simulation of a COBRA composite model, configured with BiGG model iAF1260b.
Environmental concentrations (top) and internal molecule counts (middle) are plotted in log-
scale due to the wide range across molecular species. The internal metabolites are multiplied
by their molecular weight and summed to get total biomass (bottom).

COBRA process
Parameter Value Description
BiGG model iAF1260b metabolic model passed into the COBRA process, from [3]
time step 60s fixed process time step

Table S3: Processes parameters for vivarium-cobra version 0.0.18.

3.2 Chemical reaction networks with Bioscrape

To add a CRN network model of transcription, translation, regulation, and the enzymatic
activity of the lac operon and its resulting proteins, we turned to a published model [9],
with many parameters from [12]. Our model includes all the same features, except for the
addition of different combinatorial conformations of the lacR repressor binding to the lac
operon. The model includes 11 species and 10 reactions, using a combination of mass action
and Hill function propensities to represent the following functions: production of mRNA from
the Lac Operon, translation of the proteins, tetramerization of β-Gal, lactose degradation to
allolactose, hydrolysis to glucose and galactose, import of glucose and lactose, degradation of
mRNA and proteins, and dilution for the deterministic version of the model. We converted
this model to an SBML format using BioCRNpyler – an open source tool for specifying
CRNs [8]. With the model in SBML, we were ran simulations with a Vivarium process

15



built with Bioscrape (Bio-circuit Stochastic Single-cell Reaction Analysis and Parameter
Estimation) [10] – a Python package that supports deterministic and stochastic simulations.
The “Bioscrape” process is available at the vivarium-bioscrape library. Its topology can be
seen in Fig S7a.

Running the lac operon CRN model in isolation shows expected behavior (Fig S7b), with
glucose initially being taken up from the environment while lactose is not. Once external
glucose is depleted, the lac genes are expressed, concentrations of β-Galactosidase and lactose
permease rise, and lactose is brought into the cell and degraded. This is all done smoothly,
with continuous dynamics (Fig S7b, left). Using the Bioscrape process also facilitates a
stochastic simulation of this CRN (Fig S7b, right) the results of which show lac operon
RNA expressed via a randomly-occurring transcription event, followed by expression of the
lac proteins, and enabling subsequent import of lactose. For the stochastic model, external
nutrients can only exist in a small external environmental volumes – large environments
make for large nutrient counts, which slows the stochastic simulator drastically and makes
simulations unfeasible. This limitation is corrected by the integrated model, which introduces
many separate external locations for nutrients.

The Bioscrape process includes ports for “species”, “delta species”, “rates”, and “global”.
All the individual molecular species (including genes, RNA, and protein) connect to the the
“species” port; “delta species” is an output of the process that holds the changes (deltas) to
the species in a given timestep, “rates” are instantaneous rates determined by the simulator,
and “global” reads the “volume” variable.
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Figure S7: Demonstration of the Bioscrape process on its own. (a) Topology of the Bioscrape
process, which models a CRN with deterministic (ODE) and stochastic (Gillespie) simulators.
Bioscrape has ports connected to “species”, “delta species”, “rates”, and “global”. (b)
Simulation of the Bioscrape process configured with a lac operon model. On the left – a
deterministic simulation models the smooth dynamics of molecular concentrations. On the
right – A stochastic simulation models the discrete events with molecular counts.
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Bioscrape process: deterministic model
Parameter Value Description
stochastic False use Bioscrape’s stochastic simulator
initial volume 1 compartment volume for the simulator
internal dt 0.01 internal time step with which to run the simulator
time step 10s fixed process time step

Bioscrape process: stochastic model
Parameter Value Description
stochastic True use Bioscrape’s stochastic simulator
safe mode True use Bioscrapes safe model interface
initial volume 1 compartment volume for the simulator
internal dt 0.01 internal time step with which to run the simulator
time step 10s fixed process time step

Table S4: Processes parameters for vivarium-bioscrape version 0.0.0.7.

3.3 Multicell physics with pymunk and field diffusion

With individual cells being represented by the Bioscrape and COBRA processes, our final
step was to model a spatial environment in which these cells can grow, divide, and interact –
through physical forces as well as by uptake and secretion of molecules in a shared chemical
milieu. The environment is implemented using a composite from the vivarium-multibody
library called “lattice”, which consists of two processes: “multibody” and “diffusion” (Fig
S8a).

