
Supplementary Table 1 | Drosophila PCP genes and their vertebrate homologues involved in kidney development 

  
       

PCP genes 
Protein properties, interactions with other 

PCP molecules and subcellular localization 

Expression patterns and mutant PCP phenotypes 
Human diseases associated with 

PCP gene mutations 

Drosophila Vertebrates Drosophila Vertebrates Role in kidney development  

Frizzled (fz)  
Frizzled2(fz2)1-3 

Fzd1, Fzd2, Fzd3*, 
Fzd4*, Fzd5, Fzd6*, 
Fzd7, Fzd8*, Fzd9, 

Fzd10  

Seven-pass transmembrane receptor, localizes 
asymmetrically in both Drosophila and 
vertebrate cells. Binds Wnt ligands, recruits Dvl 
and Dgo to the membrane. Asymmetrically 
localized and interacts with Fmi and Vang4, 5. 

Widely expressed. PCP 
defects in all tissues 
studied. 

Fzd genes are often expressed in tissue-
specific patterns. Multiple Fzds are in the 
neuroectoderm, skin, somites and other 
tissues and organs. Xenopus Fzd8 is 
expressed in the pronephros6, Fzd3,4,6 and 8 
are expressed in renal tubules7, 8. Double 
Fzd3/6 homozygous mice exhibit PCP defects 
in hair organization and craniorachischisis9.  

xFzd8 regulates pronephros 
development in Xenopus 6; 
Double Fzd4/Fzd8 homozygous 
mutant mice display renal 
hypoplasia due to UB branching 
defects 7. 

FZD4: familial exudative 
vitreoretinopathy10; FZD6: various 
NTDs11.  

Dishevelled (dsh)12 Dvl1, Dvl2, Dvl3 A multimodular cytoplasmic protein containing 
the DIX, PDZ and DEP domains. Recruited by 
Frizzled to the cell membrane and 
asymmetrically localized in the cortex. Localized 
to the centrosome. Interacts with Fz, Vang, Pk, 
Daam1, Dgo and other proteins. 

Widely expressed; PCP 
defects in all tissues 
studied. 

Dvl1-3 proteins are widely expressed in 
multiple tissues in overlapping and tissue-
specific patterns and have redundant 
functions. Simultaneous loss of two or three 
Dvl genes causes defects in multiple organs 
including the brain and the heart13. 

Wider and shorter pronephros in 
Xenopus expressing xDvl2 
mutant that interferes with PCP 
signalling14. 

DVL1 and DVL3: various NTDs11; 
DVL1: Robinow syndrome 
(duplicated ureter and VUR are 
reported)15;  
DVL3: Robinow syndrome16.  

Prickle (pk)/ 
Spiny legs (sple1)17 

Pk1*, Pk2, Pk3*, Pk4 PET and LIM domain-containing cytoplasmic 
protein. Interacts with Vangl, Dvl, Dgo and Par3 
(Pk3). Recruited to the cell membrane by Vang. 
Asymmetrically localized in Drosophila wing, 
zebrafish and Xenopus neuroectoderm. 

Widely expressed. PCP 
defects in all tissues 
studied; Pk and Sple1 
isoforms regulate 
orientation of 
microtubule polarity18.  

Early embryonic lethality in pk1-/- mice19. Pk1-
/- Robinow-like syndrome including facial and 
skeletal abnormalities20; 
Pk3 depletion in Xenopus causes neural tube 
and cilia defects21. 

Mouse Pk1-/- mutants exhibit 
renal dysplasia; 5% of embryos 
display renal cysts 20.  

PK1: various NTDs11, 22; PK1: 
epilepsy-ataxia syndrome and 
other neurological abnormalities23. 

Flamingo (fmi) or starry 
night (stan)24,25 

Celsr1, Celrs2, Celsr3 Cadherin-EGF-LAG seven pass G-type receptor 
with multiple cadherin domains. Forms 
homodimers and interacts with Fz and Vang. 
Asymmetrically localized in Drosophila and 
mammalian tissues.  

