# **Supplementary information**

# Programming cell-free biosensors with DNA strand displacement circuits

In the format provided by the authors and unedited

# Supplementary Information for Programming Cell-Free Biosensors with DNA Strand Displacement Circuits

Jaeyoung K. Jung,<sup>1,2,3</sup> Chloé M. Archuleta,<sup>1,2,3</sup> Khalid K. Alam,<sup>4</sup> and Julius B. Lucks<sup>1,2,3,4,5,%</sup>

- 1 Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- 2 Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- 3 Center for Water Research, Northwestern University (Evanston, IL, USA)
- 4 Stemloop, Inc. (Evanston, IL, USA)
- 5 Interdisciplinary Biological Sciences Graduate Program, Northwestern University (Evanston, IL, USA)

% correspondence: jblucks@northwestern.edu



Supplementary Fig. 1 | Micromolar Equivalent Fluorescein (MEF) standardization. Arbitrary units of fluorescence were standardized to  $\mu$ M concentrations of fluorescein using a NIST traceable standard (see **Materials and Methods**). In the representative example shown here, a dilution series of fluorescein was prepared in buffer (100 mM sodium borate, pH 9.5) and measured on a plate reader using the same settings for measuring 6' FAM signal (495 nm excitation, 520 nm emission) from the DNA signal gates. The resulting curve, calculated over the linear range of 0–3.125  $\mu$ M, was then used to standardize fluorescence measured from ROSALIND reactions with TMSD outputs. The standard curve was generated for each plate reader and each measurement setting (see **Materials and Methods**). Data are shown for n=9 replicates of each sample, which were prepared in three batches of three replicates. Error bars indicate the average of these replicates ± standard deviation (**Supplementary Data 3**).



**Supplementary Fig. 2 | TMSD by Invading RNA and DNA strands**. Titration of a purified **a**, InvadeR (RNA) and **b**, InvadeD (DNA) into reactions containing 10  $\mu$ M of the DNA signal gate in annealing buffer (100 mM potassium acetate, 30 mM HEPES) after 15 minutes. **c**, Secondary structures, minimum free energies and base pairing probabilities of the InvadeR and InvadeD molecules predicted by NUPACK<sup>1</sup> at 37° C. **d**, An urea-PAGE gel of purified InvadeR and InvadeD. The higher molecular weight band in the InvadeR lane likely corresponds to **e**, a duplex formed by two InvadeR molecules interacting with each other, as predicted by NUPACK<sup>1</sup>. Data shown in **a** and **b** are n=3 independent biological replicates each plotted as a point with raw fluorescence values standardized to MEF ( $\mu$ M fluorescein). Each bar height represents the average of the replicates, and error bars indicate the average of the replicates ± standard deviation. Data shown in **d** are a representative of n=3 independent biological replicates. The uncropped, unprocessed gel image shown in **d** is available as **Supplementary Data 2**.



Supplementary Fig. 3 | Adding a T7 terminator does not notably improve the initial speed of ROSALIND with TMSD. a, Secondary structure, minimum free energy and base pairing probabilities of the InvadeR variant 1 (dashed backbone) that includes the T7 terminator (solid backbone) as predicted by NUPACK<sup>1</sup> at 37 °C. b, Comparison of the kinetics of InvadeR variant 1 with and without the T7 terminator. All data shown are n=3 independent biological replicates each plotted as a line with raw fluorescence values standardized to MEF (µM fluorescein). Shading indicates the average of the replicates ± standard deviation.



**Supplementary Fig. 4 | A molecular analog-to-digital converter circuit enables ligand quantification. a**, An electronic analog-to-digital converter (ADC) circuit takes in a numerical voltage value (analog input) and generates a binary output of 1s and 0s (digital output). It is built by configuring a series of comparator circuits, each comparing the input voltage to a variable reference voltage to produce a binary output of 1 if the input exceeds the reference value. By setting the threshold voltages ( $V_{TH}$ ) of the comparators to be increasing along the series, the input voltage value is converted into an array of bits with more 1's representing a higher voltage. **b**, A molecular version of an ADC circuit can be built by implementing TMSD thresholding circuits that compare the input target ligand concentration to a pre-defined threshold value. By titrating the pre-defined threshold value, the molecular ADC circuit can generate different bit arrays to indicate the concentration range of the target ligand.



**Supplementary Fig. 5 | Invading RNA Design Features.** Using a NIMPLY gate as an example, we show five important design features of an Invading RNA strand for engineering RNA-based TMSD reactions. The transcription rate of the Invading RNA strand can be tuned by altering the initially transcribed sequences immediately following the T7 promoter sequence.<sup>2</sup> The secondary structure of the Invading RNA strand also plays an essential role in the kinetic reaction rate of TMSD – if the toehold binding region is sequestered within an RNA structure, it significantly slows down the strand displacement process. Invading RNAs can be preferentially biased to react with specific DNA gates over others by two different methods: 1) lengthening the toehold of the preferred gate to speed TMSD kinetics, and 2) introducing mismatches in the preferred gate to create a thermodynamic driver for sequestering the invading strand. Finally, clamps that insulate a toehold region from fraying are important in preventing leak from unwanted TMSD reactions.

Conrad, T., et al., Maximizing transcription of nucleic acids with efficient T7 promoters. Commun Biol, 2020. 3(1): p. 439.

#### **Supplementary Data File Descriptions**

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File1\_Sequences.xlsx – DNA and Protein sequences used in this study.

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File2\_Gel\_Image.zip – Raw Urea-PAGE gel image shown in **Supplementary Fig. 2d**.

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File3\_SI\_Source\_Data.xlsx – Calibrated plate reader data for supplementary figures.

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File4\_Logic\_Gate\_Designs.zip – Designs and sequences of all logic gates built in this study and their sources.

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File5\_Logic\_Gate\_Conditions.xlsx – Experimental conditions (ligands, aTFs, DNA templates and DNA gates concentrations) used for all logic gates and their kinetic parameters used for the ODE simulations.

Jung\_TMSD\_ROSALIND\_Supp\_Data\_File6\_Jupyter\_Notebooks.zip – Jupyter notebook codes used to simulate results shown in **Extended Data 5**, **Extended Data 8** and **Fig. 6**.

