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Introduction
We cover these topics in the supplementary material that did not fit into the main manuscript:

• We retrace the proof of the H1 regularizing property of approximate inverse consistency in greater detail.

• We specify all details of the neural network architectures used in the manuscript’s experiments, including number of
features, number of layers, training proceedure, etc.

1. Detailed proof of the regularizing effect of inverse consistency
This section details our derivation for the smoothness properties emerging from approximate inverse consistency.
Denote by ΦABθ (x) the output map of a network for images (IA, IB) and by ΦBAθ (x) the output map between (IB , IA)

Recall that we add two independent spatial white noises n1(x), n2(x) ∈ RN (x ∈ [0, 1]N withN = 2 orN = 3 the dimension
of the image) of variance 1 for each spatial location to the two output maps and define ΦABθε (x) := ΦABθ (x) + εn1(ΦABθ (x))
and ΦBAθε (x) := ΦBAθ (x) + εn2(ΦBAθ (x)) with ε a positive parameter. We consider the following loss

L = λ
(
‖ΦABθε ◦ ΦBAθε − Id ‖22 + ‖ΦBAθε ◦ ΦABθε − Id ‖22

)
+ ‖IA ◦ ΦABθ − IB‖22 + ‖IB ◦ ΦBAθ − IA‖22 . (1)

Throughout this section, we give the details of the expansion in ε of the loss, thus we use the standard notations o and O w.r.t
ε → 0. We focus on the first two terms (that we denote by λLinv) since the regularizing property comes from the inverse
consistency. We expand one of the first two terms of (1) since by symmetry the other is similar. If the noise is bounded (or
with high probability in the case of Gaussian noise), we have

‖ΦABθε ◦ ΦBAθε − Id ‖22 = ‖ΦABθ ◦ ΦBAθ + εn1(ΦABθ ◦ ΦBAθ ) + dΦABθε (εn2(ΦBAθ ))− Id ‖22 + o(ε2) , (2)

where dΦ denotes the Jacobian of Φ. By developing the squares and taking expectation, we get

E[‖ΦABθε ◦ΦBAθε − Id ‖22] = ‖ΦABθ ◦ΦBAθ − Id ‖22 + ε2E[‖n1 ◦ (ΦABθε ◦ΦBAθε )‖22] + ε2E[‖dΦABθε (n2) ◦ΦBAθ ‖22] + o(ε2) ,
(3)

since by independence all the cross-terms vanish. Indeed, the noise terms have 0 mean value. The second term is constant:

E[‖n1 ◦ (ΦABθε ◦ ΦBAθε )‖22] = E[

∫
‖n1‖22(y) Jac((ΦBAθε )−1 ◦ (ΦABθε )−1)dy]

=

∫
E[‖n1‖22(y)] Jac((ΦBAθε )−1 ◦ (ΦABθε )−1) dy = const ,
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where we performed a change of variables and denoted the determinant of the Jacobian matrix as Jac. The last equality follows
from the fact that E[‖n1‖22(y)] = 1 ∀y, i.e. the variance of the noise is constant equal to 1. Last, we also use the change of
variables y = ΦABθε ◦ ΦBAθε (x). By similar computations, the last term in Equation (3) is equal to

E[‖dΦABθε (n2) ◦ ΦBAθ ‖22] =

∫
E[(n>2 d(ΦABθε )>dΦABθε (n2)) ◦ ΦBAθ ] dx . (4)

In the next formula, we use coordinate notations. For i, k ∈ 1, . . . , N , we denote by ∂iΨk the partial derivative w.r.t. the
ith coordinate of the kth component of the map Ψ : RN → RN , the notation ni(x) stands for the ith component of the noise,
i ∈ 1, . . . , N . Using these notations, we have

E[(n2(x))>d(ΦABθε )>dΦABθε (n2(x))] = E[
∑
k,i,j

ni2(x)∂i[Φ
AB
θε ]k(x)∂j [Φ

AB
θε (x)]knj2(x)]

= E[
∑
k,i

∂i[Φ
AB
θε ]k(x)∂i[Φ

AB
θε (x)]k] . (5)

In the previous equation, we used the property of the white noise n2 which satisfies null correlation in space and dimension
E[nk2(x)nk

′

2 (x′)] = 1 if (k, x) = (k′, x′) and 0 otherwise. Recognizing the trace in Formula (5), we finally get

E[‖dΦABθε (n2) ◦ ΦBAθ ‖22] =

∫
Tr([d(ΦABθε )>dΦABθε ] ◦ ΦBAθ )dx =

∫
Tr(d(ΦABθε )>dΦABθε ) Jac((ΦBAθ )−1) dy , (6)

where Tr is the trace. The last equality follows from the change of variables with ΦBAθ .
Approximation and resulting H1 regularization: Under the hypothesis that ΦABθ ◦ ΦBAθ ,ΦBAθ ◦ ΦABθ are close to

identity, one has Jac((ΦBAθ )−1) = Jac(ΦABθ ) + o(1). Therefore, the last term of (6) is approximated by∫
Tr(d(ΦABθε )>dΦABθε ) Jac((ΦBAθ )−1) dy =