Widely expressed in all 
tissues26, PCP defects in 
all tissues studied. 

Redundant and specific functions. Multiple 
defects in mutant mice including 
craniorachischisis (Celsr1-/-)27 and lethal 
hydrocephalus (Celsr2,3-/-)28.  

Ceslr1-/- mice: smaller kidneys 
with defective UB branching29. 

CELSR1–3: various NTDs11, 30, 31. 
NTDs caused by CELSR1 
mutations are associated with 
elevated frequency of kidney 
malformations29. 

Van Gogh (vang)32,33 or 

Strabismus (stbm) 

Vangl1, Vangl2 34 Tetraspanin with a PDZ-binding domain. 
Interacts with Pk35, Dvl, Fmi, Scribble and 
extracellularly with Frizzled36. Vang is 
asymmetrically localized in Drosophila and 
vertebrate tissues, including renal tubules, inner 
ear, neural plate and the skin. 

Widely expressed in all 
tissues; PCP defects in 
all tissues studied 

Multiple organ defects including 
craniorachischisis, heart, lung, 
gastrointestinal, skeletal and ocular defects, 
defective cochlea34, 37, 38. 

Homozygous Vangl2 mutant 
mice: kidney hypodysplasia, 
abnormal diameter of renal 
tubules8, 39, 40. Abnormal 
glomerular maturation and injury 
recovery39. 

VANGL1/2: various NTDs11, 41, 42; 
VANGL1: caudal regression 
syndrome in association with 
NTDs41. 

Diego (dgo) 43 Inversin/NPHP244 
Diversin/ANKRD645 

Ankyrin repeat-containing cytoplasmic proteins. 
Dgo is recruited to the membrane by Fz and 
asymmetrically localized; Dgo interacts with Dvl, 
Fz, Vang and Pk46. ANKDR6 is asymmetrically 
localized in the mouse inner ear cells47. Inversin 
localizes to the ciliary transition zone. Both 
Inversin and ANKDR6 associate with the basal 
body.  

Widely expressed in all 
tissues; PCP defects in 
all tissues studied. 

Widely expressed. ANKRD6 and Inversin 
modulate convergent extension movements, 
regulate cilia and left–right patterning in 
vertebrates44, 48. ANKRD6-/- mice display PCP 
defects in cochlea47.  

Inversin knockdown in Xenopus: 
pronephros anomalies49. Inversin-
/- mouse: cystic kidney with 
interstitial fibrosis50, 51.  

NPHP2 mutations: 
nephronophthisis, type II44; 
ANKRD6 mutations: various 
NTDs11. 

Wg*  
dWnt2  
dWnt4*  
dWnt6  

dWnt10  

Wnt1, Wnt2, Wnt2b/13, 
Wnt3, Wnt3a, Wnt4, 

Wnt5a*, Wnt5b, Wnt6, 
Wnt7a, Wnt7b*?, Wnt8a, 
Wnt8b, Wnt9a, Wnt9b*, 

Wnt10a, Wnt10b, 
Wnt11*, Wnt16 

Cysteine-rich secreted signalling lipoproteins. 
Known to bind to multiple receptors including 
Fzd, Ror1/2, Ryk1 and Ptk7 via a cysteine-rich 
domain52.  

Often expressed in 
tissue-specific patterns. 
The combined loss of 
Wg or Wnt4 leads to loss 
of PCP in wing53; 
however, this has not 
been confirmed by other 
studies54, 55.  

Many Wnt ligands are expressed in specific 
patterns, often consistent with concentration 
gradients. Loss-of-function studies reveal 
major developmental abnormalities, including 
PCP phenotypes. Can instruct PCP in several 
models, but the requirement for PCP may be 
indirect 56. Wnt5a-/- mice display caudal 
regression syndrome57. 