# Supplementary Method for Programming Cell-Free Biosensors with DNA Strand Displacement Circuits

Jaeyoung K. Jung<sup>1,2,3</sup>, Chloé M. Archuleta<sup>1,2,3</sup>, Khalid K. Alam<sup>4</sup> and Julius B. Lucks<sup>1,2,3,4,5,\*</sup>

- 1 Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- 2 Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- 3 Center for Water Research, Northwestern University (Evanston, IL, USA)
- 4 Stemloop, Inc. (Evanston, IL, USA)
- 5 Interdisciplinary Biological Sciences Graduate Program, Northwestern University (Evanston, IL, USA)
- \* correspondence: jblucks@northwestern.edu

#### **ODE Model of Basic Components of TMSD Logic Circuit**

In this section, we model three representative logic gates that can be implemented with the ROSALIND-TMSD system using Ordinary Differential Equations. A similar workflow is used for each of the gates described in Extended Data 5.

#### **ROSALIND-TMSD NOT Gate for Tetracycline**

For the first system, we will model a NOT gate for tetracycline using a dual-template system. Equations are derived using kinetic rates of T7 RNAP-DNA binding, TetR-*tetO* binding, TetR-tetracycline binding, TMSD reactions, and T7 RNAP-mediated IVT reactions. The following variables will be used:

| Abbreviation | Description                                               |
|--------------|-----------------------------------------------------------|
| $D_{unreg}$  | Unregulated DNA template                                  |
| $D_{tetO}$   | Regulated DNA template with tetO operator sequence        |
| RNAP         | T7 RNA Polymerase                                         |
| $RD_{unreg}$ | T7 RNAP and unregulated DNA template bound complex        |
| $RD_{tetO}$  | T7 RNAP and tetO-regulated DNA template bound complex     |
| TetR         | unbound, free TetR dimer                                  |
| TetRD        | TetR dimer bound to one tetO                              |
| tet          | unbound, free tetracycline                                |
| TetR-tet     | one tet ion bound to TetR dimer                           |
| $InvR_U$     | transcribed invading RNA strand from unregulated template |
| $InvR_T$     | transcribed invading RNA strand from tetO template        |
| $Gated_T$    | $InvR_T$ and $InvR_U$ bound complex                       |
| SD           | fluorescent DNA strand from signal gate                   |
| Q            | InvadeR and FAM heteroduplex                              |
| RQ           | signal gate                                               |

In this model, we assume:

- 1. One-to-one binding of T7 RNAP and T7 promoter on the DNA template
- 2. The DNA template can be bound to either RNAP or TF, but not both.
- 3. One-to-one binding of TetR dimer and tetO on the DNA template
- 4. One-to-one binding of TetR dimer and a tetracycline ion [5]
- 5. TetR dimer can be bound to either *tetO* on the DNA template or tetracycline, but not both.
- 6. All TMSD reactions are irreversible.
- 7. Fraying within each gate is ignored.

With these assumptions, we have the following reactions and ODEs in the system:

#### **Reactions:**

#### **Unregulated Template**

| $RNAP + D_{unreg}$ | $\xleftarrow{k_{bind}}{k_{unbind}}$ | $RD_{unreg}$ |
|--------------------|-------------------------------------|--------------|
|--------------------|-------------------------------------|--------------|

 $RD_{unreg} \xrightarrow{k_{m,unreg}} InvR_U + RNAP + D_{unreg}$ 

#### tetO-Regulated Template

$$TetR + D_{tetO} \xrightarrow{k_{rep,T}} TetRD$$

$$TetR + tet \quad \xleftarrow{k_{ind,T}}_{k_{unin,T}} \quad TetR\text{-}tet$$

$$RNAP + D_{tetO} \xrightarrow{k_{bind}} RD_{tetO}$$

$$RD_{tetO} \xrightarrow{k_{m,tetO}} InvR_T + RNAP + D_{tetO}$$

#### Strand Displacements

$$InvR_T + InvR_U \xrightarrow{k_{SD,NOT}} Gated_T$$
$$InvR_U + RQ \xrightarrow{k_{SD,mis}} SD + Q$$

**ODEs:** 

$$\frac{d[RNAP]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{m,tetO}[RD_{tetO}] + k_{unbind}[RD_{unreg}] - k_{bind}[D_{unreg}][RNAP] + k_{m,unreg}[RD_{unreg}]$$

$$\frac{d[D_{unreg}]}{dt} = k_{unbind}[RD_{unreg}] - k_{bind}[D_{unreg}][RNAP] + k_{m,unreg}[RD_{unreg}]$$
$$\frac{d[D_{tetO}]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{derep,T}[TetRD]$$
$$- k_{rep,T}[TetR][D_{tetO}] + k_{m,tetO}[RD_{tetO}]$$

 $\frac{d[TetR]}{dt} = k_{derep,T}[TetRD] - k_{rep,T}[D_{tetO}][TetR] - k_{ind,T}[TetR][tet] + k_{unin,T}[TetR-tet]$ 

$$\begin{aligned} \frac{d[TetRD]}{dt} &= k_{rep,T}[D_{tetO}][TetR] - k_{derep,T}[TetRD] \\ \frac{d[tet]}{dt} &= k_{unin,T}[TetR-tet] - k_{ind,T}[TetR][tet] \\ \frac{d[TetR-tet]}{dt} &= k_{ind,T}[TetR][tet] - k_{unin,T}[TetR-tet] \\ \frac{d[RD_{tetO}]}{dt} &= k_{bind}[D_{tetO}][RNAP] - k_{unbind}[RD_{tetO}] - k_{m,tetO}[RD_{tetO}] \\ \frac{d[RD_{unreg}]}{dt} &= k_{bind}[D_{unreg}][RNAP] - k_{unbind}[RD_{unreg}] - k_{m,unreg}[RD_{unreg}] \\ \frac{d[InvR_T]}{dt} &= k_{m,tetO}[RD_{tetO}] - k_{SD-NOT}[InvR_U][InvR_T] \end{aligned}$$

 $\frac{d[InvR_U]}{dt} = k_{m,unreg}[RD_{unreg}] - k_{SD-NOT}[InvR_T][InvR_U] - k_{SD-mis}[InvR_U][RQ]$ 

$$\frac{d[Gated_T]}{dt} = k_{SD-NOT}[InvR_T][InvR_U]$$
$$\frac{d[SD]}{dt} = k_{SD-mis}[RQ][InvR_U]$$
$$\frac{d[Q]}{dt} = d[SD]$$
$$\frac{d[RQ]}{dt} = -d[SD]$$

This set of ODEs was then run using an ODE solver function, *odeint* from the Scipy.Integrate package in Python 3.7.6. using the rate parameters shown below. The

initial concentrations were to set to experimental values also shown below, with all intermediates set to 0.