The multibody process is a wrapper around the physics engine pymunk [1], which can
model individual cell agents as capsule-shaped rigid bodies that can move, grow, and collide.
Multibody tracks the following boundary variables for each agent: location, length, width,
angle, mass, thrust, and torque. The physics engine applies these variables for the update
time step, and returns a new location for each agent. Agents can update volume, mass,
and motile forces, thus impacting their movement in the environment. Upon division, the
daughter location divider is applied to the location of agents, so that when they divide
the daughters are placed end-to-end in the same orientation as the mother.

The diffusion process was developed for this study as a custom process, with no pre-
existing simulator (i.e., not using pymunk). It simulates bounded two-dimensional fields
of molecular concentrations. Each lattice site (x, y) holds the local concentrations of any
number of molecules, and diffusion simulates how they homogenize across local sites. Each
agent can uptake and secrete molecules at its position in the field. The implementation uses
an adaptor process called “local field”, which converts exchanged molecules from the given
agent to concentrations at the agent’s location.

Fig S8b shows the lattice composite simulated with minimal grow/divide agents. A single
initial agent grows and divides to form colonies of many minimal agents in the environment
– as they grow, they push against each other via the multibody process, and the colony
increases in volume. The agents shown in this minimal simulation do not take up molecules.
Therefore, in order to demonstrate the diffusion process, we initialized the system with a
concentration gradient, which lessens over time.
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Lac operon expression and transport kinetics
Parameter Value Description

Translation and complexation of β-Galactosidase and lacP
k tl beta Gal 9.4/60 translation rate of β-Galactosidase
k tl lacP 18.8/60 translation rate of lacP
BGal tetramer-
ization

1000 complexation rate of β-Galactosidase, assumed to be fast and
irreversible

Degradation of lactose with proportional Hill function
BGal vmax 300 rate constant of lactose degradation to allolactose, catalyzed by

β-Galactosidase
Bgal Kd 1.4 dissociation constant

Import of glucose with proportional Hill function
GluPermease vmax 301 rate constant
GluPermease Kd 0.015 dissociation constant
LacPermease re-
verse vmax

71.38/60 rate constant for reverse reaction

LacPermease Kd 14.62 dissociation constant

Protein degradation with mass action
kdeg mRNA 0.47/60 mRNA degradation rate
kdeg prot 0.01/60 protein degradation rate
k dilution 0.02/60 dilution rate for deterministic model, corresponds to a doubling

time of 30 minutes.

stochastic model parameters
Bgal Kd 84310 dissociation constant for stochastic model
GluPermease Kd 9033 dissociation constant for stochastic model
LacPermease Kd 8800000 dissociation constant for stochastic model

Table S5: Model parameters for deterministic and stochastic models of the lac operon. These
are a mixture of mass action and Hill function propensities. They were used with BioCRN-
pyler [8] to generate the SBML model and save ‘.xml’ files, which are read by the Bioscrape
Vivarium process. The files, LacOperon deterministic.xml and LacOperon stochastic.xml
are available in the vivarium-notebooks repository.
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Figure S8: Demonstration of Lattice composite. (a) Topology of lattice composite, with a
diffusion process and a multibody process, and ports connected to “fields”, “dimensions”, and
“agents” stores. (b) Three grow/divide agents are initialized in the lattice. As the agents
grows and divide, the multibody process simulates volume exclusion, which pushes their
neighbors away and grows the colony. In this particular case, the agents do not exchange
molecules with the external field, but diffusion can be seen by the spread of molecular
concentrations initialized at the top row of the field.

Diffusion process
Parameter Value Description
bounds (30µm, 30µm) (x, y) dimensions of the environment.
n bins (30, 30) Number of discrete bins in the (x, y) dimensions.
depth 0.5µm The depth of the environment. Shallow environment deplete

faster.
concentrations glucose : 10mmol Initial concentrations of the environmental fields.

lactose : 50mmol
diffusion 0.02µm2/s Diffusion rate constant for all molecules.

Multibody process
Parameter Value Description
bounds (30µm, 30µm) (x, y) dimensions of the environment.
jitter force 1 ∗ 10−4pN A random force applied to each agent to simulate Brownian

motion.
agent shape segment The shape of the agents. Segment shapes are like rectangles

with rounded ends – a 2D capsule.

