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This supplementary material is organized as follows. Section 1 recalls a number of previous models
related to our work. Section 2 studies Model 1 from the main text. For this general model, we qualitatively
compare reference treatments and an arbitrary treatment, in terms of sensitive and resistant population
sizes and the time until tumour size exceeds an arbitrary threshold. This time is shown to be maximized
by an idealized version of containment at this threshold. Different choices of threshold lead to results
on time to progression, time to treatment failure, or survival time. The proofs are based on variants of
Gronwall’s inequalities.

Section 3 considers various density- and frequency-dependent models. Explicit formulas are derived for
the time at which tumour size exceeds an arbitrary threshold under various treatments. This result is
then applied to Gompertzian growth (Model 3 in the main text). Building on these findings, Section 4
compares reference treatments qualitatively and quantitatively. Section 5 studies the impact of resistant
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costs on the best possible outcome, and on the clinical benefits of containment. This section provides an
approximate formula for time to treatment failure under containment or ideal containment in the presence
of resistance costs.

Section 6 discusses some potential issues with the containment treatment if some of our assumptions
are not satisfied. Finally, Section 7 discusses possible protocols to implement containment at a target size.

1. Partial survey of related works

We recall here some of the models most related to our work.

1.1. Lotka-Volterra and density-dependent models. Zhang et al. (2017) [1] consider a Lotka-
Volterra model with three types of tumour cells (two sensitive and one resistant to treatment), and carrying
capacities that depend on whether treatment is on or off. Through simulations, they compare an intermit-
tent containment treatment (maintaining the tumour between its initial size N0 and N0/2) to no treatment,
maximal tolerated dose (MTD) and a form of metronomic therapy with an induction period. Cunningham
et al. (2018) [2] extend this model to allow for intermediate dose treatments. This extended model could
be simplified by grouping the two types of sensitive cells, leading to a two-type Lotka-Volterra model of
the form:

ṡ = ρss

(
1− (α1s+ α2r)

Ks

)
(1)

ṙ = ρrr

(
1− (r + βs)

Kr

)
(2)

with Kr independent of treatment, and Ks linearly varying as a function of the dose between Kmax = Kr

and a much lower value Kmin = Kr/100. The competition coefficient β is assumed less than 1, so the
tumour cannot be stabilized at a size smaller than Kr.

Carrère (2017) [3] studies a similar two-type Lotka-Volterra model but with a higher impact of sensitive
cells on resistant cells, and a different treatment-induced death term. She discusses how to optimally
control the tumour for various objective functions. Carrère and Zidani (2019) [4] consider an extension of
Carrère’s model, in particular adding uncertainties on some parameters, and use optimal control to study
how to bring and maintain tumour size below a certain threshold. Pouchol et al. (2018) [5] uses optimal
control techniques to study a model with infinitely many types and two types of drug: cytostatic and
cytotoxic.

A precursor of such optimal control approaches for models with intratumour competition is Martin et
al. (1992) [6]. They consider, with some approximations, a general density-dependent two-type model with
mutations, and study how to optimally tune tumour size in order to maximize survival time. Applications
are made to exponential, logistic, and Gompertzian growth. The analysis is extended to combination
chemotherapies in [7]. Building on this seminal work, Hansen et al. (2017) [8] focus on the logistic
and Gompertzian case, and compare two treatments: a form of ideal containment, and elimination of
sensitive cells, in a context broader than cancer. We borrowed the term containment from them.1 In
a follow-up paper, Hansen et al. (2020) [9] compare experimentally and theoretically the growth of a
partially resistant strain of E. coli, with or without adding competing sensitive bacteria. Hansen and Read
(2020) [10] consider a stochastic birth-death model allowing for a positive probability of cure even when
resistant cells are initially present. They discuss the trade-off between a higher probability of cure and a
shorter time to progression in case of failed cure (see also [11]).

Monro and Gaffney (2009) [11], in a paper published a few months before the first article on adaptive
therapy (Gatenby et al. 2009 [12]), study constant dose treatments in a two-type model with Gompertzian
growth and no resistance cost. This is the model we use for simulations (except that we neglect mutations).
They show that reducing the dose or delaying treatment may increase survival time.2

1Containment in Hansen et al. (2017) [8] is as our ideal containment treatment except that they also allow tumour size to

increase instantly from its initial size to a possibly higher size, at which the tumour is then maintained. We only allow for
an instantaneous decrease of tumour size.
2Gatenby et al. (2009) [12] also contains a model, but substantially different and more involved that the models we use, and
we will not discuss it here.
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1.2. Frequency-dependent models. Another line of models assumes frequency-dependent competition.
For instance, Silva et al. (2012) [13] considers a discrete-time, difference equation model, which in a
continuous-time, differential equation framework would take the form

ṡ/s = ρs
s

s+ r
− λsC

ṙ/r = ρr
r

s+ r
− λrC

where C is a measure of treatment intensity, λs and λr represent sensitivity to treatment of sensitive and
resistant cells, and the growth-rate parameters ρr and ρs vary as a function of some auxiliary treatment.
In this model, as the frequency of resistant cells xr = r

s+r approaches zero, the relative fitness of resistant
cells approaches zero, allowing for a huge, unbounded advantage of containment over MTD. Bacevic et
al. (2017) [14] considers a similar frequency-dependent model, but where the resistant population growth
rate is proportional to a function f(xr) with f bounded away from zero. The relative gain of containment
compared to MTD (that is, the ratio of the time it takes under these treatments for the tumour to reach a
given size) is then bounded by 1/f(0). Bacevic et al. also studies models mixing frequency dependence and
Gompertzian, density-dependent growth, and models where the carrying capacity is dynamic and reduced
by treatment, in the spirit of Hahnfeldt et al. (1999) [15]. In the latter case, resistant cells are, indirectly,
still partially sensitive to treatment, and our analysis does not apply.

Some features of these models are summed up in Supplementary Table 1. A number of other interesting
approaches are less connected to our work. For instance, Gallaher et al. (2018) [16] studies a spatial dose
modulation model through simulations. West et al. (2018) [17] considers game theoretical models with
sensitive and resistant cells, but also normal cells as a third type. Ledzewicz and Schättler (2019) [18]
review optimal control models for heterogeneous tumours with more or less resistant cells, but the objective
functions are different and the models studied do not take into account competition between cell types.
This mini-review is far from exhaustive and we apologize for all the fine works that are not mentioned
above.

The main differences between our work and the bulk of the adaptive therapy literature are the gen-
erality of our results, and in particular the fact that we provide analytical results that apply to many
different models instead of relying on simulations of a particular model. The main differences with the
bulk of the optimal control literature (with some exceptions, e.g., Martin et al. (1992) [6, 7], Carrère and
Zidani (2019) [4]) are the focus on intra-tumour competition, our objective function (maximizing the time
at which tumour exceeds a given size), and the fact that our proofs rely on basic variants of Gronwall’s
lemma rather than the heavier optimal control machinery.

1.3. Comparison of our work and preceding studies. We provide here a detailed discussion of three
particular papers upon which our work builds.

Carrère and Zidani (2020) [4]. This article considers an extension of Carrère’s Lotka-Voltera model [3]
that accounts for uncertainties surrounding drug effectiveness and the effect of competition (parameter β
in Eq. (2)). The authors use optimal control techniques to study how to maintain tumour size below a
certain threshold indefinitely, or, when this is not possible, how to minimize the time after which tumour
size is permanently under this threshold, for any realization of the uncertainties. There is no limit on the
instantaneous drug dose but a global health indicator that evolves as a function of the drug dose must
remain above a given level. Although the idea of maintaining tumour size below a certain threshold is
reminiscent of our maximal tolerable size, our tools and goals are substantially different. Carrère and
Zidani perform a mathematically-involved analysis of a specific, complicated model (Lotka-Volterra with
a log-kill rate and uncertainties), whereas we aim at deriving simple, accessible conclusions from more
general models. Carrère and Zidani use a Hamilton-Jacobi approach to characterize the value function of
the optimal control problem and then numerical methods to reconstruct optimal strategies from the value
function. We instead rely on comparison principles, which are elementary differential equations tools.
Moreover, Carrère and Zidani have in mind to study in-vitro tumour growth and emphasize cases where
tumour size may be permanently maintained below some threshold. They also allow tumour size to first
grow to a large size if this is the quickest way to eventually bring it back under the desired threshold for
ever. Together with large competition coefficients, this permits a strategy that consists in first letting the
tumour grow until the fitter sensitive cells eliminate most resistant cells and then applying large drug doses,
as in [5], to quickly go back under the desired threshold. In contrast, we have in mind treatment of incurable
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Supplementary table 1. Features of adaptive therapy and containment mod-
els. In the treatment column, “containment” refers to various implementations of the
general containment idea.

Study Types Treatment Competition type Methods Other features

Martin et al.

(1992) [6]

2 any density-dependent;

Gompertzian; Lotka-
Volterra

optimal control no resistance cost; muta-

tions

Monro & Gaffney

(2009) [11]

2 constant dose; de-

laying treatment

Gompertzian simulations no resistance cost; muta-

tions

Gatenby et al.

(2009) [12]

various containment;

metronomic; MTD

unconventional analytical results;

simulations

resistance cost; microen-

vironmental feedback

Silva et al. (2012)

[13]

2 containment; MTD specific frequency-

dependent

simulations bolus doses; manipula-

tion of resistance cost

Hansen et al.
(2017) [8]

2 containment; ideal
MTD

Lotka-Volterra; Gom-
pertzian

analytical results resistance cost or not;
mutations

Carrère (2017) [3] 2 any Lotka-Volterra optimal control resistance cost

Bacevic et al.
(2017) [14]

2 containment; MTD specific frequency &
density-dependent

simulations; analyt-
ical results

bolus doses; resistance
cost; partial resistance

Zhang et al.

(2017) [1]

3 containment;

metronomic; MTD

Lotka-Volterra simulations clinical data

Pouchol et al.

(2018) [5]

any any Lotka-Volterra optimal control cytostatic and cytotoxic

drugs

Cunningham et

al. (2018) [2]

3 any Lotka-Volterra numerical optimal

control

fixed total dose

Hansen et al.
(2020) [9]

2 containment; ideal
MTD

Lotka-Volterra simulations corresponding in vitro
experiments

Hansen and Read
(2020) [10]

2 containment; ideal
MTD

Lotka-Volterra simulations; analyt-
ical results

possibility of cure

Carrère and Zi-

dani (2019) [4]

2 any Lotka-Volterra optimal control tolerable tumour size

Current study 2 any general frequency- &

density-dependent

simulations; analyt-

ical results; compar-
ison principle

resistance cost or not;

tolerable tumour size

human tumours. Hence we emphasize cases where tumour size cannot be permanently maintained at a
tolerable size, and we assume that treatment fails the first time the tumour burden becomes intolerable.

Martin et al. (1992) [6]. This pioneering work considers a variant of the general model referred to as
Model 2 in our main text. Our aims and tools are however importantly different. Whereas we aim to
derive general conclusions from simple models, neglecting mutations after treatment initiation, Martin et
al. appear to assume that containment is optimal in such models and then focus on analyzing the trade-off
that arises in the presence of mutations from sensitive to resistant cells (see the corresponding section in
our main text) using optimal control techniques (more precisely, necessary optimality conditions derived
from Pontryagin’s maximum principle). In spite of simplifying assumptions, mutation terms complicate
their analysis, and the optimality conditions obtained are difficult to analyse in general. The authors
thus eventually focus on three specific models: exponential growth, logistic growth (Lotka-Volterra), and
Gompertzian growth. They conclude that a version of ideal containment is slightly worse than ideal
MTD for exponential growth of the resistant population; similar for logistic growth; and much better for
Gompertzian growth.

Hansen et al. (2017) [8]. Following Martin et al. [6], this study examines a trade-off that arises if
mutations from sensitive cells to resistant cells are taken into account. The trade-off is between maximizing
competition (to decrease the growth-rate of existing resistant cells) and minimizing the number of sensitive
cells (to minimize mutations from sensitive to resistant cells). The authors focus on specific models:
logistic growth (a Lotka-Volterra model) and, to a lesser extent, Gompertzian growth. They also study
only specific treatments: ideal containment and ideal MTD. Their question is whether ideal containment is
better than ideal MTD, whereas we go further by showing that, in simple situations (without mutations),
ideal containment is better than any other treatment. Moreover, in spite of focusing on specific models,
Hansen et al. do not study the magnitude of clinical gains. Although they consider conditions under which
containment improves over elimination of sensitive cells, it is unclear whether these conditions are likely
to be met. As we point out (see this Supplementary material, Section 4.1.1), in the absence of mutations,
and at least when the maximal tolerable size is far from the carrying capacity, logistic growth models lead
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to very small gains of containment – much smaller than under Gompertzian growth models. Thus, taking
into account mutations after treatment initiation (or other factors we neglect) is much more likely to make
MTD preferable to containment in a logistic growth model than in a Gompertzian growth model. This can
be seen in the conditions derived in Hansen et al. but is not discussed. The focus on logistic growth and
the qualitative approach of this study may thus suggests that mutations from sensitive to resistant cells
are a much more serious problem than we believe them to be (at least for the kind of mutations envisioned
by Hansen et al.).

2. Qualitative comparison of treatments under a general model

2.1. Model, treatments, notation. We study here Model 1 from the main text. We first recall it, and
clarify assumptions that are only informally described in the main text. The model reads

(3)

{
Ṡ(t) = S(t)gs(S(t), R(t), C(t)) ; S(0) = S0 ≥ 0

Ṙ(t) = R(t)gr(S(t), R(t)) ; R(0) = R0 > 0

where S(t), R(t) are the number of sensitive and fully resistant cells, respectively, and C(t) is the drug dose
or more generally the treatment level at time t.3 The total tumour population size is N(t) = S(t) +R(t),
with initial value N0 = S0 +R0.

Model assumptions. The key assumptions are that resistant cells are fully resistant and that gr is non-
increasing in S. We also assume that gs is non-increasing in R and in C, and that as long as the patient
is alive (N < Ncrit), the size of an untreated or fully resistant tumour strictly increases.4.

Finally, we make technical assumptions: functions gr and gs are continuously differentiable on the
relevant domain (N > 0, C ≥ 0); solutions are defined for all t ≥ 0; and function C is piecewise continuous
on [0,+∞) (this simplifies proofs but our main results also hold under weaker assumptions, e.g., allowing
for discontinuities in the sensitive population size).