## **Parameters:**

| Parameter              | Value         | Reference and Note    |
|------------------------|---------------|-----------------------|
| k <sub>m,tetO</sub>    | 0.1 /sec      | [1]                   |
| $\mathbf{k}_{m,unreg}$ | 0.03 /sec     | see footnote <b>a</b> |
| $\mathbf{k}_{bind}$    | 56 /µM-sec    | [2]                   |
| $\mathbf{k}_{unbind}$  | 0.2 /sec      | [2]                   |
| $\mathbf{k}_{SD-mis}$  | 0.004 /µM-sec | see footnote <b>b</b> |
| $\mathbf{k}_{SD-NOT}$  | 0.08 /µM-sec  | see footnote <b>c</b> |
| $\mathbf{k}_{rep,T}$   | 2.98 /µM-sec  | [4]                   |
| $\mathbf{k}_{derep,T}$ | 0.001 /µM-sec | [4]                   |
| $\mathbf{k}_{ind,T}$   | 4.0 /µM-sec   | see footnote <b>d</b> |
| $\mathbf{k}_{unin,T}$  | 0.022 /sec    | see footnote <b>d</b> |

# Notes:

- a This transcription rate is estimated to be 2.5 times slower than that of  $k_{m,tetO}$  because the initially transcribed nucleotides have a slower transcriptional efficiency due to sequence [5].
- b The estimated strand displacement rate for a 4-nt toehold is  $0.04 /\mu$ M-sec [3]. To account for the energetic penalty from the encoded basepair mismatch between the unregulated transcript and the signal gate, we estimate a roughly 10-fold reduction in strand displacement rate as a result.
- c The regulated RNA transcript encodes the matching base pair that the unregulated transcript lacks, so we estimate a roughly 2-fold increase in strand displacement rate as a result.
- d These values were estimated to correlate with experimental results.

| Species       | Value    |
|---------------|----------|
| $[D_{tetO}]$  | 0.1 μM   |
| $[D_{unreg}]$ | 0.025 μM |
| [RNAP]        | 0.1 μM   |
| [TetR]        | 5.0 μM   |
| [tet]         | 20 μM    |
| [RQ]          | 5.0 μM   |

# **Initial Conditions:**

#### **References:**

- 1. McClure, W. R., *Rate-limiting steps in RNA chain initiation*. PNAS, 1980. **77**(10): p.5634-8.
- 2. Ujvari, A. and C. T. Martin, *Thermodynamics and kinetic measurements of promoter biding by T7 RNA polymerase*. Biochemistry, 1996. **35**(46): p.14574-82.
- 3. Srinivas, N., et al., *On the biophysics and kinetics of toehold-mediated DNA strand displacement.* Nucleic Acids Research, 2013. **41**(22): p.10641-58
- 4. Kedracka-Krok, S. et al., *Kinetics and Equilibrium Studies of Tet Repressor-Operator Interaction.* Journal of Protein Chemistry, 1998.
- 5. Conrad, T., et al., *Maximizing transcription of nucleic acids with efficient T7 promoters*. Commun. Biol., 2020. **3**(1):p. 439.

#### **ROSALIND-TMSD AND Gate**

For this system, we will model an AND gate for tetracycline and zinc using a dualtemplate system. Equations are derived using kinetic rates of T7 RNAP-DNA binding, TetR-*tetO* binding, TetR-tetracycline binding, SmtB-*smtO* binding, SmtB-Zn binding, TMSD reactions, and T7 RNAP-mediated IVT reactions. The following variables will be used:

| Abbreviation | Description                                                  |
|--------------|--------------------------------------------------------------|
| $D_{tetO}$   | Regulated DNA template with tetO operator sequence           |
| $D_{smtO}$   | Regulated DNA template with smtO operator sequence           |
| RNAP         | T7 RNA Polymerase                                            |
| $RD_{tetO}$  | T7 RNAP and tetO-regulated DNA template bound complex        |
| TetR         | unbound, free TetR dimer                                     |
| $RD_{smtO}$  | T7 RNAP and smtO-regulated DNA template bound complex        |
| TetR         | unbound, free TetR dimer                                     |
| SmtB         | unbound, free SmtB tetramer                                  |
| TetRD        | TetR dimer bound to one tetO                                 |
| SmtBD        | SmtB tetramer bound to one smtO                              |
| tet          | unbound, free tetracycline                                   |
| Zn           | unbound, free zinc ion                                       |
| TetR-tet     | one tet ion bound to TetR dimer                              |
| SmtB-Zn      | one Zn ion bound to SmtB tetramer                            |
| $InvR_T$     | transcribed invading RNA strand from tetO template           |
| $InvR_S$     | transcribed invading RNA strand from smtO template           |
| AND-Gate     | dsDNA containing InvD and toeholds for $InvR_T$ and $InvR_S$ |
| $InvR_D$     | strand-displaced ssDNA from AND gate                         |
| $Gated_{TS}$ | $InvR_T$ and $InvR_S$ bound to AND-Gate                      |
| SD           | fluorescent DNA strand from signal gate                      |
| Q            | InvadeR and FAM heteroduplex                                 |
| RQ           | signal gate                                                  |

In this model, we assume:

- 1. One-to-one binding of T7 RNAP and T7 promoter on the DNA template
- 2. The DNA template can be bound to either RNAP or TF, but not both.
- 3. One-to-one binding of TetR dimer and tetO on the DNA template
- 4. One-to-one binding of SmtB tetramer and *smtO* on the DNA template (see footnote a)
- 5. One-to-one binding of TetR dimer and a tetracycline ion
- 6. One-to-one binding of SmtB tetramer and a Zn ion (see footnote **a**)

- 7. TetR dimer can be bound to either *tetO* on the DNA template or tetracycline, but not both.
- 8. SmtB tetramer can be bound to either *smtO* on the DNA template or Zn, but not both.
- 9. All TMSD reactions are irreversible.
- 10. InvD can only be strand displaced from AND gate with both  $InvR_T$  and  $InvR_S$
- 11. Fraying within each gate is ignored.

