Supplementary Information-

Inhibitor screening using microarray identifies the high
 capacity of neutralizing antibodies to Spike variants in
 SARS-CoV-2 infection and vaccination

Xiaomei Zhang^{1,8}, Mei Zheng^{2,3,5,8}, Hongye Wang^{1,8}, Haijian Zhou^{4,5,8}, Te
Liang^{1,8}, Jiahui Zhang¹, Jing Ren¹, Huoying Peng¹, Siping Li¹, Haodong Bian¹,
Chundi Wei¹, Shangqi Yin^{2,3,5}, Chaonan He^{2,3,5}. Ying Han^{2,3,5}, Minghui Li^{4,5},
Xuexin Hou^{4,5}, Jie Zhang⁶, Liangzhi Xie⁶, Jing Lv⁷, Biao Kan^{4,5,9}, Yajie
Wang^{2,3,5,9}, Xiaobo Yu^{1,9}

10

11

12 **Affiliations**

¹ State Key Laboratory of Proteomics, Beijing Proteome Research Center,
 National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing
 Institute of Lifeomics, Beijing, 102206, China.

² Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical
 University, Beijing, 100102, China.

³ Department of Research Ward, Beijing Ditan Hospital, Capital Medical University, Beijing, 100102, China.

⁴ State Key Laboratory of Infectious Disease Prevention and Control, National

21 Institute for Communicable Disease Control and Prevention, Chinese Center

for Disease Control and Prevention, Beijing, 102206, China

23	⁵ Joint Laboratory for Pathogen Identification of ICDC and Ditan Hospital,
24	Beijing Ditan Hospital, Capital Medical University, Beijing, 100102, China
25	⁶ Beijing Key Laboratory of Monoclonal Antibody Research and Development,
26	Sino Biological, Inc., Beijing, 100176, China
27	⁷ Gobond Testing Technology (Beijing) Co., Ltd., Beijing, 102629, China.
28	
29	⁸ These authors contributed equally to this work.
30	⁹ Correspondence: xiaobo.yu@hotmail.com (X. Y.), wangyajie@ccmu.edu.cn
31	(Y. W.), kanbiao@icdc.cn (B. K.)
32	
33	
34	15 Pages
34 35	15 Pages 5 Supplementary Tables
34 35 36	15 Pages 5 Supplementary Tables 10 Supplementary Figures
34 35 36 37	15 Pages 5 Supplementary Tables 10 Supplementary Figures
34 35 36 37 38	15 Pages 5 Supplementary Tables 10 Supplementary Figures
 34 35 36 37 38 39 	15 Pages 5 Supplementary Tables 10 Supplementary Figures
 34 35 36 37 38 39 40 	15 Pages 5 Supplementary Tables 10 Supplementary Figures
 34 35 36 37 38 39 40 41 	15 Pages 5 Supplementary Tables 10 Supplementary Figures
 34 35 36 37 38 39 40 41 42 	15 Pages 5 Supplementary Tables 10 Supplementary Figures
 34 35 36 37 38 39 40 41 42 43 	15 Pages 5 Supplementary Tables 10 Supplementary Figures

45 Supplementary tables

Table S1	The worldwide cumulative prevalence of SARS-CoV-2 spike
	protein mutations in GISAID as of December 28, 2021
Table S2	Clinical information of convalescent COVID-19 patients
Table S3	Clinical information of patients in the study 4 weeks after
	receiving the second dose of COVID-19 inactivated vaccine
Table S4	Clinical information of patients in the study 24 weeks after
	receiving the second dose of COVID-19 inactivated vaccine
Table S5	Clinical information of validation cohort 4 weeks after receiving
	the second dose of COVID-19 inactivated vaccine

46

47 Supplementary figures

Figure S1	SDS-PAGE analysis of purified recombinant SARS-CoV-2 S		
	variants.		
Figure S2	Timeline of when the top 20 RBD mutations emerged.		
Figure S3	Layout of SARS-CoV-2 spike variant protein microarray.		
Figure S4	Reproducibility of protein microarray preparation.		
Figure S5	Correlation of the mSAIS assay and live SARS-CoV-2		
	neutralization assay.		
Figure S6	Detection of different NAbs binding to immobilized RBD		
	protein using the mSAIS assay.		
Figure S7	Structural analysis of spike mutations located at the		

	RBD-ACE2 interaction interface that are resistant to antibody			
	#21.			
Figure S8	NAb titers to the wild type and variant S proteins in			
	convalescent COVID-19 patients.			
Figure S9	NAb titers to the wild type and variant S proteins in vaccinees.			
Figure S10	Heat map of NAbs titers to S variants in vaccinees' sera after			
	the second dose.			