Objective. Treatment is said to fail when tumour size exceeds a maximum tolerable size Ntol.
5 This size

need not be known in advance but could instead be identified during treatment. Our treatment objective is
then to maximize time to treatment failure: the largest time τ such that N(t) ≤ Ntol on [0, τ ]. To simplify
the exposition, we assume by default that the maximum tolerable size is no smaller than the initial size:
Ntol ≥ N0 (the case Ntol < N0 is discussed in Section 2.5). We make no other assumption about Ntol.
In particular, taking Ntol = N0 leads to results on time to progression, and setting Ntol to be the lethal
tumour burden gives results on survival time.

Treatments. We consider the following treatments (with corresponding subscript in parenthesis):

• No treatment (noTreat): C(t) = 0 throughout.
• MTD (MTD): C(t) = Cmax throughout.
• delayed MTD (del-MTD): does not treat until N = Ntol, then C(t) = Cmax for ever.
• containment at Ntol (Cont): does not treat until N = Ntol, then stabilizes tumour size at Ntol as

long as possible with a dose C(t) ≤ Cmax, then treats at Cmax once N > Ntol (unless tumour size
goes back to Ntol, in which case tumour is again stabilized at size Ntol as long as possible, and so
on). See Figs. 1d, 1e.6

• intermittent containment between Ntol and Nmin < Ntol (Int): does not treat until N = Ntol, then
treats at Cmax until N = Nmin, and iterates as long as possible, as in [1] (Fig. 1g).7

We also consider idealized versions, which may be thought of as relaxing the constraint C(t) ≤ Cmax:

3The difference between drug dose and treatment level is two-fold: first, the model applies to treatments such as radiotherapy

that are not naturally described as drugs; second, we neglect pharmacodynamics and pharmacokinetics. As already pointed

out by Norton and Simon (1977) [19], “depending on the type of therapy used and such factors as route of administration or
concurrent medication, [treatment level] may be related to the dose administered in a complicated fashion”.
4The assumption that gs is non-increasing in R is typically not satisfied in models with a Norton-Simon kill-rate, and in
particular in the Gompertzian model that we use for simulations (Model 3 in the main text). Nevertheless, our key results

hold for this model due to alternative arguments. This is further discussed in Section 2.4
5If tumour size exceeds Ntol at some point but later becomes lower than Ntol again, treatment is said to fail the first time
that tumour exceeds Ntol.
6Though this is not what we expect in practice, our assumptions do not exclude the possibility that the resistant population
increases initially very quickly in absolute terms, but then much more slowly, due to some peculiar form of density dependence.

It could then be that tumour grows above Ntol at some point, but then goes back to Ntol as the growth of the resistant

population slows down.
7Our results actually hold for any other way of maintaining tumour size between Nmin and Nmax. Note also that it could be

that after progressing beyond Nmax, tumour size goes back to Nmax. In this case, we assume that intermittent containment
again tries to contain the tumour between Nmin and Nmax.
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• ideal MTD (idMTD): instantly eliminates sensitive cells (S(t) = 0 for all t > 0.)8

• delayed ideal MTD (del-idMTD): does not treat until N = Ntol, then instantly eliminates sensitive
cells.

• ideal containment at Ntol (idCont): does not treat until N = Ntol, then stabilizes tumour size at
Ntol as long as some sensitive cells remain.

• ideal intermittent containment (idInt): as intermittent containment, except that upon reaching Ntol,
tumour size is instantly reduced to Nmin (or to R, if R > Nmin).

We compare these treatments between themselves and to an arbitrary alternative treatment, that we only
assume regular enough to avoid technical issues. To simplify some statements, all treatments are assumed
to treat at Cmax after treatment failure.

Notation. Times to treatment failure are denoted by tnoTreat, tMTD, tdel−MTD, tCont and tInt, respec-
tively, for non-idealized treatments; tidMTD, tdel−idMTD, tidCont and tidInt, for idealized treatments; and
talt for the alternative treatment. Similar subscripts are used to refer to treatment level, and to the sen-
sitive, resistant, and total tumour sizes under these treatments (e.g., Calt(t), Salt(t), Ralt(t), and Nalt(t)
for the alternative treatment).

2.2. Informal description of results. Intuitively, if resistant cells are fully resistant, then the only
way to fight them is via competition with sensitive cells. Our aim is to turn this intuition into rigorous
mathematical results allowing to compare the effect of various treatments in Model 1. The key result
(Proposition 1) is that, in our model, more sensitive cells lead to fewer resistant cells, and this implication
can be formally proven. Similarly, a larger tumour burden – or a lower dose – leads to fewer resistant
cells (and more sensitive cells). It follows that eliminating sensitive cells maximizes the resistant popula-
tion, and minimizes time to treatment failure among treatments that fully eliminate sensitive cells before
failing (Proposition 2). Conversely, by maintaining tumour size as high as possible before failing, ideal
containment maximises time to treatment failure (Proposition 3).

Under the constraint C(t) ≤ Cmax, containment does not exactly maximize time to treatment failure,
because switching to MTD shortly before treatment failure would result in a small delay. However, any
treatment that switches to MTD after failing would lead to a larger resistant population at all times,
hence typically a larger long-term tumour burden (Proposition 4). In particular, though containment fails
before its idealized version, the constraint C(t) ≤ Cmax leads to a lower resistant population than in ideal
containment.

A yet more realistic protocol is intermittent containment, which aims at maintaining tumour burden
between two thresholds [1]. Consistent with intuition, intermittent containment is intermediate between
containment at the lower threshold and containment at the higher threshold in terms of sizes of resistant
and sensitive populations, and in terms of time to treatment failure in the idealized case (Propositions 5 and
6). Similarly, delaying treatment before treating at MTD is intermediate between MTD and intermittent
containment (Proposition 7, which also sums up the comparison between all reference treatments).

Finally, Section 2.5 considers the case in which the initial tumour burden is above the tolerable threshold
(N0 > Ntol). The ideal containment strategy then first reduces tumour size to the maximum tolerable
size (if R0 < Ntol), and then stabilizes the size of the tumour as long as it is not fully resistant. This
strategy is shown to maximize the time for which tumour size is no larger than the maximal tolerable size
(Proposition 8).

2.3. Formal results. We begin with a key result, proved in Section 2.6. It shows that keeping more
sensitive cells, a larger tumour burden, or treating less, leads to fewer resistant cells.

Proposition 1. (key result) Let 0 ≤ t0 ≤ t1. Consider two piecewise continuous treatment level functions
C1, C2, with associated tumour subpopulation sizes (S1, R1) and (S2, R2), satisfying (3). Let Ni = Si+Ri,
i = 1, 2, denote total tumour size. Assume that at time t0, the resistant population is no-larger, and the
sensitive population no-smaller under the first treatment than under the second: i) R1(t0) ≤ R2(t0); and
ii) S1(t0) ≥ S2(t0). Assume moreover that between t0 and t1, at least one of the following conditions holds:
under treatment 1,

iiia) the sensitive population is larger: ∀t ∈ [t0, t1], S1(t) ≥ S2(t);
or iiib) total tumour size is larger: ∀t ∈ [t0, t1], N1(t) ≥ N2(t);

8This treatment is called “aggressive treatment” or “elimination of sensitive cells” by Hansen et al. (2017, 2020) [8, 9].

We may think of this as a hypothetical infinite-dose treatment, or more precisely a treatment with an infinite kill-rate.
Alternatively, in an experimental setting, ideal MTD may correspond to the initial condition of a fully resistant population
of cells (cf. Hansen et al., 2020 [9]).
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or iiic) treatment level is lower: ∀t ∈ [t0, t1], C1(t) ≤ C2(t).
Then, for all t in [t0, t1], R1(t) ≤ R2(t) and S1(t) ≥ S2(t).

It follows that ideal MTD (or MTD, under the constraint C(t) ≤ Cmax) maximizes the resistant
population size (see also [7], [8]). Ideal MTD also minimizes time to treatment failure among all treatments
that eliminate sensitive cells before failing.9

Proposition 2. (comparison with no treatment, MTD and ideal MTD)

a) For all times t ≥ 0, RnoTreat(t) ≤ Ralt(t) ≤ RMTD(t) ≤ RidMTD(t) and SidMTD(t) ≤ SMTD(t) ≤
Salt(t) ≤ SnoTreat(t), where the comparisons between MTD and the alternative treatment are only
valid if Calt(t) ≤ Cmax for all t ≥ 0.

b) If Salt(talt) = 0, then talt ≥ tidMTD

Proof. a) Immediate by Proposition 1; b) if S(talt) = 0, then Ntol = Nalt(talt) = Ralt(talt) ≤ RidMTD(talt)
by a), hence tidMTD ≤ talt. �

Proposition 1 also implies that ideal containment leads to a smaller resistant population than under
any alternative treatment that has not yet failed, and maximizes time to treatment failure.

Proposition 3. (comparison with ideal containment)

a) For all t in [0, talt], RidCont(t) ≤ Ralt(t) and SidCont(t) ≥ Salt(t).
b) tidCont ≥ talt

Proof. a) Let t0 be the first time such that NidCont(t0) = Ntol. On [0, t0], ideal containment does not
treat, so these inequalities hold by Proposition 2. If t0 ≤ talt, then on [t0, talt], NidCont(t) ≥ Nalt(t). Since
the inequalities hold for t = t0, it follows from Proposition 1 that they still hold on [t0, talt].

b) Therefore, Ntol = Nalt(talt) ≥ Ralt(talt) ≥ RidCont(talt), which implies that tidCont ≥ talt, since
under ideal containment, failure occurs when R = Ntol. �

Under a maximal instantaneous dose constraint, containment at Ntol does not exactly maximize time to
treatment failure. Indeed, contrary to what happens with ideal containment, there are still sensitive cells
at treatment failure. For this reason, switching to MTD slightly before containment fails would slightly
delay treatment failure.10 However, containment leads to a lower resistant population than any treatment
that treats at Cmax after failing, in particular than ideal containment.

Proposition 4. (containment) For all t ≥ 0, RCont(t) ≤ Ralt(t) and SCont(t) ≥ Salt(t).

Proof. Let t0 be the first time such that NidCont(t0) = Ntol. On [0, t0], containment does not treat, so these
inequalities hold by Proposition 2. For t ≥ t0, Ncont(t) ≥ Ntol, so Ncont(t) ≥ Nalt(t) or Calt(t) ≥ Ccont(t),
or both. Therefore, repeated application of Proposition 1 on time intervals where Ncont(t) ≥ Nalt(t) and
on time intervals where Calt(t) ≥ Ccont(t) show that the desired inequalities still hold at all later times. �

We now compare intermittent containment between Ntol and Nmin < Ntol to containment at the higher
threshold Ntol and containment at the lower threshold Nmin. The latter lets tumour grow to Nmin (or
treats at Cmax until N = Nmin if N0 > Nmin), then stabilizes tumour size at Nmin as long as possible
with a dose C(t) ≤ Cmax, and then treats at Cmax (unless tumour size goes back to Nmin, in which case
containment at Nmin again tries to stabilize tumour size at Nmin as long as possible). In the idealized
version, tumour size is stabilized at Nmin as long as some sensitive cells remain (and tumour size is instantly
reduced to Nmin at time 0 if N0 > Nmin). The subscripts used for containment and ideal containment at
Nmin are ContNmin and idContNmin, respectively.

The next result shows that idealized intermittent containment is, in a precise sense, intermediate between
ideal containment at the lower and at the higher level. It is illustrated by Extended Data Fig. 1.

Proposition 5. (intermittent versus continuous containment: idealized treatments)

a) For all t ≥ 0, RidCont(t) ≤ RidInt(t) ≤ RidContNmin(t) and SidContNmin(t) ≤ SidInt(t) ≤ SidCont(t)
b) tidContNmin ≤ tidInt ≤ tidCont.

9The latter result should be seen as a comparison between idealized treatments. Indeed, under the constraint C(t) ≤ Cmax,

the sensitive population size would never be exactly 0.
10The omitted proof of this result is easy. It simply exploits the fact that, in the short run, increasing treatment decreases

both the sensitive population and tumour size. In the long run, this would lead to a quicker development of resistant cells and
typically a larger tumour size, but increasing treatment only shortly before tCont ensures that the short-run effect dominates
until tCont. We assumed here that the sensitive population growth-rate is decreasing in C, and not only non-increasing.
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c) For all t ≥ tidInt, NidCont(t) ≤ NidInt(t) ≤ NidContNmin(t).

Proof. The comparison with ideal containment at Ntol (idCont) follows from Proposition 3. Let us compare
ideal intermittent containment and ideal containment at Nmin. Let

t∗ = sup{τ ≥ 0, NidContNmin(t) ≤ NidInt(t) on [0, τ ]}
and

t̂ = sup{t ≥ 0, NidContNmin(t) ≤ Nmin}
and note that t̂ ≤ t∗. For t ∈ [0, t∗], it follows from Proposition 1 that RidContNmin(t) ≥ RidInt(t) and
SidContNmin(t) ≤ SidInt(t). In particular, this holds at t̂. But for t ≥ t̂, SidContNmin(t) = 0 ≤ SidInt(t).
Therefore, the above inequalities are still valid at all later times by Proposition 1, and are thus valid for all
positive times. In particular, at tidInt, Ntol = RidInt ≤ RidContNmin, hence tidContNmin ≤ tidInt. Finally,
for t ≥ tidInt, NidInt = RidInt ≤ RidContNmin ≤ NidContNmin. This concludes the proof. �

The next proposition is a partial analog for non-idealized treatments. The proof uses that containment
at Nmin treats at Cmax when N > Nmin.