With these assumptions, we have the following reactions and ODEs in the system:

# **Reactions:**

# tetO-regulated Template

$$\begin{array}{ccc} TetR + D_{tetO} & & \overleftarrow{k_{rep,T}} & TetRD \\ \\ TetR + tet & & \overleftarrow{k_{ind,T}} & TetR-tet \\ \\ RNAP + D_{tetO} & & \overleftarrow{k_{bind}} & RD_{tetO} \\ \\ RD_{tetO} & & \overleftarrow{k_{m,tetO}} & InvR_T + RNAP + D_{tetO} \end{array}$$

#### smtO-Regulated Template

 $SmtB + D_{smtO} \xrightarrow{k_{rep,S}} SmtBD$ 

$$SmtB + Zn \xrightarrow{k_{ind,S}} SmtB - Zn$$

$$RNAP + D_{smtO} \xrightarrow{k_{bind}} RD_{smtO}$$

$$RD_{smtO} \xrightarrow{k_{m,smtO}} InvR_S + RNAP + D_{smtO}$$

#### Strand Displacements

 $InvR_T + InvR_S + AND\text{-}Gate \xrightarrow{k_{SD,AND}} Inv_D + Gated_{TS}$ 

$$InvR_D + RQ \xrightarrow{\kappa_{SD}} SD + Q$$

# **ODEs:**

$$\frac{d[RNAP]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{m,tetO}[RD_{tetO}] + k_{unbind}[RD_{smtO}] - k_{bind}[D_{smtO}][RNAP] + k_{m,smtO}[RD_{smtO}]$$

$$\frac{d[D_{tetO}]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{derep_T}[TetRD] - k_{rep_T}[TetR][D_{tetO}] + k_{m,tetO}[RD_{tetO}]$$

$$\frac{d[D_{smtO}]}{dt} = k_{unbind}[RD_{smtO}] - k_{bind}[D_{smtO}][RNAP] + k_{dereps}[SmtBD] - k_{reps}[SmtB][D_{smtO}] + k_{m,smtO}[RD_{smtO}]$$

$$\frac{d[TetR]}{dt} = k_{derep_T}[TetRD] - k_{rep_T}[D_{tetO}][TetR] - k_{ind_T}[TetR][tet] + k_{unin_T}[TetR-tet]$$

$$\begin{aligned} \frac{d[SmtB]}{dt} &= k_{dereps}[SmtBD] - k_{reps}[D_{smtO}][SmtB] - k_{inds}[SmtB][Zn] + k_{unins}[SmtB-Zn] \\ &= \frac{d[TetRD]}{dt} = k_{repr}[D_{tetO}][TetR] - k_{derepr}[TetRD] \\ &= \frac{d[SmtBD]}{dt} = k_{reps}[D_{smtO}][SmtB] - k_{dereps}[SmtBD] \\ &= \frac{d[tet]}{dt} = k_{uninr}[TetR-tet] - k_{indr}[TetR][tet] \\ &= \frac{d[Zn]}{dt} = k_{unins}[SmtB-Zn] - k_{inds}[SmtB][Zn] \\ &= \frac{d[TetR-tet]}{dt} = k_{indr}[TetR][tet] - k_{uninr}[TetR-tet] \\ &= \frac{d[SmtB-Zn]}{dt} = k_{indr}[TetR][tet] - k_{uninr}[TetR-tet] \\ &= \frac{d[SmtB-Zn]}{dt} = k_{inds}[SmtB][Zn] - k_{unins}[SmtB-Zn] \\ &= \frac{d[RD_{tetO}]}{dt} = k_{bind}[D_{tetO}][RNAP] - k_{unbind}[RD_{tetO}] - k_{m,tetO}[RD_{tetO}] \\ &= \frac{d[RD_{smtO}]}{dt} = k_{m,tetO}[RD_{tetO}] - k_{SD-AND}[InvR_S][InvR_T][AND-Gate] \\ &= \frac{d[InvR_T]}{dt} = k_{m,smtO}[RD_{smtO}] - k_{SD-AND}[InvR_S][InvR_T][AND-Gate] \\ &= \frac{d[InvR_S]}{dt} = k_{sD-AND}[InvR_S][InvR_T][AND-Gate] - k_{SD}[InvD][RQ] \end{aligned}$$

$$\frac{d[AND-Gate]}{dt} = -k_{SD-AND}[InvR_S][InvR_T][AND-Gate]$$
$$\frac{d[SD]}{dt} = k_{SD}[InvD][RQ]$$
$$\frac{d[Q]}{dt} = d[SD]$$
$$\frac{d[RQ]}{dt} = -d[SD]$$

This set of ODEs was then run using an ODE solver function, *odeint* from the Scipy.Integrate package in Python 3.7.6. using the rate parameters shown below. The initial concentrations were to set to experimental values also shown below, with all intermediates set to 0.

