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S1) Point estimation of severity for the 0-9 age range

Although the relation between disease severity and age is exponential for most ages, some

evidence suggests that for the youngest ages the rates of severe disease may deviate

upwards of this trend. For example, O’Driscoll et al. (2020) estimate that the IFR for ages

<10 years old to be higher than expected from the exponential relation. A similar trend can

be observed in the age-stratified rates of hospital admissions per 100.000 people from

England (Coronavirus (COVID-19) Latest Insights - Office for National Statistics, n.d.). It is

also apparent in our own data (Figure 1), where estimates from individual locations tend to

fall upwards of the trend line for ages <10 years old. This is also reproduced by the

estimates obtained with the indirect method, all of which fall upwards of our trend line for the

youngest age brackets (Figure 2). Thus, given the potential of our logistic fit to

underestimate the severity rates for the youngest age bracket, we estimate these rates using

only data from the 0-9 age bracket for reference, in which we do not assume any relation

with age.

For this, we used a Bayesian model like the one described in methods section M4, but

removing the age effect and using only data from the single age bracket of 0-9 years old.

Thus, this model only contained an intercept, with a random effect for location. After

dropping the locations without data for the 0-9 age bracket, 6 locations were used to

estimate the ISR (Iceland, Netherlands, New Zealand, Ontario, South Korea, Spain), 6

locations for the ICR (Netherlands, New Zealand, Ontario, South Korea, Spain, Sweden),

and 7 locations for the IFR (Iceland, Netherlands, New Zealand, Ontario, South Korea,

Spain, Sweden).

From this analysis, we estimate a ISR for the 0-9 age bracket of 0.42% (95% credibility

interval: [0.13-1.1]), a ICR of 0.024% [0.0039-0.076], and an IFR of 0.0014%

[0.00013-0.0052], which are higher than the corresponding values shown in Table 1. We

note that, compared to the values fitted using a regression on age, this point estimate of IFR

is more similar to the estimate reported by O’Driscoll et al for the 5-9 age bracket (0.001%

[0.000-0.001]) and by Levin et al for the 0-9 age bracket (0.001% [0.0007-0.0013]). Similarly,

the point estimate of ISR is more in line with those obtained through the ratio-of-ratios

method from O’Driscoll et al (0.25% [0.080-0.61] for the 5-9 age bracket) and from Levin et

al (0.30% [0.10-0.70]). The point estimate for ICR is also closer to those obtained from the

ratio-of-ratios method from O’Driscoll et al (0.029% [0.011-0.064]) and from Levin et al

(0.033% [0.014-0.067]).
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Although it is unclear which estimates for the 0-9 bracket are more accurate, those obtained

from combining data from all ages, or those using only data from this age bracket, the close

agreement between the estimates of this supplementary section and the estimates obtained

from the ratio-of-ratios method supports the idea that the figures in Table 1 may be

underestimates for the younger ages.

S2) Predicted rates

To aid the use of the estimates obtained in this work, we show in Table S1 the estimates for

the rates of severe, critical and fatal disease for different ages, estimated with the same

method as in Table 1 but with a finer stratification. These are the same estimates indicated

by the black lines in Figure 1 in the main text. Also, we show in Table S2 the parameters

obtained in the models used to generate Table S1.

Then, in Table S3 we show the estimated age-specific values of mortality among hospital

and ICU patients with COVID-19, shown in Figure 2A, and in Table S4 we show the

parameters for these models.

Table S1. Estimated values of the percentage of infected individuals that develop severe disease

(ISR), critical disease (ICR) and fatal disease (IFR) for different ages. Same as Table 1 in the main

text, but with finer age stratification. (*) Note that because of the trend assumed in the fitting

procedure, these estimates may underestimate the true outcome rates. See supplementary section

S1 for further discussion.