Proposition 6. (intermittent containment: bounded instantaneous dose)
For all t ≥ 0, RCont(t) ≤ RInt(t) ≤ RContNmin(t) and SContNmin(t) ≤ SInt(t) ≤ SCont(t)

Proof. The comparison with containment at Ntol follows from Proposition 4. If Nmin ≥ N0, then the
comparison with containment at Nmin is similar to the comparison with ideal containment at Nmin in
Proposition 5, but replacing SidContNmin ≤ SidInt by CContNmin ≥ CInt when NContNmin > Nmin. If
Nmin < N0, then as long as NContmin > N0, CContmin = Cmax ≥ CInt, hence the result holds by
Proposition 1; if at some time t̃, NContmin = Nmin, the proof that the required inequalities hold also for
t ≥ t̃ is as in the case N0 ≥ Nmin. �

Contrary to what happens for idealized treatments, time to treatment failure could be larger under
intermittent containment than under containment at the upper level. This is because when intermittent
containment does not manage to bring back tumour size to Nmin, it starts treating continuously at Cmax:
by quickly diminishing the sensitive population, this may delay treatment failure, to the cost of a larger
resistant population. This is further discussed in Section 4.3 and illustrated in Extended Data Fig. 4, see
also Table 1 in the main text.

Our final result compares all reference treatments, including delayed MTD and its idealized version.

Proposition 7. (comparison between all reference treatments) For all t ≥ 0:

a) SidMTD(t) ≤ Sdel−idMTD(t) ≤ SidInt(t) ≤ SidCont(t) ≤ SnoTreat(t)
b) RidMTD(t) ≥ Rdel−idMTD(t) ≥ RidInt(t) ≥ RidCont(t) ≥ RnoTreat(t)
c) tidMTD ≤ tdel−idMTD ≤ tidInt ≤ tidCont
d) SMTD(t) ≤ Sdel−MTD(t) ≤ SInt(t) ≤ SCont(t) ≤ SnoTreat(t)
e) RMTD(t) ≥ Rdel−MTD(t) ≥ RInt(t) ≥ RCont(t) ≥ RnoTreat(t)

Moreover, for all t ≥ tidCont, NidMTD(t) ≥ Ndel−idMTD(t) ≥ NidInt(t) ≥ NidCont(t)

Proof. a) The first two inequalities are immediate from the definition of these treatments. The inequality
SidInt(t) ≤ SidCont(t) was proved in Proposition 5. The last inequality is immediate from Proposition 1.

b) Immediate from a) and Proposition 1.
c) Immediate from b), since for idealized treatments, S = 0 when treatment fails.
d) The first two inequalities are immediate from the definition of these treatments and Proposition 1

(since CMTD(t) ≥ Cdel−idMTD(t) ≥ CInt(t) for all t). The inequality SInt(t) ≤ SCont(t) was proved in
Proposition 6. The last inequality is immediate from Proposition 1.

e) Immediate from d) and Proposition 1.
Finally, the last result is due to b) and to the fact that, by c) and definition of reference idealized

treatments, for t ≥ tidCont, S = 0 hence N = R for all these treatments. �

2.4. Models with a Norton-Simon kill-rate. To derive Proposition 1, the growth-rate gs(S,R,C) of
sensitive cells was assumed non-increasing in R. In general, this assumption does not hold for Model 2 of
the main text. More precisely, it holds for models with a log-kill rate, that is, g(N,C) = g(N)− λC, with
g nonincreasing, but not for Norton-Simon models:

Ṡ = Sg(N)(1− λC)

Ṙ = Rg(N) with g decreasing,
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such as the model we use for simulations (Model 3). Indeed, in the absence of treatment, or as long as
λC < 1, an increase in the resistant population size decreases the growth-rate of sensitive cells, but if
λC > 1, the opposite happens. This makes sense: an increase in the number of resistant cells might make
more sensitive cells quiescent, which may protect them from the drug.11.

There is no hope to completely rescue Proposition 1. Indeed, for such models, if S1(t0) = S2(t0),
R1(t0) > R2(t0), and C1(t) = C2(t) > 1/λ on [t0, t1], then S1(t) < S2(t) for all t = t0 +h with h > 0 small
enough. This contradicts Proposition 1, when the extra-assumption is iiic), i.e., C1(t) ≤ C2(t).

Nevertheless, the assumption that gs is decreasing in R is not crucial. The key-reason to impose it
was to make sure that not treating maximizes the number of sensitive cells, which is important when
considering containment at a larger size than N0. However, it is not difficult to see that this property
always holds in Model 2 (hence in Model 3). Furthermore, the results in Proposition 1 still hold when the
extra-assumption is iiia) or iiib). A close examination of the proofs then shows that all results of Section
2.3 on idealized treatments still hold for Model 2. In particular, ideal containment at Ntol still maximizes
the time it takes for tumour size to exceed Ntol (Proposition 3b). Actually, for Model 3 and more general
models, it may be shown that almost all of our results on non-idealized treatments still hold as well, but
this requires more sophisticated arguments. This will be the topic of a companion paper.

2.5. The case N0 > Ntol. It could be that at the beginning of treatment, tumour size is already intolerable,
that is, N0 > Ntol. In that case, maximizing the time at which treatment fails is not an appropriate
objective, since, with our definition of treatment failure, treatment fails before beginning. Another possible
objective is to maximize the total time spent at tumour sizes below Ntol; that is, the quantity

τ =

∫ +∞

0

1N(t)≤Ntol
dt

where 1N(t)≤Ntol
= 1 if N(t) ≤ Ntol and 0 otherwise.

Containment could be thought of as first treating at MTD until tumour size is tolerable, and then
trying to stabilize tumour size at Ntol for as long as possible. In the idealized version – our definition
of ideal containment when N0 > Ntol – tumour size is instantly reduced from N0 to Ntol, and then
stabilized at this size as long as R(t) ≤ Ntol. Our next result is that ideal containment is optimal for the
above objective, under the additional assumption that the resistant population may be slowed down by
the presence of sensitive cells, but nonetheless keeps increasing. This is equivalent to assuming that any
tumour containing fully resistant cells is eventually lethal.

The intuition is as follows: first, since the resistant population keeps growing, tumour size should be
reduced as quickly as possible, to minimize the size of the resistant population when tumour size becomes
tolerable. For the same reason, once tumour burden is tolerable, there is no advantage in letting tumour
burden become temporarily intolerable (this would not contribute to the time spent with a tolerable tumour
burden, and while N > Ntol, the resistant population would still grow, making the situation worse when
going back to N ≤ Ntol). It follows that, to be optimal, it suffices to bring tumour size back to Ntol as
quickly as possible, and then maximize time to treatment failure from that point on. This is precisely
what ideal containment does.

Proposition 8. Let τidCont and τalt denote the total time spent at tumour sizes below Ntol under ideal
containment and an alternative treatment, respectively. Assume that as long as the patient is alive, the
resistant population keeps growing: for all R ≤ N ≤ Ncrit, gr(R,N − R) > 0, where Ncrit is the lethal
tumour size. Then τidCont ≥ τalt.

Proof. First note that, since R′idCont = gr(RidCont, Ntol −RidCont) for 0 < t ≤ τidCont:

(4) τidCont =

∫ τidCont

0

1 dt =

∫ 1

0

R′idCont(t)

gr(RidCont(t), Ntol −RidCont(t))
dt =

∫ Ntol

R0

du

gr(u,Ntol − u)

where we made the change of variables u = RidCont(t) and used thatRidCont(0) = R0 andRidCont(τidCont) =
Ntol. Second, let t0 and t1 be the first and last times such that Nalt(t) = Ntol under the alternative treat-
ment. For all t ≤ t1, Ralt(t) ≤ Ntol and

1Nalt(t)≤Ntol
=

R′alt(t)

gr(Ralt(t), Nalt(t)−Ralt(t))
1Nalt(t)≤Ntol

≤ R′alt(t)

gr(Ralt(t), Ntol −Ralt(t))

11We thank Frank Ernesto Alvarez Borges for pointing out this issue to us.
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Indeed, the Left-Hand-Side is 0 if Nalt(t) > Ntol, and is not larger than the Right-Hand-Side otherwise,
since R′alt(t) is positive, and gr is positive and decreasing in its second argument. Therefore, the change
of variable u = Ralt(t) leads to:

τalt =

∫ t1

t0

1Nalt(t)≤Ntol
dt ≤

∫ t1

t0

R′alt(t)

gr(Ralt(t), Ntol −Ralt(t))
dt =

∫ R(t1)

R(t0)

du

gr(u,Ntol − u)
≤ τidCont

by (4), since R(t0) ≥ R0 and R(t1) ≤ Ntol. �

A similar reasoning could also be applied to the case R0 < Ntol. The result is then that ideal containment
not only maximises the first time at which tumour burden becomes larger than Ntol, but also maximizes the
total time spent at tumour sizes below Ntol (that is, even considering treatments that would temporarily
let tumour grow above Ntol, then reduce tumour size below this threshold, any number of times, ideal
containment maximizes the total time spent at tumour sizes non-larger than Ntol). This requires the
additional assumption that the resistant population may be slowed down by sensitive cells, but keeps
increasing as long as the patient is alive, even for very large sensitive population sizes. Otherwise, a possible
strategy would be to first let the sensitive population grow so much that the size of the resistant population
decreases, and start treating heavily only when the resistant population has almost been eliminated. If
this allows obtaining a tumour of size Ntol with a resistant population smaller than R0, then this allows
obtaining a larger total time spent at tumour sizes below Ntol. Similar strategies are discussed by Carrère
(2017), Pouchol et al. (2018), and Carrère and Zidani (2019) [3–5].

2.6. Reminder on differential equations and proof of Proposition 1. For completeness, we recall
differential equation tools used to prove Proposition 1, which can be found in any good advanced textbook.
The reader familiar with differential equations and Gronwall’s inequalities (which we call here “comparison
principles”) can jump to Section 2.6.2.

2.6.1. Reminder on differential equations. Consider the differential equation

(5) ẋ(t) = f(t, x(t))

with f : R2 → R. Assume that:

• f is continuous, and admits a continuous partial derivative ∂f/∂x with respect to its second variable.
• there exist constants A and B such that |f(t, x)| ≤ A|x|+B for all (t, x) in R2.

This ensures that for any (t0, x0) in R2, there is a unique solution such that x(t0) = x0, and that this
solution is defined for all times. The first part also implies that a solution starting below another stays
below it.

Property 9. Let x and y be solutions of (5). If there exists a time t0 such that x(t0) < y(t0), then
x(t) < y(t) for all t in R.

A subsolution of (5) is a differentiable function u such that u′(t) ≤ f(t, u(t)). A supersolution is a
differentiable function u such that u′(t) ≥ f(t, u(t)). A solution is both a subsolution and a supersolution.
The most important tool for our proofs is the following comparison principle, a variant of Gronwall’s
lemma. It says that if a subsolution starts below a solution (or a supersolution), it stays below at all later
times (strictly so if it starts strictly below).

Property 10. (comparison principle) Let t0 ∈ R. Let u be a subsolution and v a supersolution of (5),
defined at t0. Assume that u(t0) ≤ y(t0). Then for all t ≥ t0 such that both u and v are defined, u(t) ≤ y(t),
with a strict inequality if u(t0) < v(t0).

Finally, let φt(x0) denote the value x(t) of the solution of (5) with initial condition x(t0) = x0.

Property 11. (solutions of differential equations depend continuously on initial conditions) Function φt
is continuous.

Similar results may be obtained under less demanding assumptions, allowing for generalizations of our
results under similarly less demanding assumptions on the regularity of treatment level and of the sensitive
population size. In particular, we may assume that treatment level C(t) is only piecewise continuous.
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2.6.2. Proof of Proposition 1. Assume that conditions i) and ii) hold, and then distinguish three cases.

Case 1: if iiia) holds. Let f(t, R) = Rgr(S1(t), R), so that Ṙ1(t) = f(t, R1(t)). Since S1 ≥ S2 and
gr is non-increasing in S, it follows that:

Ṙ2(t) = R2(t)gr(S2(t), R2(t)) ≥ R2(t)gr(S1(t), R2(t)) = f(t, R2(t))

Since R1(t0) ≤ R2(t0), the comparison principle implies that R1 ≤ R2 on [t0, t1]
Case 2: if iiib) holds. The proof that R1 ≤ R2 on [t0, t1] is as in the proof of a) but with

f(t, R) = Rgr(N1(t)−R,R). Since by assumption, N1 ≥ N2, it follows that S1 ≤ S2 on [t0, t1].
Case 3: if iiic) holds. The idea of the proof is as follows: in forward time, as long as S1 ≥ S2,

the comparison principle implies R1 ≤ R2. Similarly, as long as R1 ≤ R2, since we also have C1 ≤ C2,
the comparison principle implies S1 ≥ S2. Thus, as long as we have one of the properties that we want,
we have the other. However, there is a chicken and egg problem. To solve it, we slightly perturb initial
conditions to make sure that both properties hold strictly initially, and then use the fact that solutions of
differential equations depend continuously on initial conditions.

Let ε > 0. Let (Sε1 , R
ε
1) be solution of (3) for the same treatment C(t) = C1(t) as (S1, R1), but with

initial conditions Sε1(t0) = S1(t0) + ε > S2(t0), and Rε1(t0) = R1(t0) − ε < R2(t0). Let τ ∈ [t0, t1]. A
variant of case 1 leads to:

Lemma 12. If Sε1(t) ≥ S2(t) on [t0, τ ], then Rε1(t) < R2(t) on [t0, τ ].

A similar argument, using that gs is non-increasing in R and in C, implies the following lemma:

Lemma 13. If Rε1(t) ≤ R2(t) on [t0, τ ], then Sε1(t) > S2(t) on [t0, τ ].

Putting both lemmas together, we obtain:

Lemma 14. For all t in [t0, t1], Rε1(t) < R2(t) and Sε1(t) > S2(t).

Proof. Otherwise there exists a first time τ in [t0, t1] such that Rε1(τ) ≥ R2(τ) or Sε1(τ) ≤ S2(τ). But on
[0, τ ], Rε1(t) ≤ R2(t) and Sε1(t) ≥ S2(t). Thus, by Lemmas 12 and 13, Rε1(τ) < R2(τ) and Sε1(τ) > S2(τ).
This contradicts the definition of τ . �

Since solutions of differential equations depend continuously on initial conditions, it follows from Lemma
14 that, for any t in [t0, t1]

R1(t) = lim
ε→0

Rε1(t) ≤ R2(t)

and similarly S1(t) ≥ S2(t).

