SUPPLEMENTARY MATERIAL

Differential Changes in ACPA Fine Specificity and Gene Expression in a Randomized Trial of Abatacept and Adalimumab in Rheumatoid Arthritis

Omar Jabado • Michael A. Maldonado • Michael Schiff • Michael E. Weinblatt • Roy Fleischmann • William H. Robinson • Aiqing He • Vishal Patel • Alex Greenfield • Jasmine Saini • David Galbraith • Sean E. Connolly

- O. Jabado* M. A. Maldonado A. He V. Patel* A. Greenfield* J. Saini •
- D. Galbraith S. E. Connolly
- Bristol Myers Squibb, Princeton, New Jersey, United States

*At the time the study was conducted

M. Schiff

University of Colorado, Denver, Colorado, United States

M. E. Weinblatt

Brigham and Women's Hospital, Boston, Massachusetts, United States

R. Fleischmann

Metroplex Clinical Research Center and University of Texas Southwestern Medical Center, Dallas, Texas, United States

W. H. Robinson

Stanford University School of Medicine, Stanford, California, United States

Corresponding author:

Sean E. Connolly, PhD

Bristol Myers Squibb

Email: sean.connolly@bms.com

Text

Details of the batch correction steps and programming code for each analysis can be obtained from the authors upon request.

Table S1. Peptide sequences of ACPAs

Full name	Short name	Peptide sequence (N-COOH)
Fibrinogen A 616–635 cit3 small	Fibrinogen A 616–635	Biotin-Ahx-THSTK[CIT]CHAKS[CIT]PV[CIT]GIHTSC-CONH2
cyclic (75)		
Clusterin 231–250 cit sm-1 cyclic	Clusterin 231–250	Biotin-Ahx-CHFS[Cit]ASSCIDELFQD[Cit]FFT[Cit]-CONH2
(94)		
Filaggrin 48–65 cit2 v1 cyclic	Filaggrin 48–65	Biotin-Ahx-CTIHAHPGS[CIT][CIT]GGRHGYHHC-CONH2
(79)		
Fibrinogen A 556–575 cit sm	Fibrinogen A 556–575	Biotin-Ahx-NTKESSSHHPGCAEFPS[CIT]GKC-CONH2
cyclic (81)		
Vimentin 58–77 cit3 cyclic small-	Vimentin 58–77	Biotin-Ahx-GGCVYAT[CIT]SSACV[CIT]L[CIT]SSVPGV-CONH2
1 (77)		
H2A/a 1–20 cit sm-2 cyclic (71)	H2A/a 1–20	Biotin-Ahx-MSG[Cit]GKQGCKA[Cit]AKAKT[Cit]SSC-CONH2
Enolase-1A 5–21 cit (73)	Enolase-1A 5–21	Biotin-CKIHA[CIT]EIFDS[CIT]GNPTVEC
Biglycan 247–266 cit sm-1 cyclic	Biglycan 247–266	Biotin-Ahx-CEDLL[Cit]YSKLY[Cit]LGCGHNQI[Cit]-CONH2
(58)		
Clusterin 221–240 cit cyclic (52)	Clusterin 221–240	Biotin-Ahx-CQTHMLDVMQDHFS[Cit]ASSIIDC-CONH2
Fibrinogen B 246–267 cit (17)	Fibrinogen B 246–267	Biotin-[Cit]KGGETSEMYLIQPDSSVKPY[Cit]Y

Apolipo E 277–296 cit2 sm2	Apolipo E 277–296	Biotin-Ahx-A[CIT]LKSWFECPLVEDMQ[CIT]QWAGC-CONH2
cyclic (96)		
H2B/a 62–81 cit cyclic (32)	H2B/a 62-81	Biotin-Ahx-IMNSFVNDCIFE[Cit]IAGEAS[Cit]LC-CONH2
Fibrinogen A 211–230 cit small	Fibrinogen A 211–230	Biotin-Ahx-CDLLPS[CIT]D[CIT]QHLPCIKMKPVP-CONH2
cyclic (6)		
Fibrinogen A 582–599 cit (50)	Fibrinogen A 582–599	Biotin-QFTSSTSYN[Cit]GDSTFESK

ACPAs not included in this table: CCP (8), vimentin (recombinant) CIT (21), histones 2A cit (54), histones 2B CIT (36), fibrinogen CIT (19), apolipoprotein E

CIT (56). ACPA anti-citrullinated protein antibody, CCP cyclic citrullinated peptide.

Fig. S1 Validation of immune cell type-specific gene signatures using a separate cohort from the Benaroya Research Institute at Virginia Mason. Each column represents a sample from an individual patient. *IL* interleukin, *IZ* isoleucine zipper, *MS* multiple sclerosis, *NHV* normal healthy volunteers, *NK* natural killer, *PMN* polymorphonuclear, *SLE* systemic lupus erythematosus.

Fig. S2 Fluorescent signals of ACPAs at baseline. Lines denote medians, boxes denote lower to upper quartiles, vertical lines denote the lower to upper range. *ACPA* anti-citrullinated protein antibody, *CCP* cyclic citrullinated peptide.

SC abatacept

SC adalimumab

Fig. S3 Profiles of selected ACPAs from baseline to Year 2, by treatment group.

*Profiles which were significantly different (p < 0.05; linear regression model) between treatments at Year 2.

ACPA anti-citrullinated protein antibody, CCP cyclic citrullinated peptide, MFI mean fluorescence intensity, SC subcutaneous, SE

standard error.