Table S6: Processes parameters for vivarium-multibody version 0.0.13.
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4 Design Methodology

This section covers additional details regarding technical and conceptual design considera-
tions. In 4.1 we look at performance tests that evaluate how Vivarium simulations scale as
complexity is increased. 4.2 discusses tradeoffs in the design of Vivarium simulations.

4.1 Performance

The total runtime of a Vivarium simulation can be decomposed into two main computational
costs (Fig S9a): the process update runtime, which is the cumulative time spent in the pro-
cesses’ next update method; and second, the overhead runtime, which Vivarium requires to
manage the updates from the ports, apply them to the stores, and synchronize the processes.
With the parallelization of processes, total runtime can equal less than the combined process
update and Vivarium overhead times, since process updates are performed concurrently. An
ideal simulation would spend most of its computation in the process updates as this is both
the scientifically relevant computation for the simulation, and the computation that can be
easily parallelized.

To evaluate these costs, we profiled a series of simulations which varied in: 1) the number
of processes, 2) the number of ports per process, 3) the number of variables updated by each
process, 4) the number of parallel processes, 5) the number of CPUs available on a virtual
machine (Fig S9b-c). Each simulation was evaluated by cumulative process update time,
cumulative Vivarium backend time, and total simulation run time. Comparing these metrics
allowed us to evaluate Vivarium’s overall computational scalability.

The profiled simulations used a custom Vivarium process that generates random updates
and can be reconfigured with different numbers of variables, different numbers of ports for
those variables, and busy waits to precisely control how much computation happens within
the update. A custom Vivarium composite assembles these processes with topologies of
varied complexity. The Vivarium process, the Vivarium composite, and the profiling scans
analyzed here are included in the vivarium-core repository at the address listed in 5.1. The
ability to control the complexity of this process and composite allowed for more precise
evaluations of Vivarium’s overall scalability than the model described in Section 3 – that
model used a fixed combination of certain processes (some large, some small), its division
during runtime adds/removes processes, and Bioscrape has its own internal parallelization
that obscures the parallelization implemented for Vivarium.

Topological complexity. The complexity of a composite’s topology is related to the
number of variables coming from each process and the number of ports from these processes.
Figure S9b shows that the Vivarium overhead scales roughly linearly with both the number
of ports and the number of variables for each processes. Linear scaling is expected, since
Vivarium has to handle additional updates from the processes, and port them to different
stores. In contrast, process update times are essentially unchanged by either the port or
variable number.

Process complexity. Individual processes can vary in how much computation they re-
quire. In general, larger processes can be expected to take seconds to return an update, while
simple processes may take microseconds and demand more frequent synchronization. Figure
S9c shows three profiling scans with different wall times for the process updates. These
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scans show that both process update and Vivarium overhead scale linearly with added pro-
cesses. However, the relative slope of these relationships are determined by the computation
performed by each process. In the top panel of Figure S9c, Vivarium overhead runtime
scales more slowly than process update runtime. This indicates a simulation that is scal-
ing well, spending relatively more time performing scientifically-meaningful computation as
processes are added. In the bottom panel, the Vivarium overhead increases as more pro-
cesses are added. This is an indication of poor scaling, with increased computation required
to synchronize each additional process. On the computer that performed these scans, the
threshold of process update scalability, where the overhead and update runtimes both in-
crease at roughly the same rate as processes are added, was 0.08 milliseconds for each process
update (Figure S9c, middle).

Parallelization. To fully utilize the available CPUs, individual processes can be run in
parallel using Python’s multiprocessing library. Figure S9d (top) shows 80 total processes
simulated on a computer with a 8 CPUs, with n of the processes run in parallel. As n
increases, the simulation time decreases, since more processes can run at the same time.
This decrease levels off at around 70 parallel processes, which is the point at which there
are about 10 processes for each CPU. Figure S9d (bottom) shows 50 total parallel processes
simulated on different virtual machines on Google cloud, which vary by their number of
CPUs. As the number of CPUs increases, total simulation time decreases, since more of the
parallel processes can get their own designated CPU. This approximately levels off when the
number of parallel processes equals the number of CPUs.

4.2 Process, Composite, and Library Design

Process design. The performance results suggest that there are design considerations for
what makes a process optimally composable and parallelizable. If processes are too small,
the overhead runtime will increase and the simulation will be poorly scaled. On the other
hand, processs that are too large may have low re-usability (i.e., processes should be designed
for general application and not include computations that would exclude them from many
use-cases). This means that most processes should not be decomposed to their most basic
computations, but rather grouped in computations of complex mechanisms that can be
reused to update many molecules or other variables at a time. We believe that limitations
on scalability will be primarily driven by the code most relevant to the simulation – within
the processes – rather than overhead from Vivarium. That said, users should design their
processes in a way that is most convenient and/or useful for them.