3. Explicit formulas

We compute below, for various treatments and models, the time it takes for tumour size to become
strictly larger than an arbitrary threshold N∗ ≥ N0. This time is denoted by tN∗(treatment). Times to
progression, to treatment failure, and survival times are obtained by taking N∗ equal to N0, Ntol, and
Ncrit, respectively. Section 3.1 studies general density-dependent models, and Section 3.2 some frequency-
dependent ones. Formulas for Gompertzian growth are given in Section 3.3. Treatments considered were
defined in Section 2.1.

3.1. The purely density-dependent case. This section studies Model 2, that is, the particular case
of Model 1 in the main text (Eq. (3) in this supplementary material) where gs(S,R,C) = g(N,C) and
gr(S,R) = g(N, 0), with g non-increasing both in N and in C, and g(N, 0) > 0 for all N ≤ Ncrit. We will
refer to this as the purely density-dependent case12. Thus:

(6)

{
Ṡ(t) = S(t)g(N(t), C(t)) ; S(0) = S0 ≥ 0

Ṙ(t) = R(t)g(N(t), 0) ; R(0) = R0 > 0

Henceforth, we let g(N) := g(N, 0). Note that there is no cost of resistance, so that the resistant population
keeps increasing. Moreover, the treatment level needed to stabilize the tumour at a given size is easily
seen to be increasing in R. It follows that during the stabilization phase of containment (when such a
stabilization is possible), treatment level gradually increases until C(t) = Cmax, at which point containment
at that size is no longer possible. It also follows that once the size of a tumour treated at Cmax starts

12The term density-dependent here refers to the density of tumour within the body. In the following models, as in standard
Gompertz models, the growth rates depend on the total number of tumour cells in the patient, so the product of the tumour
volume and the number of cells per unit volume (rather than just the number of tumour cells per unit volume).
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increasing, it keeps increasing until the patient dies, so there is no possibility that under containment
tumour size progresses beyond the stabilization size but then goes back to it, as could happen in the more
general Model 1.

3.1.1. No treatment, ideal MTD, delayed ideal MTD. For an untreated of fully resistant tumour, Ṅ =
Ng(N). This equation may be solved by separation of variables. The time it takes for tumour size to grow
from N1 to N2 > N1 is:

tN1→N2
=

∫ N2

N1

dN

Ng(N)

Supplementary Table 2 gives an explicit expression of tN1→N2 for various tumour growth-models.
With the above notation, the time it takes for an untreated tumour to become larger than N∗ is:

tN∗(noTreat) = tN0→N∗ =

∫ N∗

N0

dN

Ng(N)

Under ideal MTD, the tumour is first reduced to size R0 and then grows as an untreated tumour. Thus:

tN∗(idMTD) = tR0→N∗ = tN∗(noTreat) + tR0→N0

Under delayed ideal MTD, with treatment starting at some size Nref ≥ N0, the tumour first grows
to size Nref , then is reduced to the current resistant population size R1, and then grows back as a fully
resistant tumour. Due to the absence of resistance cost, the frequency of resistant cells does not change

during no treatment phases, so that R1 = R0
Nref

N0
≥ R0. For N∗ ≥ Nref ≥ N0, this leads to:

tN∗(del -idMTD) = tN0→Nref
+ tR1→N∗ = tN∗(noTreat) + tR0Nref/N0→Nref

3.1.2. Ideal containment at Nref ≥ N0. The tumour grows as an untreated or fully resistant tumour before
and after the stabilization phase. For N∗ < Nref , tN∗(idCont) = tN∗(noTreat). For N∗ ≥ Nref , the
absolute benefit of ideal containment with respect to no treatment is the duration of the stabilization

phase. This is the time it takes for the resistant population to grow from R1 = R0
Nref

N0
to R2 = Nref at a

constant per-cell growth-rate g(Nref ). This leads to:

tN∗(idCont) = tN∗(noTreat) +
ln(N0/R0)

g(Nref )

3.1.3. Constant dose, MTD, and delayed constant dose with a Norton-Simon kill rate. Assume a Norton-
Simon kill-rate: g(N,C) = g(N)(1 − λC). Then under a constant dose treatment, dS

S = (1 − λC)dRR so

that SRλC−1 is constant. Thus, S = S0

(
R0

R

)λC−1
, and when N = N∗ for the last time, the resistant

population size is the largest solution R∗ of:13

(7) N(R∗) = N∗, R∗ ≥ R0, with N(R) = R+ S0

(
R0

R

)λC−1
13The solution to (7) is easily seen to be unique unless both N∗ = N0 and S0(1 − λC) + R0 < 0 (i.e. tumour size initially

decreases), in which case R∗ is the unique solution strictly greater than R0.

Supplementary table 2. Time in which an untreated tumour grows from N1 to N2.

Model name Per-cell growth-rate g(N) tN1→N2

Exponential ρ
1

ρ
ln

(
N2

N1

)
Gompertz ρ ln(K/N)

1

ρ
ln

(
ln(K/N1)

ln(K/N2)

)
Logistic ρ(1 −N/K)

1

ρ

[
ln

(
N2

N1

)
+ ln

(
K −N1

K −N2

)]
Power-Law ρN−γ ; 0 < γ < 1

1

ργ
(Nγ

2 −Nγ
1 )

von Bertalanffy ρ(N−γ −K−γ); 0 < γ < 1
1

ργK−γ
ln

(
Kγ −Nγ

1

Kγ −Nγ
2

)
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This leads to:

tN∗(Constant dose C) =

∫ R∗

R0

dR

Rg(N(R))

with R∗ and N(R) defined by (7). A formula for MTD is obtained by taking C = Cmax.
More generally, if at some point N = N1, R = R1, and tumour is then treated at a constant dose C,

then the time it takes for the tumour to exceed size N2 ≥ N1 is:

(8) t(N1 → N2|R1, C) =

∫ R2

R1

dR

Rg(Ñ(R))
with Ñ(R) = R+ S1

(
R1

R

)λC−1
where R2 is the largest solution of R2 + S1

(
R1

R2

)λC−1
= N2. However, except in very special cases, R2

and the integral can only be computed numerically.
If treatment is delayed until N = Nref and a constant dose C is then applied, the time at which tumour

size increases beyond N∗, assuming N∗ ≥ Nref , is equal to

tN∗(delayed constant dose C) = tN0→Nref
+ t(Nref → N∗|R1, C), with R1 = R0N0/Nref

where the second term is defined by (8). Taking C = Cmax gives a formula for delayed MTD, though
again with an integral to be computed numerically.

3.1.4. Containment at Nref . If N∗ < Nref , then tN∗(Cont) = tN∗(noTreat). If N∗ = Nref , then as for
ideal containment:

tNref
(Cont) = tNref

(noTreat) +
ln(R2/R1)

g(Nref )

where R1 = R0
Nref

N0
and R2 are the resistant population sizes at the beginning and at the end of the

stabilization phase. However, R2 is no longer equal to Nref , and needs to be computed. To do so, let R̃2

be the solution of:

(Nref −R)g(Nref , Cmax) +Rg(Nref ) = 0

that is, if N = Nref , R = R̃2 and C = Cmax, then dN/dt = 0. There are two cases: if R1 ≥ R̃2, or

equivalently R0 ≥ N0

Nref
R̃2, then when the tumour reaches the stabilization size Nref , treating at Cmax does

not decrease tumour size: there is then no stabilization phase, R2 = R1 and tN∗(Cont) = tN∗(noTreat).

Otherwise, there is a stabilization phase that lasts until R = R̃2. Thus, R2 = max(R1, R̃2). In the case

R1 < R̃2 (existence of a stabilization phase), we get:

tNref
(Cont) = tNref

(noTreat) +
ln(N0/R0)

g(Nref )
− ln (1 + g(Nref )/|g(Nref , Cmax)|)

g(Nref )

For a Norton-Simon kill rate: g(N,C) = g(N)(1− λC), this boils down to:

tNref
(Cont) = tNref

(noTreat) +
ln(N0/R0)

g(Nref )
− ln (λCmax/[λCmax − 1])

g(Nref )

For N∗ ≥ Nref , still assuming a Norton-Simon kill rate and the existence of a stabilization phase,

(9) tN∗(Cont) = tNref
(noTreat) +

ln(N0/R0)

g(Nref )
− ln (λCmax/[λCmax − 1])

g(Nref )
+ t(Nref → N∗|R̃2, Cmax)

where the last term is defined by (8). The difference with ideal containment is:

tN∗(Cont)− tN∗(idCont) = − ln (λCmax/[λCmax − 1])

g(Nref )
+
[
t(Nref → N∗|R̃2, Cmax)− tNref→N∗

]
The first term is the difference in the durations of the stabilization phases. It is smaller if Cmax is large.
The second term (the bracket) is the difference between the time it takes for the tumour to progress
from Nref to N∗ under containment and under ideal containment. It is positive and increasing in N∗.
This expresses the fact that, under containment, after the stabilization phase, the tumour is still partially
sensitive, hence progresses more slowly than under ideal containment.
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3.1.5. Ideal intermittent containment between Nmin and Nmax. To fix ideas, assume N0 ≤ Nmax ≤ N∗.
Under ideal intermittent containment, the tumour grows as an untreated or fully resistant tumour, except
that each time it reaches size Nmax and is still partially sensitive the sensitive population is decreased
by Nmax − Nmin, or by Nmax − R if R > Nmin. Letting tstab(idInt) be the duration of the (dynamic)
stabilization phase, that is, the time between the first and the last time such that N = Nmax,

tN∗(idInt) = tN∗(noTreat) + tstab(idInt)

We now compute tstab. Let tk denote the kth time that N = Nmax. Let tq+1 denote the first time at which
N = Nmax and N cannot be reduced to Nmin (that is, R > Nmin). Let Rq+1 = R(tq+1). During the
stabilization phase, the tumour size changes q times from Nmin to Nmax, and once from Rq+1 to Nmax.
Therefore:

tstab = q tNmin→Nmax
+ tRq+1→Nmax

It remains to compute q and Rq+1. Due to the absence of resistance cost, the proportion of resistant cells
does not change during a no-treatment phase. This implies that:

(10) Rq+1 = R0 ×
Nmax
N0

×
(
Nmax
Nmin

)q
so it only remains to compute q. The fact that, by definition of q, Nmin < Rq+1 ≤ Nmax implies that q is
the integer part of (i.e., the greatest integer no greater than)

(11)
ln(N0/R0)

ln(Nmax/Nmin)

It may be checked that if Nmin < R0, so that q = 0, we obtain the formula for delayed ideal MTD (let
the tumour grow until Nmax, then eliminate all sensitive cells). Similarly, in the limit Nmin → Nmax, we
recover the formula for ideal (continuous) containment.

The explicit formula for ideal intermittent containment is plotted in Extended Data Fig. 1 in the case
of a Gompertzian growth-model (Model 3 in the main text). This figure compares time to progression for
ideal containment at N0, ideal containment at Nmin < N0, and intermittent containment between N0 and
Nmin < N0. The value of Nmin is varied from R0 to N0. This illustrates two important points: first, for
idealized treatments, time to progression for intermittent containment is in-between time to progression
for containment at the lower level and for containment at the upper level (this is actually true for time
to progression beyond any level N∗ ≥ Nmax, see Proposition 5); second, though ideal containment at the
upper level is superior to ideal intermittent containment, the difference is small when Nmin is a substantial
fraction of Nmax.

3.1.6. Summary. Supplementary Table 3 summarizes absolute benefits of various treatments compared to
not treating:

tN∗(treatment)− tN∗(noTreat),

in the case N∗ ≥ Nref ≥ N0. The formula for containment is given in the case of a Norton-Simon kill
rate, and assuming that some stabilization is possible (for other cases, see Section 3.1.4). The inequality
in this formula indicates that the benefit is greater that this quantity (with equality for N∗ = Nref ). In
simulations, for large values of N∗, we find the benefit of containment to be similar to the benefit of ideal
containment, and even slightly greater in some cases when the endpoint tumour size is larger than the
containment size.

3.2. Frequency-dependent models and models with resistance costs. Models where the resistant
population follows a frequency-dependent dynamic Ṙ = Rf(R/N), or more generally a frequency and
density-dependent dynamic,

(12) Ṙ = Rf(R/N)g(N), with f increasing and f(1) = 1

Supplementary table 3. Absolute benefits compared to not treating in Model (6)

Treatment idMTD del-idMTD idCont Cont

Absolute benefit tR0→N0 t
R0

Nref
N0
→Nref

ln(N0/R0)

g(Nref )
≥ ln(N0/R0) − ln (1 + 1/[λCmax − 1])

g(Nref )
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have been considered in the literature, e.g., Silva et al. (2012) [13], Bacevic et al. (2017) [14]. Another
possibility is to keep an essentially density dependent model, but to introduce a resistance cost, e.g.,
Ṡ = ρsSg(N), Ṙ = ρrRg(N), with ρr ≤ ρs. Under such models, the frequencies of resistant and sensitive
cells continuously change even in an untreated tumour. This makes it difficult to obtain useful explicit
formulas for treatments that begin by letting the tumour grow, such as containment at tumour sizes higher
than the initial size. But for ideal MTD and ideal containment at the initial size N0, explicit formulas are
readily obtained for general models where Ṙ = Rgr(R,S). Indeed, under ideal MTD, the tumour becomes
immediately fully resistant, hence the frequency-dependence disappears. Thus, for N∗ ≥ N0, we still have

tN∗(idMTD) = tR0→N∗ , with tN1→N2
=

∫ N2

N1

dN

Ng(N)
for Model (12),

or more generally tN1→N2
=
∫ N2

N1

dN
Ngr(N,0)

.

For ideal containment at N0, the stabilization phase lasts:

tstab(idContN0) =
1

g(N0)

∫ N0

R0

dR

Rf(R/N0)
for Model (12),

and more generally, tstab(idContN0) =
∫ N0

R0

dR
Rgr(R,N0−R) . After the stabilization phase, the tumour is fully

resistant. Thus,
tN∗(idContN0) = tstab(idContN0) + tN0→N∗ .

For containment at the initial size N0, the stabilization phase lasts:

tstab(ContN0) =
1

g(N0)

∫ Rend

R0

dR

Rf(R/N0)
for Model (12),

and more generally, tstab(ContN0) =
∫ Rend

R0

dR
Rgr(R,N0−R) , where Rend is the resistant population size when

the stabilization treatment level reaches Cmax. The value of Rend is easy to compute once the sensitive
population dynamics are specified. For N∗ ≥ N0,

tN∗(ContN0) ≥ tstab(ContN0) + tN0→N∗ .