#### **Parameters:**

| Parameter     | Value         | Reference and Note    |
|---------------|---------------|-----------------------|
| $k_{m,tetO}$  | 0.1 /sec      | [1]                   |
| $k_{m,smtO}$  | 0.04 /sec     | see footnote <b>b</b> |
| $k_{bind}$    | 56 /µM-sec    | [2]                   |
| $k_{unbind}$  | 0.2 /sec      | [2]                   |
| $k_{SD}$      | 0.04 /µM-sec  | [3]                   |
| $k_{SD-AND}$  | 0.08 /µM-sec  | see footnote <b>c</b> |
| $k_{rep,T}$   | 2.98 /µM-sec  | [4]                   |
| $k_{derep,T}$ | 0.001 /µM-sec | [4]                   |
| $k_{ind,T}$   | 4.0 /µM-sec   | see footnote <b>d</b> |
| $k_{unin,T}$  | 0.022 /sec    | see footnote <b>d</b> |
| $k_{rep,S}$   | 3.0 /µM-sec   | see footnote <b>e</b> |
| $k_{derep,S}$ | 0.18 /µM-sec  | see footnote <b>e</b> |
| $k_{ind,S}$   | 80 /µM-sec    | see footnote <b>f</b> |
| $k_{unin,S}$  | 0.1 /sec      | see footnote <b>f</b> |

#### Notes:

a We have found conflicting evidence from literature that reports different DNA-SmtB-zinc binding mechanisms. For instance, *Kar*, *S. R., et al* reports that SmtB predominantly forms a dimer and binds two zinc ions per subunit (therefore, one SmtB dimer binding 4 total zinc ions) [5]. On the other hand, *VanZile, M. L. et al* reports that SmtB binds one zinc ion per monomer [6]. A more recent literature from *Busenlenher, L. S. et al* reports that two SmtB dimers tightly bind a single 12-2-12 inverted repeat of the *smtO* sequence [7]. We have found that following the mechanism from the most recent literature [7] where SmtB forms a tetramer to bind a single *smtO* site matches our experimental observations the best. We also suspect that while a single SmtB tetramer can bind multiple zinc ions at a time, not all zinc ions are needed to induce the transcription regulated by the SmtB tetramer. Following this logic, we used a model where one zinc ion can bind to the SmtB tetramer to induce the transcription of the invading RNA, which precisely matched our experimental observations.

- b This transcription rate is estimated to be 2 times slower than that of  $k_{m,tetO}$  because the initially transcribed nucleotides have a slower transcriptional efficiency due to sequence [8].
- c The estimated strand displacement rate for a 4-nt toehold is 0.04 / $\mu$ M-sec [3]. To account for the favorable energetics from the increased basepairs of the AND gate, we estimate a roughly 2-fold increase in strand displacement rate as a result.
- d These values were estimated to correlate with experimental results.
- e There was no literature with this information available to the best of our knowledge. We have decided to estimate these values based on a reasonable range of a  $K_d$  value for a transcriptional repressor, which is typically in the nanomolar range. Currently, the rate constants are set so that the  $K_d = \frac{k_{derepress}}{k_{repress}} \approx 60nM$ .
- f These values have been estimated to fit the association constants of SmtB-Zinc reported in [9].

| Species               | Value   |
|-----------------------|---------|
| $[\mathbf{D}_{tetO}]$ | 0.05 μM |
| $[\mathbf{D}_{smt}]$  | 0.05 μM |
| [RNAP]                | 0.1 μM  |
| [TetR]                | 3.75 μM |
| [SmtB]                | 3.75 μM |
| [tet]                 | 30. μM  |
| [Zn]                  | 20. uM  |
| [AND-Gate]            | 5.0 μM  |
| [RQ]                  | 5.0 μM  |

#### **Initial Conditions:**

### **References:**

- 1. McClure, W. R., *Rate-limiting steps in RNA chain initiation*. PNAS, 1980. **77**(10): p.5634-8.
- 2. Ujvari, A. and C. T. Martin, *Thermodynamics and kinetic measurements of promoter biding by T7 RNA polymerase*. Biochemistry, 1996. **35**(46): p.14574-82.
- 3. Srinivas, N., et al., *On the biophysics and kinetics of toehold-mediated DNA strand displacement.* Nucleic Acids Research, 2013. **41**(22): p.10641-58
- 4. Kedracka-Krok, S. et al., *Kinetics and Equilibrium Studies of Tet Repressor-Operator Interaction.* Journal of Protein Chemistry, 1998.
- 5. Kar, S. R., et al., *The cyanobacterial repressor SmtB is predominantly a dimer and binds two Zn2+ ions per subunit.* Biochemistry, 1997. **36**(49): p.15343–8.
- VanZile, M. L., et al., *The Zinc Metalloregulatory Protein Synechococcus PCC7942* SmtB Binds a Single Zinc Ion per Monomer with High Affinity in a Tetrahedral Coordination Geometry. Biochemistry, 2000. **39**(38): p.11818-29.
- 7. Busenlehner, L. S., et al., *The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance.* FEMS Microbiology Reviews, 2003. **27**: p.131-143.
- 8. Conrad, T., et al., *Maximizing transcription of nucleic acids with efficient T7 promoters*. Commun. Biol., 2020. **3**(1):p. 439.
- 9. VanZile, M. L., Structural characterization of distinct a3N and a5 metal sites in the cyanobacterial zinc sensor SmtB. Biochemistry (2002) **41**(31): p.9765-75

#### **ROSALIND-TMSD OR Gate**

For this system, we will model a OR gate for tetracycline and zinc using a dualtemplate system. Equations are derived using kinetic rates of T7 RNAP-DNA binding, TetR-*tetO* binding, TetR-tetracycline binding, SmtB-*smtO* binding, SmtB-Zn binding, TMSD reactions, and T7 RNAP-mediated IVT reactions. The following variables will be used:

| Abbreviation | Description                                           |
|--------------|-------------------------------------------------------|
| $D_{tetO}$   | Regulated DNA template with tetO operator sequence    |
| $D_{smtO}$   | Regulated DNA template with smtO operator sequence    |
| RNAP         | T7 RNA Polymerase                                     |
| $RD_{tetO}$  | T7 RNAP and tetO-regulated DNA template bound complex |
| TetR         | unbound, free TetR dimer                              |
| $RD_{smtO}$  | T7 RNAP and smtO-regulated DNA template bound complex |
| TetR         | unbound, free TetR dimer                              |
| SmtB         | unbound, free SmtB tetramer                           |
| TetRD        | TetR dimer bound to one tetO                          |
| SmtBD        | SmtB tetramer bound to one smtO                       |
| tet          | unbound, free tetracycline                            |
| Zn           | unbound, free zinc ion                                |
| TetR-tet     | one tet ion bound to TetR dimer                       |
| SmtB-Zn      | one zn ion bound to SmtB tetramer                     |
| $InvR_T$     | transcribed invading RNA strand from tetO template    |
| $InvR_S$     | transcribed invading RNA strand from smtO template    |
| $OR_T$       | dsDNA with toehold for $InvR_T$                       |
| $OR_S$       | dsDNA with toehold for $InvR_S$                       |
| $InvR_D$     | strand-displaced ssDNA from OR gates                  |
| $Gated_T$    | $InvR_T$ bound to $OR_T$                              |
| $Gated_S$    | $InvR_S$ bound to $OR_S$                              |
| SD           | fluorescent DNA strand from signal gate               |
| Q            | InvadeR and FAM heteroduplex                          |
| RQ           | signal gate                                           |