Composite design. Composites are bundles of processes that should work synergis-
tically in representing particular classes of biological systems. Composites themselves may
be used as modular elements, and brought together into higher-order composites of in-
creased complexity. An example of a composite in this work is the Lattice environment,
which includes both the multibody and diffusion processes. These are used together because
they represent the microbial physical and chemical environment, so it is ideal to keep them
bundled as a unified whole. As another example, one could imagine building a composite
organelle model such as a mitochondrion, which we would want to slightly reconfigure and
reuse in different Eukaryote cell models. Composites can be designed in such a way that
users can easily reconfigure them by passing options to the composite constructor, without
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having to delve into any process implementation or the composite’s wiring. Library de-
sign. Vivarium-core is a stand-alone library without any significant modeling modules. The
modules used for this paper’s examples are in external libraries that can be brought together
and wired in more arbitrary configurations. This approach has all of the advantages we have
listed above and in the main text. However, it can also be difficult to maintain separate
libraries and test software changes across libraries. Thus, if processes are expected to be
developed in parallel as the model is built, developers should consider bringing them into
the same Vivarium library.

Libraries may also be set as private or public. Users might prefer to keep their models
private while they are being developed, and only make them public upon publication of the
model – at that point, others could import the model and use it within separate projects.
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Figure S9: Performance evaluation (a) Schematic of computational costs: process update
(blue) is the time spent by the processes, Vivarium overhead (red) is the time spent synchro-
nizing the processes, total simulation time (green) could equal up to the combined process
updates and Vivarium overhead. (b) Vivarium overhead scales linearly with the number of
ports (top) and the number of variables per process (bottom) – process updates also scale
linearly due to the extra time required to get random numbers and sorting them into ports.
(c) Vivarium overhead and process update time scale linearly with the number of processes,
but their relative scaling depends on the processes’ computational requirements. The middle
plot shows that the threshold of process update scalability is about 0.08 milliseconds (8e− 5
seconds) on the computer used for this profiling run. (d) Simulation time decreases when
processes are run in parallel. Top – 80 total processes are simulated with n of them made
parallel, on a computer with a fixed number of CPUs. Bottom – 50 total parallel processes
simulated on virtual machines with different numbers of CPUs.
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5 Implementation details and support

This section provides details about additional coding methods for Vivarium, and technical
specifications for the reported simulations.

5.1 Software availability

The Vivarium Collective is a hub for Vivarium modules, and includes all of the libraries used
for this project. These libraries are listed in Table S7. All of the notebooks are available for
Jupyter on the vivarium-notebooks repository. For easier accessibility, the work described
in this manuscript is also available on Google Colab (Table S8).

The Vivarium Collective website: https://vivarium-collective.github.io.
Documentation for vivarium-core: https://vivarium-core.readthedocs.io/en/latest/.
Performance tests: https://github.com/vivarium-collective/vivarium-core/blob/

master/vivarium/experiments/profile_runtime.py.
https://github.com/vivarium-collective/vivarium-core/blob/master/vivarium/

experiments/profile_image.py.

Table S7: Vivarium libraries used in this project. These are all freely available for open
development at the Vivarium Collective, and as pip-installable libraries on PyPI.

Library Description
vivarium-core The interface classes and multiscale simulation engine.
vivarium-notebooks The repository developed for this paper, with Jupyter notebooks

and Python files.
vivarium-bioscrape For chemical reaction networks with SBML.
vivarium-cobra For constraint-based models of metabolism, with BiGG model

interface.
vivarium-multibody Lattice composite model used for spatial multi-cell interactions.
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Table S8: Python notebooks demonstrating paper simulations. Jupyter notebooks are avail-
able on GitHub, and require local installation. Colab notebooks run online, and no local
installation is required.

