Supplemental information

m⁶A-induced repression of SIAH1 facilitates alternative splicing of androgen receptor variant 7 by regulating CPSF1

Lei Xia, Qing Han, Xuehui Duan, Yinjie Zhu, Jiahua Pan, Baijun Dong, Weiliang Xia, Wei Xue, and Jianjun Sha

Supplementary Table S1. Sequence of primers, siRNA, and shRNA used in the study

ghCIAU1 (1)	sonso	CATCCCCAATTTACCCATCAATCTAACCTTACATTCATCC				
shSIAH1 (1)	sense	GATCCGCAATTTAGGCATCAATGTAAGCTTACATTGATGC CTAAATTGCTTTTT				
	anti-sense	CTAGAAAAAGCAATTTAGGCATCAATGTAAGCTTACAT				
	(5'-3')					
	/	TGATGCCTAAATTGCG GATCCTAATGGACTTATGCTGATGCAGCTGCATCAGCATA				
shSIAH1#2	sense					
	anti-sense	AGTCCATTATTTTT CTAGAAAAAATAATGGACTTATGCTGATGCTGCATCAGC				
		ATAAGTCCATTAG				
al-AD7 (2)	(5'-3') Sense	CCGGAAGGCTAATGAGGTTTATTTTCTCGAGAAAATAAA				
shAR-v7 (2)						
	(5'-3')	CCTCATTAGCCTTTTTTTG				
	anti-sense	AATTCAAAAAAGGCTAATTACCCTT				
CDCE1 'DNIA 1	(5'-3')	(5'-3') AATAAACCTCATTAGCCTT				
CPSF1 siRNA-1	CCAGATGATCAGCGTCAAGAA					
CPSF1 siRNA-2	AGGGCGGATCTTGATCATGGA					
Alkbh5 siRNA-1	ACAAGTACTTCTTCGGCGA					
Alkbh5 siRNA-2	GCGCCGTCATCAACGACTA					
siRNA control	TTCTCCGAACGTGTCACGA					
(siCont)						
qPCR for SIAH1	sense	TACTCCACCTTCTCTGTACTCCTG				
	anti-sense	CTCATTTCTTTCTCTTGTC				
qPCR for CPSF1	sense	TACCTGTTCCTGGGTTCTCG				
	anti-sense	CGCATCCACTCGCTTCTTCT				
qPCR for AR-FL	sense	CAGTGGATGGCTGAAAAAT				
	anti-sense	GGAGCTTGGTGAGCTGGTAG				
qPCR for AR-v7	sense	GCAATTGCAAGCATCTCAAA				
	anti-sense	CAACCCCAACGTCAAAGTCT				
qPCR for Alkbh5	sense	TGTCCGTGTCCTTCTTTAGCG				
	anti-sense	GCCGTATGCAGTGAGTGATTTC				
qPCR for Mettl3	sense	GCAGGCTCAACATACCCGTACT				
	anti-sense	AGACATTCTCCCCAACTCCAT				
qPCR for	sense	TTGCAGCACCTCGATCATTTAT				
Mettl14	anti-sense	CTTAGTCTTCCCAGGATTGTTTTTA				
qPCR for WTAP	sense	GGAAAACATCCTTGTAATGCGAC				
	anti-sense	GCTGGACTTGCTTGAGGTACTG				
qPCR for FTO	sense	GCTGTGCCATTGTGTATGTCTG				
-	anti-sense	ATGTCCACTTCATCTTGTCCGT				
qPCR for nup210	sense	AAGGAGAAGTCTTTTGGGTGGC				
. 1 - 0	anti-sense	GCTGGAGAAGGTCAGGGTAGTG				
qPCR for slc3a2	sense	GGGGACTAACTCCTCCGACCT				
-12 022 101 0100 012	anti-sense	GGAGCCTTGCCTGAGACAAACT				
aPCR for 8-actin		CTGGAACGTGAAGGTGACA				
qPCR for β-actin	sense	CIGGAACGIGAAGGIGACA				

anti-sense	AAGGGACTTCCTGTAACAATGCA
------------	-------------------------

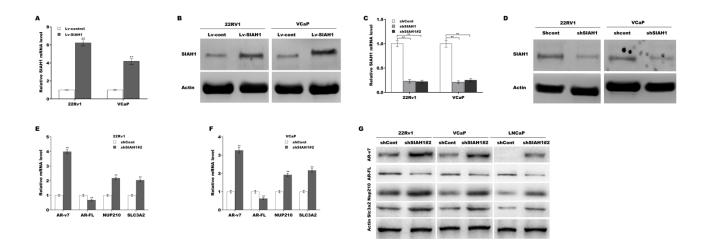

- 1. Ko HR, Jin EJ, Lee SB, et al.: SIAH1 ubiquitin ligase mediates ubiquitination and degradation of Akt3 in neural development. The Journal of biological chemistry 294: 15435-15445, 2019.
- 2. Fan L, Zhang F, Xu S, et al.: Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America 115: E4584-E4593, 2018.