The expression for tN1→N2
no longer corresponds to the growth of an untreated tumour, but to the

growth of a fully resistant tumour. Thus, the formulas do not permit easy comparison with no treatment,
but they allow comparison of ideal MTD and ideal containment (or containment). For the same function
g(N) as in Section 3.1, frequency-dependence as modeled in (12) provides an additional rationale to
containment, increasing its benefit with respect to ideal MTD.

3.3. Application to Gompertzian growth. We now consider the case of a Gompertz model: g(N) =
ρ ln(K/N), for which:

tN1→N2
=

1

ρ
ln

[
ln(K/N1)

ln(K/N2)

]
=

1

ρ
ln

[
log(K/N1)

log(K/N2)

]
where ln denotes the natural logarithm (ln(2.718...) = 1), while log denotes the base 10 logarithm (log(10) =
1). For readability, time units are chosen so that ρ = 1 (otherwise, all times should be divided by ρ).
Assume N0 ≤ Ntol ≤ Ncrit ≤ K, and let a, b, c, d be nonnegative real numbers such that

K = 10aR0 = 10bN0 = 10cNtol = 10dNcrit.

Note that a ≥ b ≥ c ≥ d. For ideal intermittent containment, let Nmax = 10αNmin. With time units
such that ρ = 1, the time to progression, the time to treatment failure, and the survival time in the
absence of treatment are respectively 0, ln(b/c) and ln(b/d). Supplementary Table 4 gives the absolute
benefit compared to no treatment in terms of time to progression, time to treatment failure, and survival
time. The formulas for ideal intermittent containment are approximations (exact when the last cycle is
complete), see Section 3.1.5. Formulas for other models are easily obtained by using the values of g(N)
and tN1→N2

in Supplementary Table 2.
Supplementary Tables 5 and 6 give numerical values of time to progression, time to treatment failure,

and survival time with parameters from Monro and Gaffney (2009) [11] (main text Table 2).14 Note that
contrary to Supplementary Table 4, these are not the benefits with respect to no treatment, but the actual
times to progression, times to treatment failure and survival times. This is why we add a row for no
treatment in Supplementary Table 6. Note also that, although it leads in our model to a large survival

14In [11], simulations start with S = 1, R = 0, so the value of R at treatment initiation, i.e., when N = 1010, is not explicitly
given. However, it may be derived from a well-known formula, see, e.g., Goldie and Coldman, 1979 [20].
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Supplementary table 4. Absolute benefit over no treatment for a Gompertz
model: formulas. Parameters satisfy K = 10aR0 = 10bN0 = 10cNtol = 10dNcrit, and
Nmax = 10αNmin. Time units exceptionally chosen so that ρ = 1 (otherwise all times should
be divided by ρ). Time to progression, to treatment failure, and survival time in the absence
of treatment are respectively 0, ln(b/c) and ln(b/d), which should be added to the values of the
table to obtain the corresponding times for the treatment of interest.

Treatment Progression benefit Treatment failure benefit Survival benefit

ideal MTD ln

(
1 +

a− b
b

)
ln

(
1 +

a− b
b

)
ln

(
1 +

a− b
b

)
del-idMTD

Nref = Ntol
0 ln

(
1 +

a− b
c

)
ln

(
1 +

a− b
c

)
del-idMTD
Nref = Ncrit

0 0 ln

(
1 +

a− b
d

)

idContN0
a− b
b

a− b
b

a− b
b

idContNtol 0
a− b
c

a− b
c

idContNcrit 0 0
a− b
d

idIntN0
a− b
b
×

ln(1 + α/b)

α/b

a− b
b
×

ln(1 + α/b)

α/b

a− b
b
×

ln(1 + α/b)

α/b

idIntNtol 0
a− b
c
×

ln(1 + α/c)

α/c

a− b
c
×

ln(1 + α/c)

α/c

idIntNcrit 0 0
a− b
d
×

ln(1 + α/d)

α/d

ContN0

a− b− log
(

λCmax
λCmax−1

)
b

semi-explicit formula,

see Eq. (9)

semi-explicit formula,

see Eq. (9)

ContNtol 0
a− b− log

(
λCmax
λCmax−1

)
c

semi-explicit formula,

see Eq. (9)

ContNcrit 0 0
a− b− log

(
λCmax
λCmax−1

)
d

time, we do not advocate containment at the critical size Ncrit as such a strategy would be extremely risky
and harmful to quality of life.
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Supplementary table 5. Times to progression, to treatment failure, and sur-
vival time for a Gompertz model: idealized treatments and containment The
model is Model 3 from the main text, with parameters from Table 2. Time is measured in days.
Numbers with an asterisk are estimated from simulations, others are calculated from formulas.

Treatment tprog tfail tsurv
ideal MTD 186 263 412

delayed ideal MTD (at Ntol) 0 319 468
delayed ideal MTD (at Ncrit) 0 77 591

ideal containment at N0 340 417 566
ideal containment at Ntol 0 615 764
ideal containment at Ncrit 0 77 1526

idInt between N0 and N0/2 320 397 546
idInt between Ntol and Ntol/2 0 566 715

idInt between Ncrit and Ncrit/2 0 77 1280
Containment at N0 (Cmax = 2) 318 418* 568*
Containment at Ntol (Cmax = 2) 0 580 767*
Containment at Ncrit (Cmax = 2) 0 77 1441

Supplementary table 6. Times to progression, to treatment failure, and sur-
vival time for a Gompertz model: constant doses and delayed constant doses
Same model and parameters as in Supplementary Table 5. Numbers in parentheses (given only
when different) are for the original Monro and Gaffney model [11], with mutations and back mu-
tations at rate 10−6 (this does not change optimal doses, given our precision level). Bold squares
correspond to optimal results given the starting time, e.g., the dose C = 0.74 maximizes survival
time among all constant dose treatments starting immediately. C = 2 corresponds to MTD in
most of our simulations. For visual representation of survival time for constant doses starting
immediately, see Figure 1 in [11].

C Starting size tprog tfail tsurv
2 (MTD) N0 236 314 463

1.09 N0 303 (302) 397 (396) 549 (548)
1 N0 0 421 (420) 578 (579)

0.89 N0 0 443 (442) 634 (632)
0.74 N0 0 296 730 (727)

0 irrelevant 0 77 226

2 (MTD) Ntol 0 400 (398) 549 (547)
1.07 Ntol 0 543 (537) 731 (726)

1 Ntol 0 77 780 (774)
0.86 Ntol 0 77 885 (877)

2 (MTD) Ncrit 0 77 762 (758)
1.04 Ncrit 0 77 1276 (1255)

4. Comparison between treatments

Building on findings of Sections 2 and 3, this section compares treatments for a purely density-dependent
model with no resistance cost, as defined in Section 3.1, Eq. (6) (or equivalently, in Model 2 of the main
text). Except when discussing exponential and superexponential tumour growth in Section 4.1.1, we always
assume negative density-dependence; that is, the per-cell growth-rate function g in Eq. (6) is decreasing
in N .

4.1. Idealized treatments.

4.1.1. Impact of tumour growth model. To fix ideas, assume N∗ ≥ Nref = Nmax ≥ N0. Recall that
tN∗(treatment) denote the time at which tumour size exceeds size N∗ under the treatment considered. It
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follows from Proposition 7 that already in the general model of Section 2,

(13) tN∗(idMTD) ≤ tN∗(del -idMTD) ≤ tN∗(idInt) ≤ tN∗(idCont)

Considering a purely density-dependent model leads to further insights. In this case, the benefits of
ideal MTD, delayed ideal MTD, ideal intermittent containment, and ideal containment, compared to not
treating, are each the time taken for the resistant population to grow by a factor N0/R0, but in different
circumstances: from R0 to N0 in the absence of competition for ideal MTD; from R1 = R0

N0
Nref to Nref

with no, some, or strong competition for delayed ideal MTD, ideal intermittent containment, and ideal
containment, respectively. Since doubling times are assumed longer at higher tumour sizes, we obtain
another proof of (13). Moreover, the duration of the stabilization phase is inversely proportional to
g(Nref ), hence the larger the stabilization size, the longer the stabilization phase, and the greater the
benefits of ideal containment. (Figs. 1f, 1h; Supplementary Tables 3, 4, 5).

These qualitative findings are very general. However, the magnitude of clinical benefits vary considerably
depending on the precise model [6]. As easily seen, assuming negative density-dependence, a general bound
on the relative benefits of ideal containment over ideal MTD in terms of time to progression is given by:

tprog(idContN0)

tprog(idMTD)
≤ g(R0)

g(Nref )

For logistic growth, g(N) = 1−N/K, so that:

tprog(idContN0)

tprog(idMTD)
≤ 1−R0/K

1−N0/K
≤ 1

1−N0/K
' 1 +

N0

K

for N0/K small. With the parameters from main text Table 2, N0/K = 1/200, so that ideal containment
improves on ideal MTD by less than 0.5%, a very tiny gain. To take into account the fact that the value
of the carrying capacity K was chosen for a Gompertz model [11], we may want to modify this value (see
Extended Data Fig. 2). But as long as K ≥ Ncrit, and Ncrit = 50N0 as in main text Table 2, we still
have N0/K ≤ 0.02 so that ideal containment improves on ideal MTD by less than about 2%. By contrast,
with parameters from Table 2 but a Gompertz model, the time to progression under ideal containment at
the initial size is 84% higher than under ideal MTD (Supplementary Table 5). Moreover, relative benefits
of ideal containment for a von Bertalanffy model are even higher than for a Gompertz model (Fig. 2c).
Thus, these three standard tumour growth models lead to very different quantitative predictions.

Extended Data Fig. 2 illustrates these findings, as well as the cases of exponential and superexponential
tumour growth. As discussed in the main text, if the resistant population grows exponentially then ideal
MTD and ideal containment at any size no larger than Ntol both lead to the same time to treatment
failure: the relative benefit of ideal containment is thus equal to 1 (yellow curve). If tumour growth is
superexponential and sensitive and resistant cells do not differ except with respect to their reaction to
treatment then the presence of sensitive cells boosts the growth of resistant cells. Aggressive treatments
then have the double advantage of eliminating sensitive cells and reducing the growth rate of the resistant
population. This leads to a strong advantage of ideal MTD over ideal containment in the superexponential
case (grey line in Extended Data Fig. 2). We plan to extend our study of the influence of the model on
predicted benefits of containment in a companion paper.

4.1.2. Impact of parameters. We discuss here the effect of varying parameters on absolute and relative
benefits of ideal containment over ideal MTD, for the Gompertzian Model 3 of the main text. Changing
the baseline growth-rate ρ just changes the time-scale. Halving ρ doubles absolute differences between
treatments, hence absolute benefits of ideal containment, but does not change relative benefits. To inves-
tigate the effect of other parameters, let x = ln(K/R0)/ ln(K/N0). As follows from Section 3, the absolute
benefit of ideal containment at N0, and its relative benefit in terms of time to progression, are given by
[x − ln(1 + x)]/ρ and by x/ ln(1 + x), respectively (Supplementary Table 4). These are two increasing
functions of x, so any change of parameter that increases the value of x increases both of these benefits.
It is easy to see that this is the case of a decrease in K or in R0 (with N0 fixed), or of an increase in N0

(with R0 fixed, and also with R0/N0 fixed). The absolute benefit of ideal containment at Ntol with respect
to ideal MTD is also easy to study. Results are summed up in Supplementary Table 7.

Extended Data Fig. 3 illustrates the impact of increasing the initial fraction of resistant cells on times
to progression in Model 3 of the main text (see also Fig. 2 and Extended Data Fig. 6). For a given average
per-cell growth rate, increasing R0 reduces the time it takes for the resistant population to increase from
R0 to N0. This tends to decrease absolute difference between treatments. Moreover, while this does not
change the per-cell growth rate of resistant cells during the stabilization phase of containment or ideal
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Supplementary table 7. Qualitative effect of parameters on absolute benefits
of ideal containment over ideal MTD in main text Model 3. The table should be
read as follows: a “+” means an increase, an “=” no change, and a “-” a decrease.

Parameter increased K Ntol N0 (R0 fixed) N0 (N0/R0 fixed) R0 (N0 fixed)
Effect on

tprog(idContN0)− tprog(idMTD)
- = + + -

Effect on
tfail(idContNtol)− tfail(idMTD)

- + + - -

containment, increasing R0 increases the per-cell growth rate during the regrowth phase of MTD or ideal
MTD, so that the differences in growth rates is smaller. This is because a higher initial resistant population
leads to a higher average tumour size during this regrowth phase. This further reduces absolute benefits
of ideal containment, and also reduces relative benefits.

The impact of varying parameters on relative benefits in terms of time to treatment failure or survival
time is more complex. Indeed, varying a parameter may increase the absolute benefit of ideal containment
over ideal MTD, yet reduce its relative benefit. This may happen for instance if it also increases the
duration of growth phases that are common to ideal containment and ideal MTD. Indeed, a long common
phase attenuates relative differences between treatments.

Consider for instance the impact of a lower initial tumour size N0 for a fixed initial fraction of resistant
cells R0/N0. Assuming N0 < Ntol, this does not change the duration of the stabilization phase under
ideal containment at Ntol, but decreases the duration of the phase of regrowth from R0 to N0 under ideal
MTD. As a result, this increases the absolute benefit of ideal containment at Ntol over ideal MTD in
terms of time to treatment failure. But this also increases the duration of the phase of growth from N0

to Ntol, which is common to both treatments. The net effect on the ratio of times to treatment failure
tfail(idContNtol)/tfail(idMTD) is unclear. This is apparent from Fig. 2b in the main text, where we
see that for a fixed initial fraction of resistant cells, a higher initial tumour size sometimes increases and
sometimes decreases the relative benefit of ideal containment at Ntol.