In this model, we assume:

- 1. One-to-one binding of T7 RNAP and T7 promoter on the DNA template
- 2. The DNA template can be bound to either RNAP or TF, but not both.
- 3. One-to-one binding of TetR dimer and tetO on the DNA template
- 4. One-to-one binding of SmtB tetramer and *smtO* on the DNA template (see footnote a)
- 5. One-to-one binding of TetR dimer and a tetracycline ion

- 6. One-to-one binding of SmtB tetramer and a Zn ion (see footnote a)
- 7. TetR dimer can be bound to either *tetO* on the DNA template or tetracycline, but not both.
- 8. SmtB tetramer can be bound to either *smtO* on the DNA template or Zn, but not both.
- 9. All TMSD reactions are irreversible.
- 10. Fraying within each gate is ignored.

With these assumptions, we have the following reactions and ODEs in the system:

#### **Reactions:**

#### tetO-regulated Template

| $TetR + D_{tetO}$               | $\underset{k_{derep,T}}{\overset{k_{rep,T}}{\longleftrightarrow}}$ | TetRD       |
|---------------------------------|--------------------------------------------------------------------|-------------|
| $TetR + tet  \xleftarrow{k}{k}$ | $\xrightarrow{k_{ind,T}} T$                                        | etR- $tet$  |
| $RNAP + D_{tetO}$               | $\xrightarrow{k_{bind}}_{k_{unbind}}$                              | $RD_{tetO}$ |

$$RD_{tetO} \xrightarrow{k_{m,tetO}} InvR_T + RNAP + D_{tetO}$$

#### smtO-Regulated Template

 $SmtB + D_{smtO} \xrightarrow{k_{rep,S}} SmtBD$ 

$$SmtB + Zn \xrightarrow{k_{ind,S}} SmtB - Zn$$

$$RNAP + D_{smtO} \xrightarrow{k_{bind}} RD_{smtO}$$

 $RD_{smtO} \xrightarrow{k_{m,smtO}} InvR_S + RNAP + D_{smtO}$ 

#### Strand Displacements

$$InvR_T + OR_T \xrightarrow{k_{SD,T}} Inv_D + Gated_T$$
$$InvR_S + OR_S \xrightarrow{k_{SD,S}} Inv_D + Gated_S$$
$$InvR_D + RQ \xrightarrow{k_{SD}} SD + Q$$

# **ODEs:**

$$\frac{d[RNAP]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{m,tetO}[RD_{tetO}] + k_{unbind}[RD_{smtO}] - k_{bind}[D_{smtO}][RNAP] + k_{m,smtO}[RD_{smtO}]$$

$$\frac{d[D_{tetO}]}{dt} = k_{unbind}[RD_{tetO}] - k_{bind}[D_{tetO}][RNAP] + k_{derep_T}[TetRD] - k_{rep_T}[TetR][D_{tetO}] + k_{m,tetO}[RD_{tetO}]$$

$$\frac{d[D_{smtO}]}{dt} = k_{unbind}[RD_{smtO}] - k_{bind}[D_{smtO}][RNAP] + k_{dereps}[SmtBD] - k_{reps}[SmtB][D_{smtO}] + k_{m,smtO}[RD_{smtO}]$$

$$\frac{d[TetR]}{dt} = k_{derep_T}[TetRD] - k_{rep_T}[D_{tetO}][TetR] - k_{ind_T}[TetR][tet] + k_{unin_T}[TetR-tet]$$

$$\frac{d[OR_T]}{dt} = -k_{SD,T}[InvR_T][OR_T]$$

$$\frac{d[InvD]}{dt} = k_{SD,S}[OR_S][InvR_S] + k_{SD,T}[OR_T][InvR_T] - k_{SD}[InvD][RQ]$$

$$\frac{d[SD]}{dt} = k_{SD}[RQ][InvD]$$

$$\frac{d[Q]}{dt} = d[SD]$$

$$\frac{d[RQ]}{dt} = -d[SD]$$

$$\frac{d[Gated_S]}{dt} = k_{SD,S}[InvR_S][OR_S]$$

$$\frac{d[Gated_T]}{dt} = k_{SD,T}[InvR_T][OR_T]$$

This set of ODEs was then run using an ODE solver function, *odeint* from the Scipy.Integrate package in Python 3.7.6. using the rate parameters shown below. The initial concentrations were to set to experimental values also shown below, with all intermediates set to 0.

| Parameter     | Value         | Reference and Note    |
|---------------|---------------|-----------------------|
| $k_{m,tetO}$  | 0.1 /sec      | [1]                   |
| $k_{m,smtO}$  | 0.05 /sec     | see footnote <b>b</b> |
| $k_{bind}$    | 56 /µM-sec    | [2]                   |
| $k_{unbind}$  | 0.2 /sec      | [2]                   |
| $k_{SD}$      | 0.04 /µM-sec  | [3]                   |
| $k_{SD,S}$    | 0.04 /µM-sec  | [3]                   |
| $k_{SD,T}$    | 0.04 /µM-sec  | [3]                   |
| $k_{rep,T}$   | 2.98 /µM-sec  | [4]                   |
| $k_{derep,T}$ | 0.001 /µM-sec | [4]                   |
| $k_{ind,T}$   | 4.0 /µM-sec   | see footnote <b>c</b> |
| $k_{unin,T}$  | 0.022 /sec    | see footnote <b>c</b> |
| $k_{rep,S}$   | 3.0 /µM-sec   | see footnote <b>d</b> |
| $k_{derep,S}$ | 0.18 /µM-sec  | see footnote <b>d</b> |
| $k_{ind,S}$   | 80 /µM-sec    | see footnote <b>e</b> |
| $k_{unin,S}$  | 0.1 /sec      | see footnote <b>e</b> |
|               |               |                       |