∫
Tr(d(ΦABθε )>dΦABθε ) Jac(ΦABθ ) dy + o(1) . (7)

Note that we only need an approximation at zeroth order, since this term appears at second order in the penalty Linv. Assuming
this approximation holds, we use it in Eq. (6), together with the fact that, ΦABθε = ΦABθ +O(ε) to approximate at order ε2 the
quantity Linv, i.e.,

Linv =
∥∥ΦABθ ◦ ΦBAθ − Id

∥∥2
2
+
∥∥ΦBAθ ◦ ΦABθ − Id

∥∥2
2
+ε2

∥∥∥∥dΦABθ

√
Jac(ΦABθ )

∥∥∥∥2
2

+ε2
∥∥∥∥dΦBAθ

√
Jac(ΦBAθ )

∥∥∥∥2
2

+o(ε2) . (8)

Last, the square root that appears in the L2 norm is simply a rewriting of the term on the r.h.s. of Eq. (7).
We see that approximate inverse consistency leads to an L2 penalty of the gradient, weighted by the Jacobian of the map.

Generally, this is a type of Sobolev (H1 more precisely) regularization sometimes used in image registration in a different
context, see [3] for a particular instance. In particular, the H1 term is likely to control the compression and expansion
magnitude of the maps, at least on average, on the domain. Hence, approximate inverse consistency leads to an implicit H1

regularization, formulated directly on the map.
In comparison with the literature, the regularization is not formulated on the velocity field defining the displacement by

integration as it is standard in diffeomorphic registration of pairwise images since the pioneering work of [2]. In our context,
the resulting H1 penalty concerns the map itself. On the theoretical side, one can ask if such regularization makes the problem
well posed from the analytical point of view, i.e. existence of minimizers, regularity of solutions. However, few works have
explored this type of regularization directly on the map, see for instance the work in [1] in the context of optimal transport.
In contrast, H1 regularization of the velocity field has been explored resulting in a non-degenerate metric on the group of
diffeomorphisms as proven in [4].

Further discussion: When the noise level ε is turned to 0, we also observe a regularizing effect when the map is output by
a neural network. (Although not when the map is directly optimized.) Since the network does not perfectly satisfy the inverse
consistency soft constraint, we conjecture that the resulting error behaves like the white-noise we studied above, thereby
explaining the observed regularization.

Another important challenge is to understand the regularization bias which comes from the population effect. In this case,
we conjecture that this approach makes learning the regularization metric more adaptive to the given population data.

However, a fully rigorous theoretical understanding of the regularization effect due to the data population and its link with
inverse consistency when no noise is used is important, but beyond our scope here.
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2. Network Architectures
In this manuscript we refer to four neural network architectures: MLP, Encoder-Decoder, U-Net, and Convolutions. The

details of each are provided next.

2.1. MLP

MLP refers to a multilayer perceptron with no special structure. The input, a pair of images, is flattened into a vector.
Next, it is passed through hidden layers of size 8000 and 3000, each followed by a ReLU nonlinearity. The output layer is
of dimension 2 · Image Width · Image Height, which is reshaped into a grid of displacement vectors from which Φ is calculated.

2.2. Encoder-Decoder

The Encoder-Decoder used in this manuscript is composed of a convolutional encoder and decoder, resembling a U-Net
with no skip connections. Each layer consists of a stride 2 convolution or transpose convolution with kernel size 3x3 in the
encoder and 4x4 in the decoder, followed by a ReLU nonlinearity. The layers have 16, 32, 64, 256, and 512 features in the
encoder, and 256, 128, 64, 32, and 16 features in the decoder. As in all cases, the output is a grid of displacement vectors.

2.3. ConvOnly

This refers to an architecture consisting of six convolutional layers, each with 5x5 kernel, ReLU nonlinearity, and 10 output
features. No downsampling or upsampling is performed. Each layer is fed as input the concatenation of the outputs of all
previous layers.

2.4. U-Net

This is a U-Net with skip and residual connections. The convolutional layers have the same shapes and output dimensions
as the encoder decoder network, but use Leaky ReLU activation placed before convolution instead of after. In addition,
batch normalization is inserted before each convolution, and a residual connection is routed around each convolution, using
upsampling or downsampling as required to match the image size.