Description Link
Vivarium interface basics
Jupyter notebook.

https://github.com/vivarium-collective/

vivarium-notebooks/blob/main/notebooks/Vivarium_

interface_basics.ipynb

Multi-paradigm composites
Jupyter notebook.

https://github.com/vivarium-collective/

vivarium-notebooks/blob/main/notebooks/

Multi-Paradigm-Composites.ipynb

Building the lac operon
models with BioCRNpyler
Jupyter notebook.

https://github.com/vivarium-collective/

vivarium-notebooks/blob/main/notebooks/Lac_Operon_

CRN.ipynb

Vivarium interface basics
Google Colab notebook.

https://colab.research.google.com/drive/

1-j2OXsflV8PZMbi9xldrCLkZ9Fj-y9sm?usp=sharing

Multi-paradigm composites
Colab notebook.

https://colab.research.google.com/drive/

1aiJ6uNjeATP0JTedxoZuNrLf3IPnHLU8?usp=sharing

5.2 Tools for debugging

It is important to provide tools for debugging, so that users can more easily build models,
find sources of error in the model, and feel confident in their results. Vivarium is a powerful
tool to connect models together, but if the connection of processes’ ports to stores is not
done properly, the whole model would not work or generate spurious results. Therefore it
provides some tools to aid in debugging the wiring of models.

There are two main tools at present. When initialized with processes and their topology,
Engine checks whether the topology matches the ports structure. If all the ports are suc-
cessfully maps, it generates the stores based on port schema specifications; if the ports are
not all mapped, it quits and prints a message about which process and which of its ports
were not successfully mapped by the user’s topology declaration. This feedback can be used
to ensure all ports are mapped to stores.

Another useful tool is a function called plot topology, which is provided with vivarium-
core (Fig S10). This function plots a composite’s connectivity, with processes, stores and
their connections. By seeing the connections visually, users can better track their model’s
structure and process interactions.
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(a)

# import the plotting function
from vivarium.plots.topology import plot topology

# initialize a composite
txtl composite = TxTl()

# plot topology topology
fig = plot topology(txtl composite, settings={})

(b)

stochastic
Tx Tl

counts
to

mg/mL

DNA
(counts)

mRNA
(counts)

mRNA
(mg/mL)

Protein
(mg/mL) global

Figure S10: plot topology is a useful tool for debugging by visualizing how processes and
stores are connected. (a) Python script for generating a composite and plotting its topology
(b) Example output, showing how three processes are connected to five stores.

5.3 Technical specifications.

The simulations shown in Section 3, and in supplemental Section 3 were run by execut-
ing the simulation functions in bioscrape cobra/simulate.py, which can be found in the
Vivarium-notebooks repository on GitHub. The simulations shown were run on a MacBook
Pro, with a 3.1 GHz Quad-Core Intel Core i7 processor. The multi-paradigm composite
simulation shown in Section 3 was completed overnight.

5.4 Emitters

There are different Emitter classes to save simulation output, which can be specified with
arguments to Engine. RAMEmitter saves the simulation output to RAM – this is useful for
small simulations that you might not need to return to. DatabaseEmitter saves simulation
output to MongoDB. NullEmitter is an easy way to ignore all emits. Other emitters can
be developed by subclassing the Emitter class.

5.5 Ports schema

Table S9 covers the different types of ports schemas, which are declared by the processes.
Updater and divider schema have their own tables – S10 and S11 – with methods provided
by vivarium-core. In addition to these provided methods, custom updaters and dividers can
easily be defined by the user for any type of desired state.
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Table S9: Schema. A process’ ports schema method declares the schemas for variables
connected to each port. These are used to construct the stores, which apply the declared
methods during runtime.

Attribute Method
default The default value of the state variable if no initial value is provided. This

also sets the data type of the variable, including units.
updater How to apply state variable updates. Available updaters are listed in

Table S10.
divider How to divide the state variable’s values between daughter cells. Available

dividers are listed in Table S11.
emit A Boolean value that sets whether to log this variable to the simulation

database for later analysis.
properties User-defined properties such as molecular weight. These can be used for

calculating variables such as total system mass.

Table S10: Updaters available in vivarium-core. Updaters are methods by which an update
from a process is applied to a variable’s value. New updaters can be easily defined and
passed into a port schema (see Listing S5).

Name Function
accumulate The default updater. Add the update value to the current value.
set The update value becomes the new current value.
merge Update an existing dictionary with new values, and add any newly de-

clared keys.
null Do not apply the update.
nonnegative
accumulate

Add the update value to the current value, and set to 0 if the result is
negative.

dict value translates add and delete -style updates to operate on a dictionary.