Age ISR % (CrI) ICR % (CrI) IFR % (CrI)

0-4 0.086 (0.052-0.13) (*) 0.0069 (0.0042-0.0109) (*) 0.00036 (0.00018-0.00062) (*)

5-9 0.13 (0.08-0.20) (*) 0.011 (0.007-0.018) (*) 0.00070 (0.00035-0.00121)  (*)

10-14 0.18 (0.11-0.29) 0.019 (0.011-0.029) 0.0014 (0.0007-0.0024)

15-19 0.27 (0.16-0.42) 0.030 (0.018-0.047) 0.0026 (0.0014-0.0046)

20-24 0.39 (0.23-0.61) 0.050 (0.030-0.078) 0.0051 (0.0027-0.0090)

25-29 0.56 (0.33-0.89) 0.081 (0.049-0.129) 0.010 (0.005-0.018)

30-34 0.82 (0.48-1.33) 0.13 (0.08-0.22) 0.020 (0.010-0.035)

35-39 1.2 (0.7-2.0) 0.22 (0.13-0.36) 0.038 (0.019-0.069)

40-44 1.7 (1.0-2.9) 0.36 (0.20-0.60) 0.075 (0.036-0.138)

45-49 2.5 (1.4-4.2) 0.59 (0.32-0.99) 0.15 (0.07-0.27)

50-54 3.7 (2.0-6.2) 0.96 (0.51-1.66) 0.29 (0.13-0.55)

55-59 5.2 (2.8-8.9) 1.6 (0.8-2.8) 0.56 (0.25-1.09)

60-64 7.5 (3.9-12.8) 2.6 (1.3-4.6) 1.1 (0.5-2.2)
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65-69 10.5 (5.5-18.0) 4.1 (2.0-7.6) 2.1 (0.9-4.3)

70-74 14.6 (7.6-24.9) 6.6 (3.1-12.3) 4.0 (1.7-8.2)

75-79 20.0 (10.4-33.2) 10.4 (4.9-19.2) 7.6 (3.1-15.4)

80-84 26.6 (14.2-42.6) 15.9 (7.5-29.0) 13.7 (5.6-26.8)

85+ 34.3 (18.9-52.8) 23.4 (11.3-40.9) 23.2 (10.0-42.7)

Table S2. Estimated parameters for the Bayesian logistic model with random effects describing the

age-specific ISR, ICR, and IFR at different locations. The structure of the model is described in

methods section M4. These parameters correspond to the fits shown in Figure 1 in the main text.

Model Slope (CrI) Slope sigma (CrI) Intercept (CrI) Intercept sigma (CrI)

ISR 0.076 (0.068, 0.083) 0.014 (0.009, 0.022) -7.28 (-7.75, -6.80) 0.86 (0.57, 1.27)

ICR 0.099 (0.089, 0.108) 0.013 (0.007, 0.023) -9.86 (-10.34, -9.37) 0.66 (0.38, 1.10)

IFR 0.13 (0.12, 0.14) 0.017 (0.011, 0.027) -12.9 (-13.6, -12.3) 1.11 (0.76, 1.59)

Table S3. Estimated values of the percentage of individuals hospitalized or admitted to critical care

with COVID-19 that die, for different age strata. The estimates are obtained from the fit to the hospital

and ICU mortality data of Figure 2A in the main text. Numbers in the parenthesis indicate credible

intervals of the estimates, obtained by taking the 2.5% and 97.5% quantiles of the posterior probability

of the bayesian fit.

Age Hospital mortality % (CrI) ICU mortality % (CrI)

0-4 0.37 (0.13-0.83) 3.3 (1.4-6.1)

5-9 0.52 (0.19-1.12) 4.1 (1.8-7.4)

10-14 0.72 (0.29-1.50) 5.1 (2.4-9.0)

15-19 1.1 (0.4-2.0) 6.3 (3.1-11)

20-24 1.4 (0.6-2.7) 7.8 (3.9-13.2)

25-29 2.0 (0.9-3.7) 9.6 (5.1-16)

30-34 2.8 (1.4-4.9) 11.7 (6.3-19.1)

35-39 3.8 (2.0-6.6) 14.3 (7.9-22.8)

40-44 5.3 (2.9-9.0) 17.4 (9.7-27.1)

45-49 7.3 (4.0-12) 20.9 (12.0-31.8)