49 Supplementary tables

50 Table S1: The worldwide cumulative prevalence of SARS-CoV-2 spike

51 protein mutations in GISAID as of December 28, 2021

	Mutation found		when found**	
Mutations	total	cumulative	first	last
		prevalence*		
S1 (D614G)	6,239,957	99%	26-Jan-20	23-Dec-21
RBD (L452R)	3,749,640	59%	26-Jan-20	23-Dec-21
RBD (N501Y)	1,345,483	21%	7-Feb-20	23-Dec-21
S1 (A222V, D614G)	561,725	9%	2-Feb-20	23-Dec-21
S1 (L18F, D614G)	229,364	4%	28-Jan-20	20-Dec-21
RBD (S477N)	124,442	2%	1-Mar-20	17-Dec-21
S1 (T20N, D614G)	115,372	2%	28-Jan-20	23-Dec-21
RBD (K417N)	58,007	1%	16-Mar-20	14-Dec-21
RBD (N439K)	37,149	1%	15-Feb-20	23-Dec-21
RBD (K417N, E484K, N501Y)	33,998	1%	27-Mar-20	15-Dec-21
RBD (N440K)	20,878	< 0.5%	28-Jan-20	13-Dec-21
RBD (E484Q)	17,709	< 0.5%	27-Jan-20	14-Dec-21
RBD (S494P)	13,439	< 0.5%	3-Mar-20	7-Dec-21
RBD (G446S)	13,261	< 0.5%	5-Mar-20	14-Dec-21
RBD (G446V)	10,960	< 0.5%	19-Mar-20	19-Dec-21
RBD (A520S)	9,366	< 0.5%	18-Mar-20	18-Dec-21
RBD (S477I)	8,331	< 0.5%	10-Mar-20	20-Dec-21
RBD (A522V)	6,810	< 0.5%	26-Mar-20	12-Nov-21
RBD (P384L)	3,783	< 0.5%	25-Feb-20	16-Dec-21

RBD (V367F)	3,146	< 0.5%	13-Mar-20	18-Dec-21
RBD (A348S)	2,581	< 0.5%	21-Nov-21	21-Nov-21
RBD (L455F)	2,398	< 0.5%	15-Mar-20	20-Dec-21
RBD (Q414R)	2,026	< 0.5%	15-Mar-20	23-Dec-21
RBD (R408I)	1,984	< 0.5%	13-Mar-20	18-Dec-21
RBD (A475V)	1,967	< 0.5%	31-Mar-20	10-Dec-21
RBD (F490L)	1,701	< 0.5%	7-Apr-20	15-Dec-21
RBD (S477R)	1,567	< 0.5%	18-Mar-20	2-Dec-21
RBD (A352S)	1,518	< 0.5%	28-Mar-20	18-Dec-21
RBD (Y453F)	1,405	< 0.5%	1-Feb-20	14-Dec-21
RBD (Y508H)	1,195	< 0.5%	28-Jan-20	9-Dec-21
RBD (F338L)	1,126	< 0.5%	31-Mar-20	21-Nov-21
RBD (E471Q)	1,082	< 0.5%	6-Apr-20	6-Dec-21
RBD (T478I)	917	< 0.5%	3-Mar-20	18-Dec-21
RBD (N370S)	758	< 0.5%	30-Mar-20	8-Dec-21
RBD (P499R)	742	< 0.5%	18-Mar-20	14-Dec-21
RBD (V503F)	640	< 0.5%	28-Mar-20	20-Dec-21
RBD (A435S)	540	< 0.5%	2-Apr-20	15-Dec-21
RBD (S359N)	528	< 0.5%	25-Mar-20	18-Dec-21
RBD (F456L)	516	< 0.5%	8-Apr-20	3-Dec-21
RBD (V483I)	485	< 0.5%	29-Mar-20	29-Mar-20
RBD (V483A)	456	< 0.5%	15-Mar-20	14-Aug-21
RBD (N354D)	445	< 0.5%	29-Feb-20	17-Dec-21
RBD (E406Q)	372	< 0.5%	1-Mar-20	14-Dec-21
RBD (P521S)	338	< 0.5%	17-Mar-20	20-Dec-21
RBD (K378N)	310	< 0.5%	10-Apr-20	15-Dec-21
RBD (A520V)	304	< 0.5%	10-Mar-20	23-Dec-21
RBD (V445F)	266	< 0.5%	15-Apr-20	16-Dec-21
RBD (P337S)	242	< 0.5%	13-Mar-20	16-Dec-21
RBD (V341I)	229	< 0.5%	14-Jan-21	14-Dec-21
RBD (K458R)	181	< 0.5%	1-Apr-20	13-Dec-21
RBD (G485S)	176	< 0.5%	6-Apr-20	15-Dec-21
RBD (K378R)	88	< 0.5%	30-Mar-20	15-Dec-21
RBD (F377L)	87	< 0.5%	8-Oct-20	14-Dec-21
RBD (F342L)	74	< 0.5%	6-May-20	18-Dec-21
RBD (N481D)	67	< 0.5%	19-Feb-20	15-Dec-21
RBD (A372T)	61	< 0.5%	15-Dec-20	9-Dec-21
RBD (F486S)	46	< 0.5%	4-Apr-20	23-Dec-21
RBD (A372S)	44	< 0.5%	8-Jul-20	16-Dec-21
RBD (V395I)	26	< 0.5%	1-Apr-20	15-Dec-21
RBD (T385A)	22	< 0.5%	8-Jun-20	7-Dec-21
RBD (W436R)	7	< 0.5%	3-Mar-20	18-Dec-21
RBD (Q414E)	1	< 0.5%	18-Mar-20	19-Dec-21
RBD (T393P)	1	< 0.5%	29-Jul-20	15-Dec-21

S1 (N234Q)	0	not
		detected
S1 (HV69-70 deltion, N501Y,	0	not
D614G)		detected
RBD (Y505C)	0	not
		detected
RBD (F456E)	0	not
		detected
RBD (N487R)	0	not
		detected

Note: The prevalences were calculated by Outbreak.info Mutation Situation Reports
 (https://outbreak.info/situation-reports#voi) with 6,315,868 sequences from GISAID as of
 28 December 2021.