Wnt5a-/- mice: kidney defects 
range from renal agenesis and 
single kidney to renal hypoplasia 
and duplex kidneys 57-59.  
Wnt9a-/- mice: cystic kidneys, 
abnormalities of nephrogenic 
progenitor pool and UB branching 
60;  
Wnt11-/- mice: hypoplastic 
kidneys due to loss of polarized 
NPCs behaviour, premature NPC 
depletion causing defective UB 
branching 61. 

WNT5a: Robinow syndrome, 
including hypoplastic kidneys in 
some patients62; isolated solitary 
kidney59. 



Fat (ft) and Fat2 63 Fat1*, Fat2, Fat3, Fat4* Proto-cadherin with a large extracellular domain 
containing Cadherin-, Laminin-G-like and EGF-
like repeats. Binds to Dchs1 and Dchs2. 
Phosphorylated by Ft64.  

Widely expressed in all 
tissues; PCP defects in 
all tissues studied. 
Participates in Hippo 
signalling 65. 

Multiple defects in all Fat mouse mutants, 
including neurological, eye and other 
anomalies66. Fat4 interacts genetically with 
Vangl2 and Fjx1 67 .  

Fat4-/- mouse: hypoplastic cystic 
kidneys, duplex kidneys, 
expansion of nephrogenic 
progenitor zone 67, 68. Fat1-/- 
mouse: congenital lack of 
glomerular podocyte slit 
diaphragm leading to neonatal 
death 69. 

FAT1: novel syndrome: 
colobomatous-microphthalmia, 
ptosis, nephropathy and 
syndactyly70; isolated 
glomerulopathy (FSGS)71. 
FAT4: Van Madlergem syndrome 2 
72. 

Dachsous (ds) 63 Dchs1, Dchs2 Proto-cadherin (also known as Cadherin16 or 
Cadherin19), contains cadherin-, Laminin-G-like 
-repeats in the extracellular domain. Binds to 
Fat1 and Fat2 receptors. Phosphorylated by Fj. 
Asymmetrically localized. 

Widely expressed in all 
tissues and forms a 
gradient along 
Drosophila wing blade 
and ey;, PCP defects in 
all tissues studied. 
Participates in Hippo 
signalling 64. 

In mouse is widely expressed and required for 
organogenesis of many tissues including 
brain, heart, lung, intestine, kidney and ear 72. 
The phenotype is similar to Fat4-/- 73.  

Dchs1/2: expansion of 
nephrogenic progenitor zone, UB 
branching defects, hypoplastic 
kidney 68, 74.  

Van Madlergem syndrome 1 with 
kidney involvement in some 
patients72. 

Four jointed (fj) 75, 76 Fjx1 67 Transmembrane protein II, Golgi-associated 
serine-threonine protein kinase. Interacts with Ft 
and Ds. 

Expressed in a gradient 
in Drosophila wing and 
eye. PCP defects in the 
eye and wing. 
Additionally controls cell 
growth and 
differentiation via Hippo 
signalling 64. 

Required for development of multiple organs 
including heart, lung, eye and others 67. 

Exacerbates renal hypoplasia, 
cystic and duplex kidney 
phenotypes on Fat4-/- 
background67; partially rescues 
cystic kidney phenotype in Pkd1-
/- mice77. 

N/D 

Off-track (otk, otk2) 78 Ptk7 79 Atypical protein tyrosine kinase (enzymatically 
dead). Interacts with Wnt, Ror2, Dvl. 

No PCP phenotypes. Widely expressed in many tissues. Ptk7 
mutations in mice cause craniorachischisis 
and spina bifida as well as a decrease in 
hematopoietic pool 79, 80. Ptk7 interacts 
genetically with Vangl2 to regulate neural tube 
closure 79. 

Renal hypoplasia in mice 79 Various NTDs 11. 