50-54 10.1 (5.7-16) 25.0 (14.7-37.1)

55-59 13.7 (7.8-21.6) 29.5 (17.8-42.9)

60-64 18.3 (10.6-28.4) 34.5 (21.4-49.1)

65-69 24.0 (14.1-36.5) 39.8 (25.0-55.4)

70-74 30.8 (18.5-45.6) 45.4 (29.6-61.7)

75-79 38.5 (23.8-55.3) 51.1 (34.3-67.5)
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80-84 46.7 (29.8-64.6) 56.7 (39.3-72.9)

85+ 55.1 (36.6-73.0) 62.1 (44.5-77.9)

Table S4. Estimated parameters for the Bayesian logistic model with random effects describing the

age-specific hospital and ICU mortality. The structure of the model is described in methods section

M5. These parameters correspond to the fits shown in Figure 2A in the main text.

Model Slope (CrI) Slope sigma (CrI) Intercept (CrI)
Intercept sigma
(CrI)

Hospital mortality 0.068 (0.054, 0.082) 0.017 (0.009, 0.033) -5.8 (-6.7, -4.9) 1.2 (0.7, 1.9)

ICU mortality 0.045 (0.035, 0.056) 0.0097 (0.0028, 0.0246) -3.5 (-4.2, -2.9) 0.82 (0.44, 1.43)

S3) The correction method for out-of-hospital and out-of-ICU deaths is in agreement
with real-world data

As described in methods section M7, we applied a correction to some of the data points,

where we estimated the out-of-hospital and out-of-ICU deaths in order to obtain the total

severe and critical cases. In Figure S1 we show the data with and without this correction

(left and right panels, respectively), and the estimated rates obtained by fitting the model to

each dataset. Also, the locations for which actual data on out-of-hospital and out-of-ICU

deaths was available, and thus did not need to be corrected with estimated out-of-hospital

and out-of-ICU deaths, are indicated with dashed lines and triangles.

Comparing the plots from the top row, which correspond to the corrected and uncorrected

rates of severe disease, we observe that the correction procedure has very little effect on the

severe infection rates overall, with only minor changes for the oldest ages. The fitted model

also remained mostly unchanged.

Comparing the plots of corrected and uncorrected rates of critical disease (bottom row), we

observe that the correction procedure has a large effect for older ages, but only a small

effect for younger ages (i.e. for age bins under 50 years). This is in line with the expectations

that out-of-ICU deaths are rare for younger ages, but common for older ages. Furthermore,

we see that the different locations cluster into two groups in the plot of the uncorrected

critical disease rate (lower right). For countries where out-of-ICU death data was available
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(and used to obtain the critical cases), the rate of critical disease follows a log-linear trend,

while the countries without this data (and thus with only ICU admissions used on the bottom

right plot) show a drop in the critical rate. Thus, the observation that using estimated

out-of-ICU deaths for countries without available data aligns them with the countries where

this data is available, suggests that the correction for out-of-ICU deaths correctly captures

the numbers of out-of-ICU deaths.

Figure S1. Correcting for out-of-hospital and out-of-ICU deaths has a small effect on the
overall fit. Data for the ISR (top) and ICR (bottom), with (left) and without (right) correcting for

out-of-hospital and out-of-ICU deaths are shown. Each dot shows the ISR or ICR for one location and

age, and the different ages for one given location are connected by the lines. The color of the lines

and dots indicates the method used to estimate the number of infected individuals. The black lines

show the fitted logistic regression (in logarithmic scale, as in Figure 1 of the main text). The data

shown in triangles and joined with dashed lines corresponds to locations to which correction for

out-of-hospital or out-of-ICU deaths was applied using real-world data for these locations, instead of

the estimation method. In these cases, the numbers of severe or critical disease are the same for the

corrected and uncorrected datasets.

6



To further evaluate the precision of the correction method, we compared the proportion of

severe and critical cases that consist of out-of-hospital and out-of-ICU deaths for countries

with real-world data, and for countries where these deaths were estimated. If the proportions

obtained with the estimated quantities match the proportions obtained from real-world data,

that would suggest that our estimation method is accurate.