^{*} Apparent cumulative prevalence is the ratio of the sequences containing mutation to all

sequences collected since the identification of mutation in that location.

⁵⁷ ** Dates are based on the sample collection date.

58

59 Table S2: Clinical information of the convalescent COVID-19 patients

Gender	n	Age, median	Weeks post discharge
Female	11	49 (18 ~ 64)	2 or 4
Male	14	36 (5 ~ 68)	2 or 4
Total	25	43 (5 ~ 68)	2 or 4

60

Table S3: Clinical information of people in the study 4 weeks after

receiving the second dose of COVID-19 inactivated vaccine

Gender	n	Age, median	Weeks post the	
			second vaccine dose	
Female	6	36 (21 ~ 53)	4	
Male	24	37 (23 ~ 57)	4	
Total	30	37 (21 ~ 57)	4	

64

Table S4: Clinical information of patients in the study 24 weeks after

Gender	Gender n Age, m		Weeks post the
			second vaccine dose
Female	18	38.5 (27 ~ 55)	24
Male	7	36 (31 ~ 46)	24
Total	25	38 (27 ~ 55)	24

receiving the second dose of COVID-19 inactivated vaccine

67

68 Table S5: Clinical information of validation cohort 4 weeks after

receiving the second dose of COVID-19 inactivated vaccine

Gender	n	Age, median	Weeks post the second vaccine dose
Female	11	46 (21 ~ 70)	4
Male	93	39 (23 ~ 70)	4
Total	104	39 (21 ~ 70)	4

70

71 Supplementary Figures

(A-C) are SDS-PAGE analyses of S1+S2, S1 and RBD wild-type and variant proteins,

- 75 respectively. WT: wild-type.

87 Figure S3. Layout of SARS-CoV-2 spike variant protein microarray. The buffer

RBD-mFc

RBD-mFc

RBD-mFc (V367F) RBD-rabbitFc

RBD-mFc (V367F) RBD-rabbitFc

RBD

RBD

buffer

buffer

and nucleocapsid (N) protein served as the negative controls. The RBD protein 88

served as the positive control. 89

90

91

Anti-his antibody

105 Figure S5. Correlation of the mSAIS assay and live SARS-CoV-2 neutralization

assay. Pearson's correlation coefficient and linear regression analyses were
 performed by the GraphPad Prism software 8.3. Statistical significance was
 determined using the two-tailed t-test.

Figure S6. Detection of different anti-RBD antibodies binding to immobilized
 RBD protein using the SARS-CoV-2 proteome peptide microarray. The
 nucleocapsid (N) protein and buffer served as the negative controls.

119

Figure S7. Structural analysis of spike mutations located at the RBD-ACE2 interaction interface that are resistant to antibody #21. The interaction structure of the SARS-CoV-2 RBD and human ACE2 were derived from the Protein Data Bank with PDB ID 6M0J. The S protein is colored in gray, the ACE2 protein is colored in blue, and RBD mutations are labeled in red.

Figure S8. NAb titers to the wild type and variant S proteins in convalescent COVID-19 patients. (A-F) are the NAb titers of convalescent serum to different S variants with D614G, N234Q, L18F/D614G, T20N/D614G, A222V/D614G and hv69-70 deletion/N501Y/D614G, respectively. WT and MT represent the wild type and mutants, respectively.

Figure S9. NAb titers to the wild type and variant S proteins in vaccinees. (A-F)
are the NAb titers of vaccinees serum to different S variants with D614G, N234Q,
L18F/D614G, T20N/D614G, A222V/D614G and hv69-70 deletion/N501Y/D614G,
respectively. WT and MT represent the wild type and mutants, respectively.

Figure S10. Heat map of NAbs titers to S variants in vaccinees' sera after the second dose. The NAb titers of 30 and 25 vaccinees one (1) and six (6) months, respectively, after receiving the second dose of the inactivated COVID-19 vaccine were measured using the mSAIS assay. The heat map was generated using the mean EC50. The rainbow color from gray to red correspond to the EC50 from low to high, respectively. WT = wild-type.

153 **References:**

 Alam I, Radovanovic A, Incitti R, Kamau AA, Alarawi M, Azhar EI, et al. CovMT: an interactive SARS-CoV-2 mutation tracker, with a focus on critical variants. Lancet Infect Dis. 2021; 21: 602.