Table S2. Genes encoding RBP and splicing factors selected by gene ontology terms in AmiGO

Table S3. Splicing factors concurrently dysregulated in PCa in these datasets

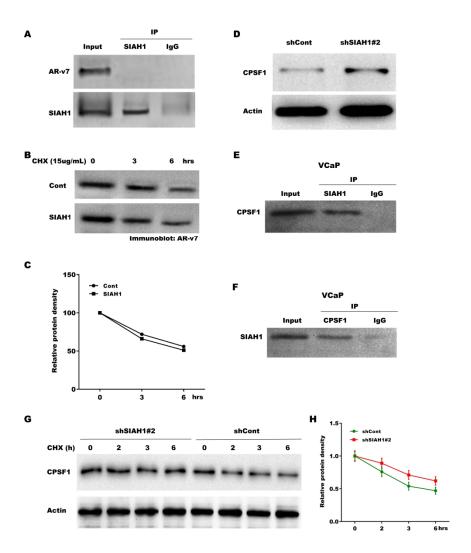

GSE54460	GSE6919	RBP	GSE3325	diff	GeneSymbol
TRUE	TRUE	TRUE	TRUE	up	CPSF1,PABPC1
FALSE	TRUE	TRUE	TRUE	down	MBNL2;LGALS3

Figure S1. Overexpression and knockdown of SIAH1, respectively.

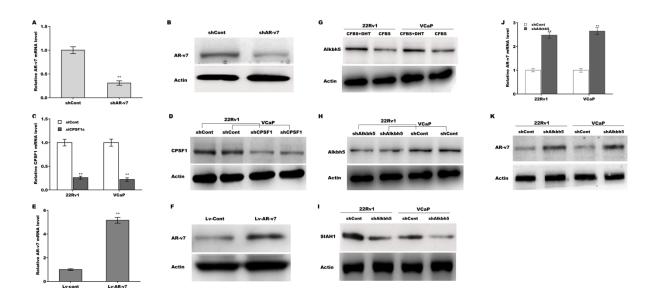

(A) qPCR assays of SIAH1 expression in 22Rv1 and VCaP cells after SIAH1 overexpression. (B) Western Blot analysis for SIAH1 expression in 22Rv1 and VCaP cells after SIAH1 overexpression. qPCR (C) and western blot (D) assays of SIAH1 expression in 22Rv1 and VCaP cells after treatment with shSIAH1 or shSIAH1#2. qPCR assays of AR-v7, AR-FL, Nup210, and Slc3a2 expression in 22Rv1 (E) and VCaP (F) cells after treatment with shSIAH1#2. (G) Western blot assays of AR-v7, AR-FL, Nup210, and Slc3a2 expression in 22Rv1, VCaP, and LNCaP cells after treatment with shSIAH1#2. **p<0.01.

Figure S2. SIAH1 regulates CPSF1 portein stability.

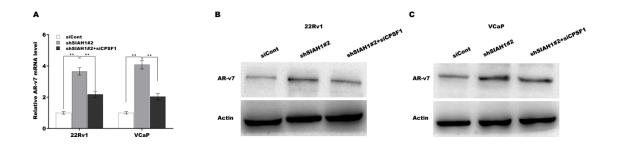
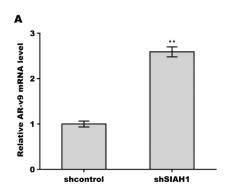
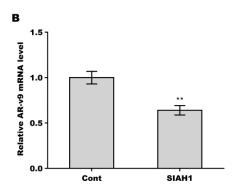

(A) The interaction between SIAH1 and AR-v7 in 22Rv1 cells was determined by Co-IP assay. (B and C) The effect of SIAH1 on the stability of AR-v7 in SIAH1 overexpressed 22Rv1 cells was determined by cycloheximide chase assay. (D) Western blot assays of CPSF1 expression in LNCaP cells after treatment with shSIAH1#2. (E and F) The interaction between SIAH1 and CPSF1 in VCaP cells was determined by reciprocal Co-IP assay. (G and H) The protein level of CPSF1 was assessed by CHX pulse-chase assay in the presence or absence of shSIAH1#2. CHX (50 μg/ml) was used for inhibiting the *de novo* protein synthesis and then relative protein density of CPSF1 was assessed at different time points (0, 2, 3, and 6 h).

Figure S3. Alkbh5 regulates SIAH1 expression.


qPCR (A) and western blot (B) analysis of AR-v7 expression in 22Rv1 cells after shAR-v7 treatment. qPCR (C) and Western blot (D) analysis of CPSF1 expression in 22Rv1 and VCaP cells after siCPSF1s treatment. qPCR (E) and Western blot (F) analysis of AR-v7 expression in 22Rv1 cells after Lv-AR-v7 treatment. (G) Western blot analysis of Alkbh5 expression in 22Rv1 and VCaP cells under androgen deprivation. (H) Western blot analysis of Alkbh5 expression in 22Rv1 and VCaP cells after siAlkbh5 treatment. (I) Western blot analysis of SIAH1 expression in 22Rv1 and VCaP cells after Alkbh5 knockdown. qPCR (J) and western blot (K) analysis of AR-v7 expression in 22Rv1 and VCaP cells after Alkbh5 knockdown. **p<0.01.


Figure S4. SIAH1 knockdown increased AR-v7 expression in a CPSF1-dependent manner.

qPCR (A) and western blot (B and C) analysis of AR-v7 expression in 22Rv1 and VCaP cells after treatment with shSIAH1#2 in the presence or absence of siCPSF1. **p<0.01.

Figure S5. SIAH1 regulates AR-v9 expression.

qPCR analysis of AR-v9 expression in 22Rv1 cells after SIAH1 knockdown (A) or overexpression (B). **p<0.01.