In Figure S2A we see that, as expected, the percentage of severe cases comprised by

out-of-hospital deaths is small for young and middle-aged populations. For older populations

we see considerable variability between locations, but that the percentages obtained from

real data (red) and the percentages estimated with the correction method (blue) are within

the same range of values.

Figure S2. Real and estimated data agree on the proportion of out-of-hospital and out-of-ICU
deaths among severe and critical cases. A) The percentage of severe cases that correspond to

out-of-hospital deaths are shown for all locations with either available data (shown in red), or where

these deaths were estimated with the correction procedure detailed in the methods (shown in blue).

The percentages of the different ages from a given location are connected by lines. B) Same as A)
but for the percentage of critical cases that are out-of-ICU deaths.

Likewise, Figure S2B reveals that the proportion of critical cases comprised by out-of-ICU

deaths is relatively small for young ages, but that these rapidly increase for older ages,

becoming more than half of the critical cases at around 65 years old, and almost all critical

cases over 75 years old. While there is variability between locations, overall, there is a clear
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agreement in trend between locations, including locations for which the percentages were

estimated from real-world data (red), and the locations with the percentages were estimated

using the correction method (blue). We note that for some locations, the real-world data of

hospital or ICU deaths and the data on total deaths, which were put together to estimate

out-of-hospital and out-of-ICU deaths, were obtained from different sources. Therefore,

some of the out-of-hospital or out-of-ICU deaths estimated from real-world data may also

reflect differences in reporting delays and methods between the sources.

In conclusion, we observe that the correction method induces only small changes to severe

cases for all but the oldest ages and that it induces relatively small changes to critical cases

at young ages, but that out-of-ICU deaths increase steeply at older ages until they comprise

most of the critical cases. Also, we observe that the correction from our estimation method

matches what is seen in the locations where data on out-of-hospital and out-of-ICU deaths is

available.

S4) Regression results are robust to excluding older ages

Next, given that we argue for the usefulness of our estimates of ISR and ICR for the

cost-benefit analysis of children and adolescent vaccination, we tested whether our

estimates for these ages are robust to excluding the data from the oldest ages. If our

estimates for younger ages are not affected by excluding older ages, this would suggest that

the data at younger ages alone is sufficient to accurately estimate these outcome rates.

In Figure S3 we show in black the same model as the one in Figure 1 in the main text.

Then, overlapped with the main model, we show in red and in blue the models fitted to the

uncorrected data (same as the right panels in Figure S1), but excluding age bins with a

median age over 40 (red) and over 50 (blue) respectively. We see, the estimates for ISR

(left), ICR (center), and IFR (right), change little when fitting the models to the different

subsets of the data, and that in all cases the estimates have mostly overlapping credible

intervals. This indicates that our estimates are robust to different preprocessing choices, and

to using only younger ages for the estimation. Therefore, we conclude from this analysis that

our estimations of ISR, ICR, and IFR for younger ages are not significantly affected by the

data from older ages and that they are robust to changes in the preprocessing of the data.
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Figure S3. ISR, ICR, and IFR estimations are robust to excluding older ages. Lines show the

estimated ISR (left), ICR (center), and IFR (right) obtained from fitting the Bayesian logistic regression

model (as in Figure 1 in the main text) after different data preprocessing procedures. The black line

shows the main model, fitted to the same data as Figure 1 in the main text. The red and blue lines

show the models fitted to the uncorrected data (same as right panels of Figure S1), but only using the

data from age bins with a median age under 40 and under 50 years, respectively. Colored shaded

regions show the 95% credible interval for each estimate.

S5) Regression results are robust to excluding data from comprehensive testing or
from convenience seroprevalence

Also, our analysis includes locations with three different methods of estimation of

SARS-CoV-2 prevalence: serosurveys with population-representative samples, serosurveys

with convenience samples, and comprehensive testing and tracing. Of these, the

serosurveys with representative samples are expected to be the most accurate, while the

other two methods can possibly introduce a bias into the prevalence estimates. Therefore,

we next tested whether our results are robust to excluding data from locations with

convenience serosurveys, and from the locations with comprehensive testing.