**Parameters:** 

#### Notes:

- a We have found conflicting evidence from literature that reports different DNA-SmtB-zinc binding mechanisms. For instance, *Kar, S. R., et al* reports that SmtB predominantly forms a dimer and binds two zinc ions per subunit (therefore, one SmtB dimer binding 4 total zinc ions) [5]. On the other hand, *VanZile, M. L. et al* reports that SmtB binds one zinc ion per monomer [6]. A more recent literature from *Busenlenher, L. S. et al* reports that two SmtB dimers tightly bind a single 12-2-12 inverted repeat of the *smtO* sequence [7]. We have found that following the mechanism from the most recent literature [7] where SmtB forms a tetramer to bind a single *smtO* site matches our experimental observations the best. We also suspect that while a single SmtB tetramer can bind multiple zinc ions at a time, not all zinc ions are needed to induce the transcription regulated by the SmtB tetramer. Following this logic, we used a model where one zinc ion can bind to the SmtB tetramer to induce the transcription of the invading RNA, which precisely matched our experimental observations.
- b This transcription rate is estimated to be 2 times slower than that of  $k_{m,tetO}$  because the initially transcribed nucleotides have a slower transcriptional efficiency due to sequence [8].
- c These values were estimated to correlate with experimental results.
- d There was no literature with this information available to the best of our knowledge. We have decided to estimate these values based on a reasonable range of a  $K_d$  value for a transcriptional repressor, which is typically in the nanomolar range. Currently, the rate constants are set so that the  $K_d = \frac{k_{derepress}}{k_{repress}} \approx 60nM$ .
- e These values have been estimated to fit the association constants of SmtB-Zinc reported in [9].

| Species              | Value   |
|----------------------|---------|
| $[D_{tetO}]$         | 0.05 μM |
| $[\mathbf{D}_{smt}]$ | 0.05 μM |
| [RNAP]               | 0.1 μM  |
| [TetR]               | 2.5 μM  |
| [SmtB]               | 5.0 μM  |
| [tet]                | 30. μM  |
| [Zn]                 | 20. μM  |
| $[OR_S]$             | 10.0 µM |
| $[OR_T]$             | 10.0 µM |
| [RQ]                 | 5.0 μM  |

#### **Initial Conditions:**

## **References:**

- 1. McClure, W. R., *Rate-limiting steps in RNA chain initiation*. PNAS, 1980. **77**(10): p.5634-8.
- 2. Ujvari, A. and C. T. Martin, *Thermodynamics and kinetic measurements of promoter biding by T7 RNA polymerase*. Biochemistry, 1996. **35**(46): p.14574-82.
- 3. Srinivas, N., et al., *On the biophysics and kinetics of toehold-mediated DNA strand displacement.* Nucleic Acids Research, 2013. **41**(22): p.10641-58
- 4. Kedracka-Krok, S. et al., *Kinetics and Equilibrium Studies of Tet Repressor-Operator Interaction.* Journal of Protein Chemistry, 1998.
- 5. Kar, S. R., et al., *The cyanobacterial repressor SmtB is predominantly a dimer and binds two Zn2+ ions per subunit.* Biochemistry, 1997. **36**(49): p.15343–8.
- VanZile, M. L., et al., *The Zinc Metalloregulatory Protein Synechococcus PCC7942* SmtB Binds a Single Zinc Ion per Monomer with High Affinity in a Tetrahedral Coordination Geometry. Biochemistry, 2000. **39**(38): p.11818-29.
- 7. Busenlehner, L. S., et al., *The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance.* FEMS Microbiology Reviews, 2003. **27**: p.131-143.
- 8. Conrad, T., et al., *Maximizing transcription of nucleic acids with efficient T7 promoters*. Commun. Biol., 2020. **3**(1):p. 439.
- 9. VanZile, M. L., Structural characterization of distinct a3N and a5 metal sites in the cyanobacterial zinc sensor SmtB. Biochemistry (2002) **41**(31): p.9765-75

#### **ODE Model of TMSD Thresholding Circuit**

Here, we use the kinetic rates of T7 RNAP-DNA binding, SmtB-*smtO* binding, SmtB-Zn binding, TMSD reactions and T7 RNAP-mediated IVT reactions to simulate ROS-ALIND Reactions. The following variables will be used:

| Abbreviation | Description                            |
|--------------|----------------------------------------|
| D            | DNA template                           |
| RNAP         | T7 RNA Polymerase                      |
| RD           | T7 RNAP and DNA template bound complex |
| m            | InvadeR                                |
| TF           | Unbound, free SmtB tetramer            |
| TFD          | SmtB tetramer bound to one <i>smtO</i> |
| Ι            | Unbound, free zinc ions                |
| TFI          | One zinc ion bound to SmtB tetramer    |
| RQ           | Signal gate                            |
| SD           | InvadeR and 6'FAM heteroduplex         |
| Q            | Quencher DNA strand                    |
| Th           | Threshold gate                         |
| SDTh         | InvadeR and threshold heteroduplex     |
| QTh          | Incumbent strand from threshold gate   |

In this model, we assume:

- 1. One-to-one binding of T7 RNAP and T7 promoter on the DNA template
- 2. The DNA template can be bound to either RNAP or TF, but not both.
- One-to-one binding of SmtB tetramer and *smtO* on the DNA template (see footnote a)
- 4. One-to-one binding of SmtB tetramer and a zinc ion (see footnote **a**)
- 5. SmtB tetramer can be bound to either *smtO* on the DNA template or zinc, but not both.
- 6. All TMSD reactions are irreversible.
- 7. Fraying within each gate is ignored.