4.2. Containment and ideal containment. As we saw in Section 2, Proposition 3, the tumour pro-
gresses beyond the stabilization size faster under containment than under ideal containment. However,
the resistant population under containment is always smaller, leading intuitively to a survival time that is
longer or at least comparable to that under ideal containment. For the purely density-dependent Model 2
of the main text (that is, Eq. (6) in Section 3.1), we may be more precise. In the case of a Norton-Simon
kill rate, for instance, it follows from Section 3 that the ratio of the duration of the stabilization phases of
containment and ideal containment is given by:

tstab(Cont)

tstab(idCont)
= 1 +

ln (1− 1/λCmax)

ln (N0/R0)

(this ratio is the same independently of the stabilization size). Supplementary Table 8 gives this ratio
for various initial proportions of resistant cells and efficiency λCmax of the MTD treatment (for a visual
representation, see Fig. 2g in main text).15 When sensitive cells are not very sensitive and resistant cells
are initially abundant, this ratio is substantially smaller than 1. However, if the drug is quite effective
or resistant cells are initially rare, this ratio is quite high. In that case, containment is not far from
maximizing the time at which tumour size grows above the stabilization level (see also Figs. 1a, 1d, 2d,
2h, 2g, Supplementary Tables 4 and 5, Extended Data Fig. 6).16

Moreover, the reason why containment progresses beyond Nref before ideal containment is that this
happens before all sensitive cells have been eliminated. With a Norton-Simon kill rate, this may be
made precise: the proportion of sensitive cells when the tumour can no longer be stabilized (whatever

15If λCmax = 2, the speed at which a purely sensitive tumour size decreases under MTD is equal to the speed at which
it would increase if untreated. This is roughly consistent with the fact that, in preliminary results of a clinical trial of

intermittent containment (Zhang et al, 2017 [1]), treatment was applied, on average, 47% of the time (this average later
decreased to 41%, as stated by Robert A. Gatenby in a seminar on July 22, 2020). For this reason, and due to the simple

interpretation it offers, we chose λCmax = 2 as our reference value in simulations.
16If we take the constraint C ≤ Cmax into account then containment is closer to optimal than the numbers seem to indicate.

This is because the optimal strategy then begins as containment and switches to MTD before progression or failure occurs.
Comparing containment to ideal containment gives us a non-tight upper bound on how far we are from optimality, given the
constraint on Cmax.
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Supplementary table 8. Ratio of times to progression under containment vs
ideal containment for various initial fractions of resistant cells and treatment
efficiencies.

λCmax

R0

N0

1.5 2 5
10% 0.52 0.70 0.90
1% 0.76 0.85 0.95

0.1% 0.84 0.90 0.97
0.01% 0.88 0.92 0.96

0.005% 0.90 0.94 0.98

the stabilization level) is either the initial proportion (when the tumour cannot be stabilized at all) or
1/λCmax: 50% if λCmax = 2; 33% if λCmax = 3; and so on.

These remaining sensitive cells slow down the expansion of resistant cells. This is why, as shown
in Section 2, the resistant population is always smaller for containment than for ideal containment. A
sufficient condition for containment to be at least comparable to ideal containment in terms of survival
time is thus that, by the time tumour size reaches Ncrit, almost all sensitive cells have been eliminated.
This is more likely if the treatment is quite efficient against sensitive cells (λCmax high) and if the tumour
is stabilized at a relatively low size, leaving more time after the end of the stabilization phase to eliminate
the remaining sensitive cells. However, we now argue that even if containment is made at a relatively high
tumour size, and treatment effect is relatively modest, it is likely that by the time of death, the proportion
of sensitive cells will be very low.

To see this, consider the post-stabilization phase during which containment treats at Cmax and assume
a Norton-Simon kill rate: Ṡ = Sg(N)(1 − λC). As we saw in Section 3.1.3, if the tumour is treated at a
constant dose C, then the quantity SRλC−1 is constant. It follows that if λC = 2 (resp. 3), then each
time the resistant population is multiplied by 10, the sensitive population is divided by 10 (resp. 100).
Since we also know that the proportion of sensitive cells at the end of the stabilization phase is 1/λCmax,
this allows us to estimate the remaining sensitive population at the time of death. For instance, assuming
that containment is made at Ntol = 7× 1010, that Ncrit = 5× 1011 (about 7 times larger than Ntol) and
that λCmax = 2, the proportion of sensitive cells at the time of death is only about 0.5%. This is true for
any instance of Model 2 in the main text.

We conclude that in terms of survival time, containment is bound to be at least as good as ideal
containment, and possibly slightly better. This is what we observe in simulations (Figs. 1a, 1c, 1d, 2f, 2i,
Supplementary Table 5, and Extended Data Fig. 6).

4.3. Continuous and intermittent containment. As mentioned in the main text, when the constraint
on the maximal tolerated dose is taken into account, containment does not exactly maximize time to
treatment failure. Indeed, at least in Model 2, treatment failure can be slightly delayed by switching
from containment to MTD slightly before the stabilization dose reaches Cmax. This is achieved through a
greater reduction of the number of sensitive cells than under containment, which leads to a larger resistant
population and subsequently faster tumour growth.

Similarly, contrary to what happens with idealized treatments (Section 2.3, Proposition 5), intermittent
containment between Nmin and Nmax may lead to a longer time to progression beyond the upper threshold
Nmax than containment at Nmax, especially when Nmin is a relatively large fraction of Nmax. This is
because intermittent containment commences indefinite treatment at dose Cmax before containment does,
which potentially prolongs the time to progression beyond Nmax, as evidenced by Extended Data Fig.
4. As before, this gain comes at the cost of a larger resistant population (Section 2.3, Proposition 6).
This reinforces the fact that even before intermittent containment commences indefinite treatment at dose
Cmax, it already leads to a larger resistant population than containment at the upper threshold, because
it initially leads to a lower average tumour burden.

Even more than for ideal containment (Section 4.2), it is thus expected that as the fraction of sensitive
cells decreases, tumour size becomes higher under intermittent containment than under containment at the
upper threshold, leading to a lower survival time under intermittent containment than under containment.
This is observed in simulations of the Gompertzian Model 3 (Extended Data Fig. 4, Table 1 from main
text).
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It should be noted however that, for reasons not modeled here, it might be more difficult for the tumour
to adapt to changing conditions generated by intermittent treatment than to the more stable conditions
generated by continuous containment. This, or PKPD considerations, could make intermittent containment
theoretically more promising than continuous containment. Investigating these issues is however beyond
the scope of this article.

4.4. MTD and ideal MTD. To facilitate the comparison between MTD and ideal MTD, let us first
estimate the remaining sensitive population at the time of progression under the MTD treatment. Assume
a Norton-Simon kill rate. Then, as discussed in Section 4.2, if λCmax = 2 (resp. 3; 1.5), each time the

resistant population is multiplied by 10, the sensitive population is divided by 10 (resp. 100;
√

10 ' 3.2).
So if there were 1% resistant cells initially, then at time to progression, there will be 1% sensitive cells
(resp. about 0.01%; about 10.5%). This shows that unless the initial proportion of resistant cells is very
large, or treatment is very inefficient against sensitive cells, the MTD treatment will eliminate the vast
majority of sensitive cells before progression.

Thus, the difference in times to progression mostly comes from the difference in resistant populations.
Under the MTD treatment, the sensitive population disappears more slowly than under its idealized
counterpart. As a consequence, the resistant population still somewhat competes with sensitive cells,
and develops more slowly (Fig. 1c). The MTD treatment is thus expected to lead to a longer time to
progression than its idealized version. This is especially true if treatment is relatively inefficient. In that
case, by the time sensitive cells have been crushed, resistant cells are already abundant. It follows that
tumour size is never very low, so that resistant cells never develop very quickly.

To quantify this phenomenon in the case of a Norton-Simon kill rate, recall that under MTD, the quantity
SRλCmax is constant. It follows that the tumour reaches its smallest size when S = R/(λCmax − 1). Its
size is then:

N =
λC

λC − 1
×
[
(λC − 1)S0R

λC−1
0

]1/λC
, with C = Cmax

Some values of this minimal size are given in Supplementary Table 9, assuming S0 = 1010 and R0 = 106.
It confirms that, for modest treatment effects (Cmax ≤ 2), the minimal tumour size under MTD is much
higher than under ideal MTD (that is, than the initial resistant population).

Finally, the fact that few sensitive cells remain at the time of progression implies that, after progression,
MTD and ideal MTD have similar dynamics. As a result, the difference in survival times should not be
much higher than the difference in times to progression. This is what we observe in simulations (Table 1,
Figs. 2d, 2f, Extended Data Figs. 7 and 6)

4.5. MTD and containment. Ideal containment at N0 always leads to a higher time to progression
than ideal MTD, and with a Gompertz model, typically substantially so, unless the tumour is initially
very resistant. The difference in time to progression between the more realistic versions – containment
at N0 and MTD – is smaller. If treatment is not very efficient, MTD may even lead to a higher time to
progression than containment. For instance, in main text Model 3, if parameter values (other than R0)
are as in main text Table 2, this occurs whenever the initial fraction of resistant cells is higher than about
1% if λCmax = 2 (Fig. 2d) and than about 0.1% if λCmax = 1.5.

There are two explanations. First, low treatment efficiency decreases time to progression under contain-
ment. Indeed, progression then occurs as the tumour is still quite sensitive (see Fig. 2g, and Section 4.2).
Second, as discussed in Section 4.4, low treatment efficiency makes MTD less problematic. Supplementary
Table 9 shows that, for λCmax = 1.5, the minimal tumour size under MTD is only slightly below 109. The
average size before progression will be substantially higher than 109, compared to N0 = 1010 + 106 ' 1010

for containment at the initial size. In log-scale, this is not a huge difference. Thus, resistant cells would de-
velop only slightly slower under containment than under MTD. With a higher initial resistant population,
this advantage of containment is even lower, and need not compensate the fact that under containment,
progression requires a lower resistant population size than under MTD, due to the larger remaining sensitive
population.

Supplementary table 9. Minimal tumour size under MTD. These numbers are
valid for any density-dependent model (6), assuming S0 = 1010 and R0 = 106

λCmax 1.1 1.25 1.5 2 3 5 10
Minimal N 5.9× 109 2.6× 109 8.7× 108 2× 108 4.1× 107 1.0× 107 3.5× 106
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However, if containment is made at a higher level, the average tumour burden during the stabilization
phase is larger, and the benefit of containment over MTD in terms of the time to progress beyond size
Nref is expected to be greater (compare Figs. 2d and 2h). Moreover, even when MTD and containment
at N0 are comparable in terms of time to progression, the resistant population is always smaller under
containment, leading to longer times to treatment failure and longer survival times under containment
than under MTD. This is seen in simulations (Figs.2d, 2e, 2f).

Finally, Extended Data Fig. 5 compares containment and MTD in a Gompertzian growth model, with
and without mutations after treatment initiation, for two different mutation rates. It suggests that, while
complicating the analysis and the obtention of explicit or semi-explicit formulas, taking into account
ongoing mutations does not substantially affect outcomes (see also Supplementary Table 6).

4.6. Impact of varying Cmax. Extended Data Fig. 6 further explores the impact of varying the resistant
population size R0 and the maximal tolerated dose Cmax on containment at the maximal tolerable size,
MTD, and idealized versions. The doses considered have the following interpretation: If Cmax = 0.8 then
the sensitive cell population keeps growing under MTD, but 5 times slower than in the absence of treatment.
If Cmax = 1.5 (respectively 5) then the sensitive population decreases twice as slowly (respectively, four
times faster) under MTD than it would increase in the absence of treatment.

In the first row, R0 = 2.3 × 105. If Cmax = 0.8 (panel a) then there is no stabilization phase under
containment. Containment at Ntol then boils down to delayed MTD. The time to treatment failure is the
same as under no treatment, and much lower than under MTD. Nevertheless, survival time is still higher
than under MTD (though this would not be true for even lower values of Cmax). Tumour composition at the
time of death is very different between treatments: less than 5% of cells are resistant under containment
at Ntol, versus 66% for MTD. Thus, under MTD, even though the sensitive population always grows,
death occurs mostly due to resistant cells. Since tumour size is never reduced under MTD in this scenario,
resistant cells develop much slower than under ideal MTD, leading to a much larger survival time.

If Cmax = 1.5 (panel b), the sensitive population size decreases under MTD but relatively slowly. The
minimal tumour size under MTD is much higher than under ideal MTD, leading to a substantial difference
between the two treatments. Under containment, there is a stabilization phase that lasts until the tumour
is 1/3 resistant. Given the low initial resistant population, there is little difference between growing from
R0 to N0/3 and growing from R0 to N0, and so there is little difference between containment and ideal
containment. Under all treatments, the tumour is almost fully resistant at the time of death (2% of cells
are sensitive under containment, and 0.001% under MTD).

If Cmax = 5 (panel c), the sensitive population decreases much faster than the resistant population
increases, and there is very little difference between idealized and non-idealized treatments.

In the second row, R0 = 108. Since the tumour is initially much more resistant, the tumour size never
becomes very low, even under ideal MTD. As a result, there are smaller differences between treatments,
but otherwise the impact of varying Cmax is similar. For Cmax = 0.8, tumour composition at the time
of death depends substantially on treatment: 89% of cells are resistant under MTD, but only 54% under
containment at Ntol. For Cmax = 1.5 and Cmax = 5, the tumour is almost fully resistant by the time of
death under all treatments.

4.7. Constant dose and containment. Survival time under constant dose and delayed constant dose
treatments in main text Model 3 have been studied by Monro and Gaffney (2009) [11]. A key insight is
that there is an optimal balance between limiting the expansion of sensitive cells, and keeping enough of
them to slow down the growth of resistant cells. In other words, a tradeoff between dying from sensitive
cells and dying from resistant cells. Constant doses that lead to high survival time are such that at the time
of death, the populations of resistant and sensitive cells are of the same order of magnitude. Here we are
also interested in time to progression and time to treatment failure, and in comparing with containment.

In Model 3, among constant dose treatments, survival time is maximized by the dose C = 0.74 (Supple-
mentary Table 6 and Extended Data Fig. 7).17 Being smaller than the dose used for containment (which
is always greater than 1), the optimal constant dose leads to a smaller resistant population, while still sig-
nificantly slowing down the growth of sensitive cells. This treatment strategy turns out to prolong survival
more than either containment or ideal containment at the initial size N0 (Supplementary Table 5). This

17According to our simulations, the dose that maximizes survival time among doses given immediately is C = 0.74 instead
of the dose C = 0.9 reported by Monro and Gaffney (2009), which however is not consistent with the curves of their Fig. 1.
This seems to be a simple typo: in Fig 1 of [11], point A visually seems to corresponds to C ' 0.5 and point B (the optimum)

to C = 0.74 as we find. There seem to be also typos in their description of Figs. 2 and 6. This does not change the study’s
key messages, which we agree with.
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does not violate our optimality results because ideal containment at N0 maximizes time to progression,
not survival time. The dose C = 0.74, however, is far from maximizing survival time among all possible
treatments (Supplementary Table 5): treating even less initially represses resistant cells more efficiently,
while treating more eventually prolongs survival by diminishing the sensitive population once this becomes
necessary. Containment at a high threshold does both, leading to longer survival.