We see in Figure S4 that the estimates of the ISR (left), ICR (center) and IFR (right)

obtained from the different subsets of the data are in close agreement with the estimates
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obtained from the full dataset. Thus, we conclude that our results are not biased by the

studies from which SARS-CoV-2 infections were estimated from convenience

seroprevalence studies, or from comprehensive testing data.

Figure S4. ISR and ICR estimations are robust to excluding data from serosurveys with
convenience samples and comprehensive testing. Lines show the estimated ISR (left), ICR

(center), and IFR (right) obtained from fitting the Bayesian logistic regression model (as in Figure 1 in

the main text) to different subsets of the data. The black line shows the main model, fitted to the same

data as Figure 1 in the main text. The red line shows the model fitted to the dataset excluding

locations with prevalence estimated from comprehensive testing. The blue line shows the model fitted

to the dataset excluding convenience sample serosurveys.

S6) Epidemic dynamics at near the date of data collection

One important factor that needs to be taken into account for estimating the rate of a given

outcome among infected individuals is that there is a delay between the infection and the

outcome. Thus, the cumulative infections up to a certain date should be matched with the

number of outcomes at a later date, to account for this delay, and this is particularly

important for growing epidemics.

However, other delays also affect the data of our analysis in ways that make it difficult to

precisely identify at which dates the reported disease outcomes match the infections
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estimated in the serosurveys. For example, there is a delay between infection and the

generation of detectable antibodies (seroconversion), making serosurveys reflect the

infections at an earlier date than when they are conducted. This is further complicated by the

fact that the collection of samples in each serosurvey is done over a certain period, making it

unclear what date to take as a reference for the serosurvey. Furthermore, there are delays

between the dates at which disease outcomes occur and the dates at which they are

reported in official figures. These factors also change from location to location (and even

between data sources within locations), making it challenging to choose a single delay

period to use between the dates of serosurveys and the dates at which we collect disease

outcomes data.

Figure S5. COVID-19 death dynamics around the date of outcome data collection. In this plot,

each colored line shows the number of cumulative COVID-19 deaths from 15 days before the date at

which outcome data was collected for the main analysis, to 15 days after this date, relative to the

number of cumulative deaths at the date of data collection (indicated by day 0 in the horizontal axis).

Each colored line shows the deaths for a different location used in the analysis. The horizontal dashed

line indicates the value of 110%.
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To collect the outcome data, we chose the simple procedure of collecting the data for

disease outcomes at the date at which sample collection for the seroprevalence studies was

finished (or, for locations with comprehensive testing, the date of the reported number of

diagnosed cases). Because of the reasons discussed above, however, this may produce

some bias in our estimates in unpredictable ways. However, the delays mentioned above are

expected to be a problem only in more rapidly changing epidemics. After an epidemic has

peaked and declined, the change in the number of cumulative outcome numbers will be

small, and thus it will make little difference what precise date the outcomes are collected at.

Although the list of seroprevalence studies used in our analysis was already curated by

Levin et al (2020) to exclude studies performed during rapidly changing epidemics, we

further analyzed whether our estimates may be affected by these factors. For this, we first

plotted the relative change in the number of cumulative deaths around the date of data

collection (Guidotti & Ardia, 2020), shown in Figure S5. We can see in Figure S5 that the

deaths at the locations used had relatively small changes around the dates where we

collected the data, suggesting that the date of data collection should have a small impact on

the results (not that the large change seen for Iceland in the relative number of cases

represents only a few absolute cases). However, we see that 4 locations (Atlanta, USA; New

York City, USA; Indiana, USA; Belgium; Sweden; Denmark) have an increase in the relative

number of deaths of 10% within 15 days of the outcome data report date. Therefore, to verify

that these more rapidly changing locations are not biasing our estimated outcome rates, we

fitted the models again excluding data from these 6 locations.
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Figure S6. ISR, ICR, and IFR estimates are robust to excluding fastest changing epidemics.
Lines show the estimated ISR (left), ICR (center), and IFR (right) obtained from fitting the Bayesian

logistic regression model (as in Figure 1 in the main text) after different data preprocessing

procedures. The black line shows the main model, fitted to the same data as Figure 1 in the main

text. The red line shows the model fitted to the dataset excluding data from the locations where the

cumulative death count increases 10% or more within 15 days of our outcome data collection date.