Ror 81 

Ror1, Ror2 82 Receptor tyrosine kinase, acts as Wnt5a co-
receptor to regulate PCP signalling and 
convergent extension movements in Xenopus 83, 

84 

No PCP phenotype for 
the null allele. 

Often expressed in tissue-specific manner. 
Regulates morphogenesis of multiple organs 
in mice 57.  

Ror1-/- and Ror2-/- mice: renal 
hypoplasia, duplex kidneys 57, 85.  

ROR2: Robinow syndrome 
including smaller kidneys in some 
patients 86. 

Inturned (in) 17, 87 Intu88, 89 Interacts with Fuz, Inturned, Dvl, Daam1 and 
Vangl2 90, 91. A part of the functional module with 
Fuz to form Rab23GEF to control ciliogenesis 92. 
Asymmetrically localized in Drosophila wing 
cells. 

Expressed in Drosophila 
wing cells 

Morphogenesis defects in Xenopus, cilia 
defects88. A wide range of defects in Intu-/- 
mice: cranial NTD or hydrocephaly, heart 
outflow defects, polydactyly, facial 
abnormalities, hypoplastic liver, lungs, 
anophthalmia and others, shorter cilia 89. 

N/D 

SRPS II OFD type II (renal 
hypoplasia is reported), NPHP 91 

Fuzzy (fy) 17, 93 Fuz 88 LONGIN-domain-containing protein, a part of 
Rab23GEF 92, interacts with Fuz, Intu, Dvl and 
Vangl2. Asymmetrically localized in Drosophila 
wing cells.  

Expressed in Drosophila 
wing cells. 

Broadly expressed. Loss-of-function 
phenotypes are similar to those of Intu 
morphants in Xenopus 88 and Intu-/- mice 94. 
Involved in endo/exocytosis, ciliogenesis in 
vertebrates 91, 94. 

Renal hypodysplasia (E. Torban, 
unpublished work). 

Various NTDs95, SRPS type II 
(hypoplastic kidneys are reported) 
96  

Fritz 97 WDPCP 98 WD-domain-containing protein, regulator of actin 
and vesicle trafficking 

Broadly expressed in 
Drosophila wing cells. 

Multiple defects in Wdpcp-/- mice including 
heart defects, polydactyly, hypoplastic liver, 
lungs. Shorter cilia and abnormal ciliogenesis 
98. 

Renal dysplasia, duplex kidneys 
98 

SRPS type II OFD type VI Joubert 
syndrome with renal disease 91 

Multiple wing hair 
(mwh)17 

Does not exist in 
vertebrates 

Formin-domain protein, negative regulator of 
actin polymerization 

Broadly expressed in 
Drosophila wing cells N/A  N/A N/A 

Daam 99 Daam1, Daam2 Formin-domain protein, positive regulator of 
actin polymerization. Interacts with Dvl, RhoA, 
Intu 100, 101 

Regulates axon growth 
and tracheal cuticle 
pattern102 and left–right 
asymmetry99.  

Mouse and Xenopus Daam1/2 are widely 
expressed and may have redundant 
functions. Daam1 genetically interacts with 
Vangl2 and Wnt5a to control caudal 
development and neural tube closure, 
respectively103. 

Daam1 knockdown in Xenopus 
and zebrafish causes defective 
pronephric tubulogenesis104. 

N/D 

The table does not include relevant apicobasal polarity components and PCP effectors that have broad housekeeping functions, such as protein kinases, Rabs and other vesicular trafficking machinery, actin- and tubulin-associated proteins, myosins, small GTPases.  GEF, guanine nucleotide exchange factor; 
N/A, not applicable; N/D, not determined; NPCs, nephron progenitor cells; NPHP, nephronophthisis; NTD, neural tube defects; OFD, oral-facial-digital syndrome; PCP, planar cell polarity; PKD, polycystic kidney disease; SRPS, short rib polydactyly syndrome; UB, ureteric bud; VUR, vesicoureteral reflux.  
*Members of the large gene group known to participate in PCP signalling. 
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