For all four of these architectures the weights of the final layer of the neural network are initialized to zero instead of
randomly, such that training begins with the network outputting a displacement field of zero. The code specifying these
architectures is included in the file networks.py

3. Software Architecture
In the codebase that we developed for this paper, registration algorithms are implemented as subclasses of

pytorch.nn.Module. A registration algorithm’s forward method takes as input a batch of pairs of images to reg-
ister IA and IB , and returns a python function Φ[IA, IB ] : RN → RN that maps a batch of vectors from the space of image B
to the space of image A. For example, to use a neural network that outputs a displacement field as a registration algorithm, we
wrap it in the class FunctionFromVectorField:

c l a s s F u n c t i o n F r o m V e c t o r F i e l d ( nn . Module ) :
def i n i t ( s e l f , n e t ) :

super ( F u n c t i o n F r o m V e c t o r F i e l d , s e l f ) . i n i t ( )
s e l f . n e t = n e t

def f o r w a r d ( s e l f , image A , image B ) :
v e c t o r f i e l d p h i = s e l f . n e t ( image A , image B )

def r e t ( i n p u t ) :
re turn i n p u t + compute warped image mul t iNC (

v e c t o r f i e l d p h i , i n p u t , s e l f . s p a c i n g , 1
)

re turn r e t
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where compute_warped_image_multiNC interpolates between the vectors of its first argument at tensor of positions
specified by its second argument. This code corresponds to equation (11) in the manuscript. Note especially that in the returned
function ret, we add the input to the interpolated displacement. We do not attempt to interpolate a grid representation of
a map (ie, a voxelized displacement field added to a voxelized identity map), as a displacement field can be extrapolated
naturally, but a map cannot.

We find this organizational convention to be highly composable: this approach makes it simple to construct a registration
algorithm that expands on the behavior of a component registration algorithm. For example, to operate on a high resolution
pair of images with a low resolution registration algorithm, we use a wrapper with the following simple forward method:

def f o r w a r d ( s e l f , image A , image B ) :
x = s e l f . a v g p o o l ( x , 2 , c e i l m o d e =True )
y = s e l f . a v g p o o l ( y , 2 , c e i l m o d e =True )
re turn s e l f . w r a p p e d a l g o r i t h m ( x , y )

Since the output is a fully fledged function : RN → RN which is resolution agnostic, it does not need to be modified by this
method and can simply be passed along.

4. Composition of transforms
We have defined a registration algorithm as a functional Φ which takes as input two functions RN → R, IA and IB ,

and outputs a map RN → RN that aligns them, specifically satisfying IA ◦ Φ[IA, IB ] ' IB . Most registration algorithms
have multiple steps, such as an affine step followed by a deformable step, and so it is useful to define how to compose two
algorithms (i.e., two procedures for computing a map from a pair of images) Φ and Ψ. The most obvious approach to this
problem is to apply Φ to the problem {IA, IB}, yielding a function ΦAB such that IA ◦ ΦAB ' IB . Then, the intermediate
image ĨA := IA ◦ ΦAB is computed using the function ΦAB that was found, and the second registration problem is declared
to be registering {ĨA, IB} by computing a map using the algorithm Ψ. Putting this together, we set out to define an operator
TwoStep satisfying the equation

IA ◦ TwoStep{Φ,Ψ}[IA, IB ] = (ĨA) ◦Ψ[ĨA, IB ] ' IB , (9)

IA ◦ TwoStep{Φ,Ψ}[IA, IB ] = (IA ◦ Φ[IA, IB ]) ◦Ψ[IA ◦ Φ[IA, IB ], IB ] ' IB . (10)

Since composition is associative, we can move the parentheses and isolate TwoStep as

TwoStep{Φ,Ψ}[IA, IB ] = Φ[IA, IB ] ◦Ψ[IA ◦ Φ[IA, IB ], IB ] . (11)

This is implemented in our code base as another registration algorithm with the following forward method

def f o r w a r d ( s e l f , image A , image B ) :
p h i = s e l f . n e t P h i ( image A , image B )
p h i v e c t o r f i e l d = p h i ( s e l f . i d e n t i t y M a p )
s e l f . image A comp phi = compute warped image mul t iNC (

image A , p h i v e c t o r f i e l d , s e l f . s p a c i n g , 1
)
p s i = s e l f . n e t P s i ( s e l f . image A comp phi , image B )
re turn lambda i n p u t : p h i ( p s i ( i n p u t ) )

5. Training Procedure for synthetic data and MNIST
5.1. Regularization by approximate inverse consistency

To investigate the regularizing effects of approximate inverse consistency, we register an image of a circle and a triangle
by three methods: By directly optimizing the forward and reverse displacement vector fields, by directly optimizing the
displacement vector fields with added noise, and by optimizing a U-Net that outputs a displacement vector field over a dataset
that includes the image of a circle and triangle. This dataset was generated as follows: a center (cx, cy) for each image is
sampled uniformly from [0.4, 0.7]× [0.4, 0.7], a radius r is sampled from [0.2, 0.4], and an angle θ from [0, 2π]. Each point in
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the image is then associated with an intensity by one of the following formulas: Half of the generated images are chosen to be
circles and their intensities are set via the expression

tanh
(
−40 · (

√
(x− cx)2 + (y − cy)2 − r)