We see in Figure S6 that the estimates obtained with the model change little when

excluding the 6 locations with the fastest growing epidemics, and that the credible intervals

of the two fits have a large overlap. Since we expect any biases introduced by the dates of

outcome data collection to be mostly mediated by the regions with the fastest growing

epidemics, we conclude that the choice of the precise date of data collection has a small

effect on our results.

S7) Effect of time between epidemic wave and seroprevalence data collection

Another important factor that can also affect serology-based estimations of outcome rates is

the phenomenon of seroreversion. Seroreversion consists of the natural decay of antibody

levels with time, which can lead serological tests to miss this indicator of previous infection

after a certain time. Although some studies show that IgG antibodies are developed by the

majority of individuals with SARS-CoV-2 infection (Glück et al., 2021; Long et al., 2020;

Wajnberg et al., 2020), and that these remain detectable in the serum for several months
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(Glück et al., 2021; Iyer et al., 2020; Wajnberg et al., 2020), other studies have reported

faster seroreversion, which may result in considerable percentages of seropositive

individuals reverting to a seronegative result within few months of their initial antibody

response (Long et al., 2020; Orth-Höller et al., 2021; Self et al., 2020). This may raise

concerns about the validity of serosurveys to estimate the number of infections in a

population if there is a considerable delay between the epidemic waves and the serosurvey

sample collection.

To check whether our results may be biased by seroreversion, we first analyzed the delays

between the epidemic waves and the serosurvey data collection across the locations. Similar

to section S6, we analyzed the dynamics of COVID-19 deaths for the different locations.

Although deaths are a lagging indicator of infections in a population, so is the presence of

IgG antibodies in the population. The mean delay from symptoms onset to death is

estimated to be around 15 days (Khalili et al., 2020), and the median delay between

symptoms onset and maximal IgG levels has been reported to be 25 days for IgG (Iyer et al.,

2020). Thus, for simplicity, we take reported deaths in a population to reflect approximately

the times at which individuals in a population become maximally seropositive.

In particular, we looked at what percentage of the cumulative deaths reported at the final

date of the serosurvey had occurred in the prior 45 days. Locations in which this percentage

is high, indicate that the serosurvey was performed close to the date in which a large portion

of the individuals had achieved maximum levels of IgG, and so seroreversion is expected to

be relatively small by the date of the serosurvey, even according to studies that have

reported faster estimates of seroreversion (Long et al., 2020; Orth-Höller et al., 2021; Self et

al., 2020).

We find that for 10 of the locations used, at least 70% of the cumulative deaths by the date

of the serosurvey had occurred in the 45 previous days (Iceland, Republic of Korea, Spain,

Sweden, Netherlands, Atlanta, New York City, Geneva, Indiana and Belgium). We thus

identify these locations as having a low risk of bias from seroreversion, and we fitted the

Bayesian logistic regression model to these locations. We observe in Figure S7 that the fit

obtained from these locations is very similar to the fit obtained from the full dataset. This

suggests that seroreversion is not a major source of bias in our estimates. This result is in

line with the IFR estimates from Brazeau et al., (2020), which show little change when

correcting for seroreversion.
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Figure S7. ISR, ICR, and IFR estimates are robust to excluding locations with the largest
epidemic to serosurvey delays. Lines show the estimated ISR (left), ICR (center), and IFR (right)

obtained from fitting the Bayesian logistic regression model fitted to seroprevalence data. The black

line shows the main model, fitted to the same data as Figure 1 in the main text. The red line shows

the model fitted to the dataset including only the 10 locations in which over 70% of the cumulative

deaths at the time of the serosurvey occurred within the 45 days prior to seroprevalence data

collection.
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