As discussed in the main text, containment may be mimicked by delaying treatment and then applying
a dose C = 1/λ, or slightly higher. There are however two issues. First, as mentioned in the main
text, the dose that allows stabilizing tumour size is bound to be patient-dependent. By adjusting the
dose as a function of patient’s response, containment allows the clinician to arrive at the right dose
without foreknowledge. Second, treatment response, in practice, is likely to be much less predictable than
our model suggests. In a pre-clinical trial, it was found that, possibly due to normalization of tumour
vasculature, tumour control could be achieved by applying progressively lower doses [12]. In a clinical trial
of intermittent containment (adaptive therapy) for patients suffering from metastatic castration resistant
prostate cancer, tumour size cycled less regularly than models predicted [1]. This suggests that even for a
given patient with known tumour characteristics, delayed constant doses might not mimic containment as
well as our model suggests, and hence an adaptive protocol is necessary to even approximately stabilize
tumour size.

5. Impact of resistance costs on the best possible outcome and on clinical benefits of
containment

5.1. Justification of main text Figure 4b. We discuss here the impact of competition and resistance
costs on the best possible outcome for the following model (Model 4 in the main text):

Ṡ(t) = ρs

[
ln

(
Ks

S(t) + αR(t)

)]
(1− λC(t))S(t),

Ṙ(t) = ρr ln

(
Kr

R(t) + βS(t)

)
R(t).

If sensitive cells are eliminated by a high-dose treatment, then the resistant population size, hence
tumour size, will grow to Kr, unless the patient dies before. Such a treatment would thus result in a
tolerable long-run outcome (i.e. tumour size always below Ntol) only if Kr ≤ Ntol. If Ntol < Kr < Ncrit,
the long-run tumour size would be non-lethal, but intolerable. If Kr > Ncrit, a high dose treatment leads
to death.

Whether containment strategies can do better depends on whether β is greater than 1, that is, whether
additional sensitive cells inhibit the growth of resistant cells more than additional resistant cells would.
If β ≤ 1, then R + βS ≤ R + S = N . Thus, as long as N < Kr, R + βS < Kr, and the resistant
population grows (Ṙ > 0). In that case, containment strategies may gain time, but cannot change the
long-run outcome.

If β > 1, then provided that the initial resistant population is low enough, the tumour could be stabilized
around S = Kr/β, R = 0, hence a total tumour size of N = Kr/β. The tumour cannot be stabilized
at a lower size. Indeed, if N < Kr/β, then since β ≥ 1, R + βS ≤ βN < Kr, hence the resistant
population grows. The best long-run outcome is thus a tolerable tumour size if Kr/β < Ntol, a non-lethal
but intolerable tumour size if Ntol < Kr/β < Ncrit, and eventual death if Kr/β > Ncrit.

18

If β is very high, that is, if sensitive cells strongly inhibit the growth of resistant cells, then it could be
that Kr/β < Ntol though Kr > Ncrit. In that case, an aggressive treatment would lead to death, even
though a containment strategy would have allowed stabilizing tumour size at a tolerable level forever.

Of course, any conclusion that under some circumstances containment could last forever is dubious,
as our model then loses validity. If containment is expected to last for a very long time, a model that
better accounts for the long-term evolution of the tumour should be developed, taking into account the
appearance of new cell phenotypes.

5.2. Approximate formula for the benefit of containment with resistance costs. We derive here
an approximate formula for the relative benefit of ideal containment versus ideal MTD in terms of time to
treatment failure:

tfail(idContNtol)

tfail(idMTD)
,

18Favourable outcomes need not be attainable if the initial tumour is too resistant.
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for the above model (Model 4 in the main text). This formula is used to plot Fig. 4a in the main text. The
approximation is valid if resistant cells are initially very rare and do not grow much more quickly than
sensitive cells in the absence of treatment. Since ideal MTD instantly eliminates sensitive cells, resistant
costs introduce no difficulty. The time to treatment failure is given by (see Section 3):

tfail(idMTD) =
1

ρr
ln

(
ln(Kr/R0)

ln(Kr/Ntol)

)
(unless Kr ≤ Ntol, that is, γ ≥ Ks/Ntol ' 28.6, in which case a resistant tumour is benign, always
tolerable, and time to treatment failure is infinite).

To compute the time to treatment failure of ideal containment, we distinguish two phases: the growth
until Ntol, and the stabilization phase. Consider the first phase. Assuming that the initial frequency of
resistant cells is very small, and that they do not expand much faster than sensitive cells, then the tumour
remains almost fully sensitive during this phase. The dynamics of the total population N may then be
approximated by the dynamics of a fully sensitive tumour:

Ṅ = ρsN ln(Ks/N).

It follows that the time it takes for the tumour to grow from N0 to Ntol is approximately:

(14) tN0→Ntol
' 1

ρs
ln

(
ln(Ks/N0)

ln(Ks/Ntol)

)
.

Moreover, during this phase (with the approximation S = N , R = 0, to compute the per-cell growth
rates),

1

ρr

Ṙ

R
− 1

ρs

Ṡ

S
' − ln(Ks/Kr).

A new approximation S = N leads to:

R ' R0

(
N

N0

)ρr/ρs
exp(−tρr ln(βKs/Kr))

so that, letting R1 denote the resistant population size at the beginning of the stabilization phase:

R1 ' R0

(
Ntol
N0

)ρr/ρs
exp(−tN0→Ntol

ρr ln(βKs/Kr)).

That is,

(15) R1 ' R0

(
Ntol
N0

)ρr/ρs
exp

(
−ρr
ρs

ln

(
ln(Ks/N0)

ln(Ks/Ntol)

)
ln(βγ)

)
with γ = Ks/Kr. Finally, the length tstab of the stabilization phase depends on whether the resistant
population grows or not when the tumour reaches Ntol. If it decreases (which is the case if (1 − β)R1 +
βNtol ≥ Kr, which essentially boils down to βγ > Ks/Ntol ' 28, 6 for initially rare resistant cells), then
the treatment never fails:

tstab = +∞.
Otherwise,

(16) tstab =
1

ρr

∫ Ntol

R1

dR

Rg(R)
with g(R) = ln

(
Kr

R+ β(Ntol −R)

)
and R1 is given approximately by (15). Summing the terms in (14) and (16) leads to an approximation of
time to treatment failure under ideal containment at Ntol since:

tfail(idContNtol) = tN0→Ntol
+ tstab.

The formula is not precise for very low values of β, because resistant cells then grow much more quickly
than sensitive cells as long as they are rare, so that the approximation of an almost fully sensitive tumour
during the growth phase from N0 to Ntol need not be appropriate. The comparison of Fig. 4a and Extended
Data Fig. 8 shows that the figure obtained from this approximate formula in a Gompertzian growth model
is similar to figures obtained by simulations, which require heavy computation.

Remark: Integrating from R1 to R2 in (16), where R2 is the resistant population size when containment
fails (see Section 3.1.4) leads to a formula for time to treatment failure under containment (as opposed to
ideal containment). Moreover, the same method (approximating tumour growth by the growth of a fully
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sensitive tumour in the initial phase) allows one to find approximate formulas for time to treatment failure
for more general models.

The case β = 1. For β 6= 1, we were unable to solve explicitly the integral in (16) and had to evaluate
it numerically. But if β = 1, computing this integral is easy, since g(R) is then constant. This leads to:

(Case β = 1) tstab =
1

ρr

ln(Ntol/R1)

ln(Kr/Ntol)
.

We then obtain an explicit approximate formula for the time to treatment failure under ideal containment.
This formula is simpler when ρr = ρs = 1. Letting

A = ln

(
ln(Ks/N0)

ln(Ks/Ntol)

)
,

we then find:

(Case β = 1, ρr = ρs = 1) tfail(idCont) ' A+
ln(N0/R0) +A ln(γ)

ln(Kr/Ntol)
.

The ratio is then approximately:

(Case β = 1, ρr = ρs = 1)
tfail(idCont)

tfail(idMTD)
'
A+ ln(N0/R0)+A ln(γ)

ln(Kr/Ntol)

ln
(

ln(Kr/R0)
ln(Kr/Ntol)

) .

6. Issues with containment

As mentioned in the main text, by identifying general assumptions ensuring that containment is superior
to more aggressive strategies, we also clarify that if these assumptions are not satisfied, containment might
do worse than MTD.19 We discuss here what would happen if three of our assumptions are relaxed: what
if there is no competition between sensitive and resistant cells? what if ongoing mutations are taken into
account? and what if all tumour cells are partially sensitive to treatment? Other potential issues with
containment are pointed out in the Discussion section and in [24].

6.1. What if there is no competition between sensitive and resistant cells? Although low-dose
therapy might have various advantages – such as reduced toxicity and stabilization of the tumour micro-
environment – the essential motivation for containment strategies is to exploit competition between sen-
sitive and resistant cells. Accordingly, we have assumed that the growth rate of resistant cells decreases
as the number of sensitive cells increases. The growth of every tumour is ultimately limited by avail-
able resources such as space, glucose and oxygen. A longstanding consensus view is that human tumour
growth rates begin to slow by the time of treatment initiation [21,25]. Yet it has also been suggested that
some tumours sustain longterm exponential or even superexponential growth via processes such as the
accumulation of driver mutations, niche construction, and immune escape [23].

If the growth of the resistant population is exponential (Ṙ(t) = ρr R(t), a limit case of our assumptions)
then the resistant population dynamics are independent of treatment. It follows that ideal MTD and ideal
containment at the initial size lead to the same time to progression: 1

ρ ln(N0/R0), which is the time it

takes for the resistant population to increase by a factor of N0/R0. Ideal MTD and ideal containment
also lead to the same time to treatment failure and the same survival time (Extended Data Fig. 2). When
a constraint on the maximal tolerated dose is taken into account, MTD is predicted to be better than
containment, since it results in the same resistant population but fewer sensitive cells. However, the gain
is mostly in terms of time to progression. For survival time, provided that the tumour eventually becomes
mostly resistant, the difference between treatments, and in particular between containment and MTD,
remains modest.

If tumour growth is superexponential (Ṙ(t) = ρg(N(t))R(t), with g(N) increasing in N) then contain-
ment can be substantially inferior to MTD – even for idealized treatment strategies – in terms of both time
to progression and survival time (Extended Data Fig. 2). For particular functions g, the magnitude of the
advantage of MTD over containment can be examined using the explicit formulas in our Supplementary
material (Section 3), which remain valid in this case.

Another scenario that permits aggressive treatments to be considerably better than containment is
when sensitive cells benefit resistant cells via mutualism, parasitism, or commensalism more than they

19In other words, one of the reasons why several authors, including ourselves, found that containment is superior to MTD

might be that they used similar models, which do not take enough into account factors that might be detrimental to
containment.
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harm them via competition. Beneficial interactions between cancer cells have been identified [26, 27] but
their importance in human tumour development remains to be determined.

In summary, although it can be argued that there is probably little to lose and potentially much to
gain from using containment strategies even when intra-tumour dynamics are poorly characterized [6], a
more prudent approach would be to use containment strategies only when cell-cell competition is believed
to be strong. This will require developing ways of characterizing cell-cell interactions and measuring
intra-tumour competition.

6.2. What if all tumour cells are partially sensitive to treatment? If resistant cells retain some
sensitivity to treatment then the basic logic changes in two ways. First, if resistant cells are sufficiently
sensitive, then MTD can cure the tumour. This is not a case that concerns us, since our goal is to find
alternative treatments when MTD is expected to fail. Second, even if a cure is impossible, there are now
two ways to fight resistant cells: treating at low dose (to maintain competition with sensitive cells) or
aggressively (to exploit partial sensitivity). Since competition with sensitive cells weakens as the sensitive
population is depleted, treatment failure can be delayed by switching from a containment strategy to
MTD at an appropriate time before treatment failure, but at the cost of increased toxicity. Whether the
gain from switching to MTD is typically small or substantial remains to be investigated but, in general,
the difference in outcomes for containment versus MTD is smaller when all cells are partially sensitive to
treatment. If resistant cells are sufficiently sensitive then MTD may even be superior to pure containment.

If resistant cell frequency and sensitivity are unknown then we face a conundrum. Should we treat
at high dose after low dose treatment failure? If the tumour is already fully resistant then any further
treatment will incur needless toxicity. If resistant cells are fully resistant but some sensitive cells remain
then it might be better to maintain a low dose. But if resistant cells retain some sensitivity then treating
at high dose after initial treatment failure may be the best option, subject to treatment toxicity. To
make the best choice, clinicians will require new methods for assessing tumour composition and sensitivity
during therapy. Determining optimal strategies in the case of partial or unknown treatment sensitivity is
an important topic for future theoretical research. In particular, when it may be proved that it is optimal
to first contain the tumour and then switch to MTD, clinically implementable methods to determine a
close to optimal switching time should be developed.

6.3. What if ongoing mutations are taken into account? Resistance mutations occurring after
treatment initiation result in a trade-off: sensitive cells inhibit the resistant population via competition,
but boost it via mutation. Due to this trade-off, it has been shown that ideal containment is theoretically
worse than ideal MTD if the initial resistant population is below a certain threshold, which depends on the
mutation rate and the nature of competition [8]. The question then is whether this scenario is plausible.

Assuming Model 2 with the addition of random mutation, our own analysis (to be further developed
in a companion paper) reveals that if the initial resistant population size is consistent with the mutation
rate then mutations occurring after treatment initiation have very little impact on the clinical gains due to
containment (less than 1% in a model with no resistant costs). This is supported by numerical simulations
(Extended Data Fig. 5). Unless the predicted benefits of containment versus MTD are already very small
then ongoing mutation can be neglected. Our analysis is however limited to two-type models with random
mutation from the sensitive to the resistant phenotype (as in previous studies [6, 8, 11]). Other types of
mutation (e.g., drug-induced mutations, driver mutations) may have more substantial effects [28,29].