)
, (12)

while the remainder are chosen to be triangles and their intensities are set to

tanh

(
−40 · (

√
(x− cx)2 + (y − cy)2 − r ·

cos(π3 )

cos((arctan 2(x− cx, y − cy) + θ)%( 2π
3 )− π

3 )

)
. (13)

In each case, the ADAM optimization algorithm is chosen, with a learning rate of 0.0001. While training the U-Net, a batch
size of 128 is used. The code to train the U-Net is included as training_scripts/triangle_example.py, and the
code to directly optimize the deformation fields is included as notebooks/NoNetwork.ipynb

5.2. Regularization for different networks

For all architectures and choices of λ, the following training procedure was followed. The network is trained in pytorch
using the Adam algorithm, a batch size of 128, and a learning rate of 0.0001, for 18750 steps (400 epochs). The self contained
notebook to generate/download the datasets, train each combination and generate Figure 6 is included in the supplementary
files as notebooks/InverseConsistencyGenerateFigure6.ipynb. This code can be downloaded and run on
its own, as it only depends on pytorch and matplotlib.

6. Training Procedure for our OAI knee results
6.1. Automatic increase of λ during training

During our initial experiments with training our registration network on real data, we found that, in the event that an initial
value of λ was selected that was too low, leading to an unacceptable degree of folding, we were able to increase λ and continue
training the network, suppressing the folds without significantly reducing the achieved DICE score. However, when we
repeated the training with λ beginning at this high value, training proceeded much more slowly due to the ill-conditioned nature
of solving a constrained optimization problem using a large quadratic penalty. This was never an issue when registering 2-D
datasets, because it was feasible to train on them for a sufficient number of iterations for Adam optimization to automatically
resolve the ill conditioning using a small step size. However, on the 3-D dataset this issue threatened to make training times
impractical. Our initial solution to this problem was to begin training with λ small, and manually increase λ during training
whenever the number of folds became large. While this worked well, it introduced a large number of hyperparameters in the
form of a complex training schedule, defeating the purpose of our approach. Instead, we decided to select as a hyperparameter
the acceptable number of folds, and increase λ at each iteration of training if the number of folds measured that iteration
exceeded the decided-upon acceptable number of folds.

6.2. Details

The “acceptable number of folds” hyperparameter was set to 200. 200 was the first value tried for this hyperparameter,
however this choice was informed by the outcome of previous experiments where λ was set manually.

First, the ‘low resolution network’ is composed of two U-Nets that each take as input a pair of knee images at half resolution,
and output a displacement map. These are combined using the operator TwoStep as described above. The low resolution
network is trained end to end with λ incremented whenever the batch-mean number of folds exceeds 200, as described above.
The batch size used is 128, the learning rate is set to 0.00005, and the network is trained for 16,000 steps. This low resolution
pretraining serves to greatly reduce the overall time needed to train the neural network, since much larger batches of images
can fit into GPU memory. This step is performed by the included script training_scripts/double_deformable_
knee.py, and the resulting loss curve is reproduced here in Figure 2.

Second, the ‘low resolution network’ is wrapped with a class that downsamples input images, and then combined with a U-
Net that takes as input full resolution images, again using the operator TwoStep. The weights of the low resolution network are
frozen, and the full resolution network is trained for 75,000 steps, with a learning rate of 0.00005 and a batch size of 16. This
step is performed by the included script training_scripts/hires_finetune_frozen_lowres.py. The loss
curve associated with this step is presented in Figure 2. Finally, evaluation of the low resolution and full networks is performed
using the included notebooks. DoubleDeformableDICE.ipynb and DoubleDeformable-HiresDICE.ipynb
respectively. Training was done on a machine with 4 RTX 3090 GPUs, taking 2 days for the low resolution component and 4
days for the high resolution component.
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Figure 1. Architectures used for our OAI results. The low resolution component inside DownsampleInput only requires an 8th the memory
and computing power of the whole network, and pretraining it alone makes our overall approach computationally feasible on a single 4 GPU
machine. Once it is pretrained, it is plugged into the larger model as shown.

References
[1] Luigi De Pascale, Jean Louet, and Filippo Santambrogio. The monge problem with vanishing gradient penalization: Vortices and
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Low Resolution Pretraining

High Resolution Fine Tuning

High Resolution Fine Tuning (Second Step)

Figure 2. Training curves for our result on OAI dataset. It is interesting that the required value of λ to suppress folding increases over the
course of training, and in particular increases rapidly once we begin training in high resolution. Nonetheless, our approach of incrementing
λ by a fixed amount whenever the number of folds in a batch exceeds a threshold successfully generates smooth transforms.
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