With these assumptions, we have the following reactions and ODEs in the system:

## **Reactions:**

$$RNAP + D \quad \xleftarrow{k_{bind}}_{k_{unbind}} RD$$
$$TF + D \quad \xleftarrow{k_{repress}}_{k_{derepress}} TFD$$

$$\begin{array}{ccc} TF+I & \xleftarrow{k_{induce}} & TFI \\ RD & \xrightarrow{k_m} & m+RNAP+D \\ \\ m+RQ & \xrightarrow{k_{SD}} & SD+Q \\ \\ m+Th & \xrightarrow{k_{SDTh}} & SDTh+QTh \end{array}$$

**ODEs:** 

$$\frac{d[RNAP]}{dt} = k_{unbind}[RD] - k_{bind}[RNAP][D] + k_m[RD]$$
$$\frac{d[RD]}{dt} = k_{bind}[RNAP][D] - k_{unbind}[RD] - k_m[RD]$$

$$\frac{d[QTh]}{dt} = k_{SDTh}[Th][m]$$

This set of ODEs was then run using an ODE solver function, *odeint* from the Scipy.Integrate package in Python 3.7.6. using the rate parameters shown below. For the unregulated reactions shown in Fig. 6b, the initial concentrations of TF, TFD, TFI and I were set to zero.

#### **Parameters:**

| Parameter                           | Value        | Reference and Note        |
|-------------------------------------|--------------|---------------------------|
| $\mathbf{k}_m$ for T7-GG-InvR2      | 0.1 /sec     | [1] see footnote <b>b</b> |
| $\mathbf{k}_m$ for T7-GG-smtO-InvR2 | 0.03 /sec    | [1] see footnote <b>b</b> |
| $\mathbf{k}_{bind}$                 | 56 /µM-sec   | [2]                       |
| $\mathbf{k}_{unbind}$               | 0.2 /sec     | [2]                       |
| $\mathbf{k}_{SD}$                   | 0.04 /µM-sec | [3] for 4-nt toehold      |
| $\mathbf{k}_{SDTh}$                 | 4.0 /µM-sec  | [3] for 8-nt toehold      |
| $\mathbf{k}_{repress}$              | 3.0 /µM-sec  | see footnote <b>c</b>     |
| $\mathbf{k}_{derepress}$            | 0.18 /sec    | see footnote <b>c</b>     |
| $\mathbf{k}_{induce}$               | 80 /µM-sec   | [4] see footnote <b>d</b> |
| $\mathbf{k}_{uninduce}$             | 0.1 /sec     | [4] see footnote <b>d</b> |

#### Notes:

- a We have found conflicting evidence from literature that reports different DNA-SmtB-zinc binding mechanisms. For instance, *Kar, S. R., et al* reports that SmtB predominantly forms a dimer and binds two zinc ions per subunit (therefore, one SmtB dimer binding 4 total zinc ions) [5]. On the other hand, *VanZile, M. L. et al* reports that SmtB binds one zinc ion per monomer [6]. A more recent literature from *Busenlenher, L. S. et al* reports that two SmtB dimers tightly bind a single 12-2-12 inverted repeat of the *smtO* sequence [7]. We have found that following the mechanism from the most recent literature [7] where SmtB forms a tetramer to bind a single *smtO* site matches our experimental observations the best. We also suspect that while a single SmtB tetramer can bind multiple zinc ions at a time, not all zinc ions are needed to induce the transcription regulated by the SmtB tetramer. Following this logic, we used a model where one zinc ion can bind to the SmtB tetramer to induce the transcription of the invading RNA, which precisely matched our experimental observations.
- b These values were adjusted from the reported rate to accommodate for different initially transcribed nucleotides in each template. For instance, pT7-GGGA has a much greater transcription efficiency than pT7-GGCA [8].

- c There was no literature with this information available to the best of our knowledge. We have decided to estimate these values based on a reasonable range of a  $K_d$  value for a transcriptional repressor, which is typically in the nanomolar range. Currently, the rate constants are set so that the  $K_d = \frac{k_{derepress}}{k_{repress}} \approx 60nM$ .
- d These values have been estimated to fit the association constants of SmtB-Zinc reported in *VanZile, et al* [4].

#### Initial Conditions For Unregulated Reaction (Fig. 6b):

| Species | Value               |
|---------|---------------------|
| [D]     | 0.05 μM             |
| [RNAP]  | 0.1 μΜ              |
| [Th]    | 0, 5, 10, 20, 40 μM |
| [RQ]    | 5.0 μM              |

#### Initial Conditions For Regulated Reaction (Fig. 6d):

| Species | Value               |
|---------|---------------------|
| [D]     | 0.05 μM             |
| [RNAP]  | 0.1 μΜ              |
| [TF]    | 5.0 μΜ              |
| [I]     | 2, 3.5, 5, 10 μM    |
| [Th]    | 0, 2.5, 5.0, 7.5 μM |
| [RQ]    | 2.5 μM              |

#### **References:**

- 1. McClure, W. R., *Rate-limiting steps in RNA chain initiation*. PNAS, 1980. **77**(10): p.5634-8.
- 2. Ujvari, A. and C. T. Martin, *Thermodynamics and kinetic measurements of promoter biding by T7 RNA polymerase*. Biochemistry, 1996. **35**(46): p.14574-82.
- 3. Srinivas, N., et al., On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research, 2013. **41**(22): p.10641-58
- 4. VanZile, M. L., et al., *Structural characterization of distinct a3N and a5 metal sites in the cyanobacterial zinc sensor SmtB.* Biochemistry, 2002. **41**(31): p.9765-75
- 5. Kar, S. R., et al., *The cyanobacterial repressor SmtB is predominantly a dimer and binds two Zn2+ ions per subunit.* Biochemistry, 1997. **36**(49): p.15343–8.

- VanZile, M. L., et al., The Zinc Metalloregulatory Protein Synechococcus PCC7942 SmtB Binds a Single Zinc Ion per Monomer with High Affinity in a Tetrahedral Coordination Geometry. Biochemistry, 2000. **39**(38): p.11818-29.
- 7. Busenlehner, L. S., et al., *The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance.* FEMS Microbiology Reviews, 2003. **27**: p.131-143.
- 8. Conrad, T., et al., *Maximizing transcription of nucleic acids with efficient T7 promoters*. Commun. Biol., 2020. **3**(1):p. 439.