7. Containment at the initial size in practice

One of our findings is that, at least for our simple models, the precise way to implement containment
treatments is not essential. Nevertheless, we discuss here how containment at the initial tumour size N0

could be attempted in practice: how should the initial dose be chosen? how to adapt the dose during
the course of treatment? how many measurements are likely to be needed before finding a dose that
approximately stabilizes tumour size? We assume that some biomarker allows us to estimate tumour size
(or its variation). This biomarker level is measured at times t0, t1,...,tk,..., leading to an estimated tumour
size of Nk at time tk (or an estimated ratio Nk/N0). A constant dose Ck is given between times tk and
tk+1. Though the timing of the measurements is important, we focus on the choice of the doses Ck.20

20It makes sense to have shorter time intervals between the first measurements, in order to assess patient’s specific reaction
to treatment, and also when recent measurements suggest a quick evolution of tumour size, or measurements errors.
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7.1. Some simple protocols. We first discuss some simple protocols, before proposing a slightly more
elaborated one.

Downward titration: start with the maximal tolerated dose, and then decrease the dose by a certain
fraction of the maximal tolerated dose until tumour size (or rather, the biomarker level) starts increasing.
E.g. use initially the dose C = Cmax, then C = 0.9Cmax, then C = 0.8Cmax and so on, until the dose is
low enough for tumour size to increase again. At that point, the dose would remain constant until tumour
size becomes higher than at the beginning of treatment (or could be decreased again if for some reason
tumour size starts decreasing while it is still below its initial level N0). Once tumour size becomes higher
than N0, the dose would be incremented upwards until tumour size starts decreasing, and so on. A variant
is to use increments that are not a certain fraction of Cmax but of the current dose. For instance, if the
dose Ck at step k is too weak, the next dose could be Ck+1 = 1.1Ck, instead of Ck+1 = Ck + 0.1Cmax.

Upward titration: similar, but starting with a low dose instead of a high dose, and gradually increasing
it until a dose is found that allows to decrease tumour size.

The Gallaher et al. (2018) protocol : Jill Gallaher and collaborators consider a protocol that is essentially
a downward titration method but with some twists. First, a treatment vacation occurs if tumour size
becomes smaller than half the initial size. Second, the dose does not change if tumour size varied little
since the last measurement. With our notation, the protocol may be described as follows: initially,
C0 = Cmax. Later, if Nk+1 < N0/2, a treatment vacation occurs: Ck+1 = 0. Otherwise,

Ck+1 =

 min(Cmax, (1 + α)C∗k) if Nk+1/Nk > 1 + β
C∗k if 1− β < Nk+1/Nk ≤ 1 + β
(1− α)Ck if Nk+1/Nk ≤ (1− β)

where α and β are parameters (e.g., α = 0.25, β = 0.05), and C∗k = Ck unless Ck = 0, in which case C∗k
denotes the last positive dose given. In other words, if a treatment vacation occurs, the reference dose to
determine further modulations does not become zero but remains equal to the last positive dose.21

Titration methods have the advantage of being conceptually simple. However, they might be slow in
determining an approximately stabilizing dose. For downward titration, this could result in too strong an
initial treatment, and competitive release. For upward titration, this could result in the tumour growing
very large before treatment is increased sufficiently to stabilize it.

Moreover, the methods we described do not fully take into account how far the current tumour size
is from its target, and how much tumour size decreased or increased since the last measurement. For
instance, assume that in the Gallaher et al. protocol, α = 0.25 and β = 0.05, so that the dose is increased
by 25% if tumour size increased by more than 5%, but does not change if tumour size changed by less than
5% since the last measurement. Except when a treatment vacation occurs, this rule does not depend on
whether tumour size if close or far from some target22. More importantly, the modulation rule does not
differentiate between a tumour that increased by 4% and a tumour that decreased by the same amount, nor
does it differentiate between a tumour that increased by 6% and a tumour that increased by 60%. Finally,
Gallaher et al.’s protocol is sensitive to the time interval between two measurements and the speed of
evolution of the tumour, which may be patient specific: if measurements are frequent, if tumour evolution
is slow, or if β is large, then it may be that tumour size never evolves sufficiently between two successive
measurements to trigger dose modulation, though in the long run tumour size may evolve substantially.

We now propose some ideas to improve these methods. First, starting from an intermediate dose rather
than from a very high or very low dose should somewhat speed up the process of determining a stabilizing
dose. How large the initial dose should be depends on how large the tumour currently is, that is, whether
the main issue is to quickly avoid tumour size growing larger, or to avoid triggering competitive release.

Second, if, e.g., the first dose is too high, then instead of slightly decreasing it again and again until
the tumour starts to rebounce, we suggest to decrease it relatively sharply. It is then more likely that the
second dose will be lower than the stabilizing dose, helping tumour size not to drift too far away from
its target. Large initial adjustments also help to adapt the treatment sufficiently quickly when patient’s
reaction is untypical (e.g., the patient is particularly responsive or unresponsive). How sharply the dose
should be changed between the first and the second dose would depend on whether tumour size evolved a
lot or just a little between the first two measurements.

21The description in the original article is somewhat different, but Jill Gallaher kindly confirmed that what was meant and
implemented is the above described protocol.
22This need not be a defect, it depends whether the emphasis is on stabilizing the tumour at any level, or on stabilizing it
close to its initial size.
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Third, once the effect of the first two doses is observed, that is, after three measurements, an educated
guess for a stabilizing dose could be achieved by building on simple models of tumour growth. This is
explained below in Section 7.3. Based on the above considerations, we now propose a protocol taking into
account how far tumour size is from target and how much it recently increased or decreased.

7.2. A new protocol. A basic family of protocols is as follows (see remarks afterwards for details and
refinements). The first two doses are somewhat arbitrary.

1. At time t0: choose an initial dose expected to at least stabilize tumour size in most similar patients
(e.g. in 75% of similar patients).23

2. At time t1: given patient’s response to the first dose, choose a dose expected to bring tumour size
back towards N0.

3. From time t2 on: compute an estimation Cguess of the dose that would currently stabilize the tumour,
based on recent measurements and a standard tumour growth model, e.g., using formulas of Section 7.3
below. Deliver this dose if N = N0, a higher dose if N > N0, and a lower one if N < N0.

A concrete example is to fix a low and a high threshold, Nl < N0 and Nh > N0, positive parameters γ1
and γ2, and to deliver the following dose between time tk and tk+1:

Ck =


0 if Nk ≤ Nl;
Cguess

[
1−

(
N0−N
N0−Nl

)γ1]
if Nl ≤ Nk ≤ N0;

Cguess + (Cmax − Cguess)
(
N−N0

Nh−N0

)γ2
if N0 ≤ Nk ≤ Nh;

Cmax if Nk ≥ Nh
Thus, the dose given depends both on the estimated stabilizing dose and on how far tumour size is to its
target N0. A treatment vacation occurs if tumour size falls below the low threshold, and the tumour is
treated at the maximal tolerated dose if tumour size increases beyond the high threshold. In between, the
dose is a continuously increasing function of tumour size, equal to the estimated stabilizing dose if tumour
size is equal to its target N0. The parameters γ1 and γ2 tune whether the emphasis is on stabilizing tumour
size (γi > 1) or bringing it back to N0 (γi < 1). For instance, if γ2 is significantly larger than 1, then it
is only when tumour size approaches the higher threshold Nh that the dose given becomes substantially
different from the estimated stabilizing dose.

Some remarks are in order:

a) The above protocol is for containment at the initial size, but may easily be adapted for containment
at another target size.

b) A target size, whether absolute or relative to initial tumour size, may prove too large for some
patients, in the sense of leading to a low quality of life or other adverse effects. To deal with this
issue, the target size could be defined as the minimum of an a priori target size (e.g., the initial
size) and the largest tumour size compatible with a satisfying quality of life.

c) Protocols should be adapted to each tumour type and biomarker. If the link between tumour size
and biomarker level is known to evolve with time, the protocol should be modified accordingly. 24

d) If containment treatments become common, data on previous patients should allow to determine
the percentage of tumours stabilized by a given dose. This would help choosing the initial dose.
For initial clinical trials, an educated guess could be made using the ideas of Section 7.3, provided
tumour growth data is available in the absence of treatment and under standard of care.

e) If tumour growth data in the absence of treatment is available for the current patient, then an
educated guess of the stabilizing dose for this specific patient could be computed already for the
second dose (at time t1).

f) The second measurement should be made shortly after the first one, since the first dose might be well
off the mark due to patients’ heterogeneity. The third measurement should also be made quickly
if the second one revealed quick evolution of tumour size. Once an approximately stabilizing dose

23The choice of 75% of patients is arbitrary, but at least in initial clinical trials, patients and physicians are likely to feel

more comfortable with not too low an initial dose. In theory, whether choosing a first dose that would work for an average
patient, or for a large majority of patients, depends on whether current tumour size is considered worrying large or not. If

the initial tumour size seems way below our hypothetical maximal tolerable size, then starting with a relatively low dose is
reasonable. If the initial tumour size is quite large, then starting with a relatively high dose is bound to be preferable.
24In Zhang et al.’s (2017) clinical trial of adaptive therapy on metastatic castrate resistance prostate cancer, the biomarker

used is prostate specific antigen (PSA). An issue is that cells resistant to the drug used, Abiraterone, may contribute much
more to PSA production than sensitive cells, thus an increase in PSA might signal an increase in tumour size or an increase

in the fraction of resistant cells.
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has been found, tumour should evolve more slowly, and monitoring could become rarer. However,
tumour’s response to treatment is likely to evolve with time. Thus, regular monitoring remains
needed.

g) Tumour’s true response, measurements of biomarkers, and the relation between tumour size and
biomarkers are likely to be noisy. In order not to rely excessively on a very small number of possibly
wrong data points, and to smooth out the noise, methods could be developed to base the estimate
of the current stabilizing dose not only on the last three data points but on all available data points.
These methods should nevertheless give a greater weight to recent data, to take into account tumour
evolution. Here is a simple possibility. Let Cguess(tk) denote the stabilizing dose between tk and
tk+1 suggested by the last three data points (from times tk−2, tk−1 and tk). Define the smoothed
stabilizing dose by Csmooth(t2) = Cguess(t2), and for k ≥ 3,

Csmooth(tk) = (1− δ)Cguess(tk) + δCsmooth(tk−1),

where δ ∈ (0, 1) is a parameter tuning the importance given to recent data compared to older data.
More involved methods with an explicit modeling of the noise could also be considered.

h) Different models might give different estimates of the current stabilizing dose. To eventually rely on
the best models, a possibility is to use as our estimates for the stabilizing dose a weighted average
of estimates produced by a number of different models, with larger weights put on models that fit
well previous data points. There is a large literature in statistics and game theory on how to choose
the best “expert”, in our case, the best model [30].

Complementary considerations on practical implementation of containment treatments may be found
in the forthcoming Ph.D. dissertation of Jessica Cunningham.

7.3. How to make an educated guess for the current stabilizing dose? We conclude by explaining
how to make an educated guess for the stabilizing dose based on the last three measurements. Assume to
begin with that a tumour growth-model of the form

(17) Ṅ = Ng(N)(1− λC)

is deemed reasonable. Assume also that between tk−2 and tk, tumour size does not evolve too much so
that the natural net growth-rate g(N) can be considered approximately equal to some constant g. Denote
by ρk−2 = 1

tk−1−tk−2
ln(Nk−1/Nk−2) and ρk−1 = 1

tk−tk−1
ln(Nk/Nk−1) the average per-cell growth-rate on

the time intervals [t0, t1] and [t1, t2], respectively. This leads to:{
ρk−2 = g(1− λCk−2)
ρk−1 = g(1− λCk−1)

Solving this system and noting that for Model (17) the stabilizing dose is C = 1/λ leads to:25

(18) Cguess =
ρk−1Ck−2 − ρk−2Ck−1

ρk−1 − ρk−2
If the kill-rate is not assumed proportional to the dose but to some function of the dose:

Ṅ = Ng(N)(1− λf(C))

for instance due to some saturation effect, then the estimated stabilizing dose is such that:

(19) f(Cguess) =
ρk−1f(Ck−2)− ρk−2f(Ck−1)

ρk−1 − ρk−2
and can be found by inverting the function f . This formula may also be expressed in terms of doubling
times: letting DTk−2 = (ln 2)/ρk−2 and DTk−1 = (ln 2)/ρk−1 denote the tumour’s doubling time on the
time-intervals [tk−2, tk−1] and [tk−1, tk] leads to:

f(Cguess) =
DTk−1f(Ck−1)−DTk−2f(Ck−2)

DTk−1 −DTk−2
The important point is that the exact same formulas are obtained for a variety of other models. For
instance, if we use a log-kill rate instead of a Norton-Simon kill rate:

Ṅ = N [g(N)− λ̃f(C)]

25Note that only relative variations matter, that is, quotients Nk+1/Nk. This is handy when the evolution of biomarker level
is correlated to the evolution of tumour size but the initial biomarker level is not much informative in itself, as is the case
for prostate specific antigen level in prostate cancer.
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then we still obtain (19). This remains true with birth-death models, with a Norton-Simon kill rate

Ṅ = N [b(N)(1− λf(C)− d(N)]

or a log-kill rate
Ṅ = N [b(N)− d(N)− λ̃f(C)]

under the assumption that the birth and death rates b(N), d(N) are approximately constant.This is
because, under these simplifying assumptions, the above four class of models are equivalent. Variants of
these models with sensitive and resistant tumour cells, e.g., Model 3, also lead to the same formulas if the
frequencies of each cell type may be considered constant between tk−2 and tk. Though we do not expect
them to work perfectly, we conclude that the above formulas could provide reasonable initial guesses for
stabilizing doses.26

26Due to measurement errors or some unexpected phenomenon, it might be that though the dose was recently increased:
Ck−1 > Ck−2, the estimated tumour growth rate also increased: ρk−1 > ρk−2. This is incompatible with our deterministic

models and the assumption that the frequency of resistant cells may be considered constant on [tk−2, tk]. The above formulas

then should not be used directly, though a smoothened version of the estimated stabilizing dose, as discussed in Section 7.2,
could still be a useful indicator.
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