SUPPLEMENTARY INFORMATION

Engineering Biomolecular Systems: Controlling the Self-Assembly of Gelatin to form Ultra-Small Bioactive Nanomaterials

Dhananjay Suresh¹, Agasthya Suresh¹, and Raghuraman Kannan^{1,2,*}.

Departments of ¹Bioengineering and ²Radiology, University of Missouri, Columbia, MO, 65212, United States *Corresponding Author: <u>kannanr@health.missouri.edu</u>

*Supporting 3D spheroid reconstruction video (Sv) can be accessed as a separate file (.PPTX)

SUPPORTING FIGURES BELOW:

Figure S1. (a) Molecular assembly of Gelatin-TPP-Gelatin bridge, and (b) phosphorus analysis for G^x analyzed using STEM-EDS showing a phosphorus-peak indicating presence of TPP in G^x .

Figure S2. HR-TEM images of G^{\times} at multiple magnifications from synthesized batches indicating homogenous spherical nanoparticles. Particles exhibited polyhedral geometry with a ~1.6 nm layer thickness.

Figure S3. Zeta potential spectra of G^{\times} from the reaction solution and purified resuspended solution.

Figure S4. Effect on G^{\times} formation by the addition of TPP before (early) or after (late) addition of nanoprecipitant.

Figure S5. Effect on G[×] formation with varying (a) reaction-pH or (b) addition of NaCl/Sucrose for gelatin stabilization.

а

Figure S6. (a) Effect on G^{\times} formation by varying reaction-temperature with glutaraldehyde (GLU) as crosslinker. In this reaction, ethanol:acetone mixture (1:10 v/v) was added to the RBF (25 mlh⁻¹) containing acidified gel sol until a white opaque colloid formed. The solution was then heated to 150 °C and the solution turned to a translucent whitish solution. At this stage, GLU (25 µl; 25% v/v) mixed with ethanol (175 µl) was added dropwise and the reaction was stirred (900 RPM; 55 °C) until 18 h. (b) HR-TEM images showed formation of non-uniform ~10 nm nanoparticles. (c) Corresponding size-distribution histogram.

Figure S7. Representative bright-field images for NCI-ADR-RES and A549 3D tumor spheroids treated with G^{X} , G^{L} and G^{CC} tagged with (a) RhB or (b) Cy5 for ~6h. Results show negligible difference to spheroid morphology indicating minimal cytotoxicity.

Figure S8. Particle size and zeta potential spectra for drug/ contrast-agent encapsulated G^{x} constructs.

Figure S9. Supporting HR-TEM images for $G^{x}(AuNP)$ hybrid nanocomposites formed by encapsulating ultra-small 2 nm Au-DTDTPA coated nanoparticles within G^{x} .

b

Figure S10. HR-TEM, Particle size and Zeta potential data for (a) alternative G^X(AuNP) hybrid nanostructures and (b) HR-TEM images showing tunability of G^{CC}-G^X-Satellite hybrid nanocomposites using addition of higher amount of glutaraldehyde.

Temp Restabilization

Figure S11. Particle size data after reheating cooled reaction solution for monitoring hydrodynamic size stability.

b

Figure S12. DLS spectra for (a) centrifuged reaction solution after isolating G^{\times} to remove trace larger-sized particles found in pellet (b) purification of G^{\times} through filter, sucrose-density centrifugation (SDC) or Sepharose column.