Table S11: Dividers available in vivarium-core. Dividers are methods by which a variable’s
value is divided when division is triggered. New dividers can be easily defined and passed
into a port schema (see Listing S5).

Name Function
set The default divider. Daughters get the same value as the mother.
binomial Sample the first daughter’s value from a binomial distribution of the

mother’s value, and the second daughter gets the remainder.
split Divide the mother’s value in two. Odd integers will make one daughter

receive 1 more than the other daughter.
split dict Splits a dictionary of key : value pairs, with each daughter receiving a

dictionary with the same keys, but with each value split.
zero Daughter values are both set to 0.
no divide Asserts that this value should not be divided.
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5.6 Advanced coding methods

This supplementary subsection includes some code listings demonstrating more advanced
methods for specifying models with Vivarium.

Listing S4: Declaring step dependencies. Steps are declared by the Composer method
generate steps – in the case below these are three steps called s1, s2, and s3. Steps
can also be declared by generate processes and will be pulled out by the Engine. The
dependencies between steps are declared by generate flow – each step name maps to a
list of steps that it depends on. When the flow is triggered, the steps will run in an order
declared by this dependency graph.

def generate steps(self, config):
steps = {

's1': Step(),
's2': Step(),
's3': Step(),

}
return steps

def generate flow(self, config):
flow = {

's1': [],
's2': [('s1',)],
's3': [('s1',)],

}
return flow

Listing S5: Declaring custom updaters and dividers in port schema. Updaters are functions
that take a current value and a update value, and return the new value. Dividers are
functions that take a mother value, and a state, and return two values in a list – one for
each daughter.

# updater that returns a random value
def random updater(current value, update value):

return random.random()

# divider that returns a random value for each daughter
def random divider(mother value, state):

return [
random.random(),
random.random()]

def port schema(self):
ports = {

'port1': {
'variable1': {

' default': 1.0
' updater': {

'updater': random updater
}

' divider': {
'divider': random divider
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}
}

}
return ports

Listing S6: Using glob (’*’) schema to declare expected sub-store structure. In this example,
port1 is connected to sub-stores specified by a glob schema. This allows the process to read
anything that port1 connects to which adheres to its declared schema. Sub-stores can be
added and removed during runtime, and the process will see it.

def port schema(self):
ports = {

'port1': {
'∗': {

' default': 1.0
}

}
}
return ports

Listing S7: Declaring process-store connections with generate topology. A topology is a
Python dictionary with keys for processes, and subkeys for their ports which map to paths
at which they will connect to stores. A flat network does not require a path, just a store
name at the same level. The syntax used for declaring paths is a Unix-style tuple, with
every element in the tuple going further down the path from the root compartment, and ’..’
moving up a level to an outer compartment.

def generate topology(self, config):
topology = {

'process': {
'port1': ('path','to','store'), # connect port1 to inner compartment
'port2': ('..','outer store') # connect port2 to outer compartment

}
}
return topology

Listing S8: Splitting a port into multiple stores with generate topology. Variables read
through the same port can come from different stores. To do this, the port is mapped to
a dictionary with a path key that specifies the path to the default store. Variables that
need to be read from different stores each get their own path in that same dictionary. This
same approach can be used to remap variable names, so different processes can use the same
variable but see it with different names.

def generate topology(self, config):
topology = {

# split a port into multiple stores
'process1': {

'port': {
' path': ('path to','default store'),
'rewired variable': ('path to','alternate store')

}
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}
# mapping variable names in process to different name in store
'process2': {

'port': {
' path': ('path to','default store'),
'variable name': 'new variable name'

}
}

}
return topology

Listing S9: Store API. Stores can be easily constructed on-the fly using an experiment
approach we call Store-API. This allows you to add processes and variables at different
locations in a Store hierarchy, with easy path creation using indexing directly into a Store.

# create the root
store = Store({})

# create a new store at a path
store.create(['top', 'store1'])
store.create(['top', 'store2'])

# create a process at a path
store.create(['top', 'process1'], ToyProcess({}))
store.create(['top', 'process2'], ToyProcess({}))

# connect port using a relative path
store['top', 'process1'].connect('port1', 'store1')

# connect using store target through a different port
store['top', 'process1'].connect('port2', store['top', 'process1', 'port1'])

# connect using absolute path
store['top', 'process1'].connect('port2', ('top', 'store2'), absolute=True)

# put the store in the engine and run it
sim = Engine(store=store)
sim.update(100)
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