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Introduction

This document serves as a supplementary material to
the work [1]. It describes some details regarding the
analyses performed in this reference.

A. Empirical Reproduction of the χ2 Function
for the LBνB-II Experiments

In this section, we shall detail how we computed the
number of events for T2K and NOvA. For a constant
matter density, without any approximation, appearance
oscillation probability for given baseline L and neutrino
energy E, can be expressed [2] as

P (νµ → νe) = aν + bν cos δCP + cν sin δCP,

P (ν̄µ → ν̄e) = aν̄ + bν̄ cos δCP + cν̄ sin δCP, (1)

where aν , bν , cν , aν̄ , bν̄ and cν̄ are some factors which de-
pend on the mixing parameters (θ12, θ23, θ13, δm2

21 and
∆m2

32), E, L as well as the matter density. This implies
that, even after taking into account the neutrino flux
spectra, cross sections, energy resolution, detection ef-
ficiencies, and so on, which depend on neutrino energy,
and after performing integrations over the true and re-
constructed neutrino energies, the expected number of

νe (ν̄e) appearance events, Nνe (Nν̄e), for a given exper-
imental exposure (running time) have also the similar
δCP dependence as,

Nνe = n0 + nc cos δCP + ns sin δCP,

Nν̄e = n̄0 + n̄c cos δCP + n̄s sin δCP, (2)

where n0, nc, ns, n̄0, n̄c and n̄s are some constants
which depend not only on mixing parameters but also
on experimental setups. Assuming that background
(BG) events do not depend (or depend very weakly)
on δCP, the constant terms n0 and n̄0 in Eq. (2) can
be divided into the signal contribution and BG one as
n0 = nsig

0 + nBG
0 and n̄0 = n̄sig

0 + n̄BG
0 , as an approxima-

tion.
In Table A1, we provide the numerical values of these

coefficients which can reproduce quite well the expected
number of events shown in the plane spanned by Nobs

νe
and Nobs

ν̄e , often called bi-rate plots, found in the pre-
sentations by T2K [3] and NOvA [4] at Neutrino 2020
Conference, for their corresponding accumulated data
(or exposures). We show in the left panels of Figures A1
and A2, respectively, for T2K and NOvA, the bi-rate
plots which were reproduced by using the values given
in Table A1. Our results are in excellent agreement with
the ones shown by the collaborations [3, 4].
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The χ2 function for the appearance channel (AC),
for a given LBνB experiment, T2K or NOvA, which is
based on the total number of events, is simply defined
as follows, for each MO,

χ2 AC
LBνB≡ min

s223, δCP

[
(Nobs

νe −N
theo
νe (s2

23, δCP))2

Nobs
νe

+
(Nobs

ν̄e −N
theo
ν̄e (s2

23, δCP))2

Nobs
ν̄e

+ χ2
pull(sin

2 θ23)

]
, (3)

where Nobs
νe (Nobs

ν̄e ) is the number of observed (or to be
observed) νe (ν̄e) events, and N theo

νe (N theo
ν̄e ) are the cor-

responding theoretically expected numbers (or predic-
tion), and

χ2
pull(sin

2 θ23) ≡
(

sin2 θ true
23 − sin2 θ23

σ(sin2 θ23)

)2

. (4)

Note that the number of events in Eq. (3) include also
background events.

nsig
0 /n̄sig

0 nBG
0 /n̄BG

0 nc/n̄c ns/n̄s
T2K ν NMO 68.6 20.2 0.2 -16.5
T2K ν̄ NMO 6.0 12.5 0.2 2.05

T2K ν IMO 58.1 20.2 0.7 -15.5
T2K ν̄ IMO 14.0 6.0 0.05 2.40

NOvAν NMO 70.0 26.8 3.2 -13.2
NOvAν̄ NMO 18.7 14.0 1.3 3.7

NOvAν IMO 45.95 26.8 -3.25 -10.75
NOvAν̄ IMO 26.2 14.0 -1.5 5.0

Table A1: NOvA and T2K Oscillation Probabil-
ity Empirical Parametrisation as of Neutrino 2020
Conference. The numerical values of the factors appear
in Eq. (2) are shown, which were adjusted to approxi-
mately agree with what have been presented by T2K [3] and
NOvA [4]. These numbers correspond to the exposures of
2.0(1.6) ×1021 protons on target (POT) for ν (ν̄) mode of
T2K and 1.4(1.3) ×1021 POT for ν (ν̄) mode of NOvA exper-

iments. The 3 factors nsig0 , nc and ns correspond to the case
where sin2 θ23 = 0.55 (0.57) for T2K (NOvA) and they scale

as nsig0 ∝ sin2 θ23 and nc, ns ∝ sin2 2θ23 as θ23 varies. The
values of ∆m2

32 are fixed to ∆m2
32 = 2.49(−2.46)× 10−3 eV2

for NMO (IMO) for T2K [3] and ∆m2
32 = 2.40(−2.44)×10−3

eV2 for NMO for NOvA [4, 5].

Using the number of events given in Eq. (2) with val-
ues of coefficients given in Table A1 we performed a fit
to the data recently reported by T2K at Neutrino 2020
Conference [3] just varying sin2 θ23 and δCP and could
reproduce rather well the ∆χ2 presented by T2K in the
same conference mentioned above, as shown in the right

panel of Figure A1. We have repeated the similar ex-
ercises also for NOvA and obtained the results, shown
in the right panel of Figure A2, which are reasonably
in agreement with what was presented by NOvA at at
Neutrino 2020 Conference [4]. In the case of NOvA the
agreement is slightly worse as compared to the case of
T2K. We believe that this is because, for the results
shown in Figure A2, unlike the case of T2K, we did not
take into account the θ23 constraint by NOvA (or we
have set χpull in Eq. (4) equals to zero) as this informa-
tion was not reported in [4].

We note that for this part of our analysis, we con-
sidered only the dependence of sin2 θ23 and δCP and ig-
nore the uncertainties of all the other mixing parame-
ters as we are computing the number of events in an
approximated way, as described above, by taking into
account only the variation due to sin2 θ23 and δCP with
all the other parameters fixed (separately by T2K [3]
and NOvA [4] collaborations) to some values which are
close to the values given in Table 1 of [1].

In particular, we neglected the uncertainty of ∆m2
32

in the LBνB AC part analysis when it is combined with
JUNO plus LBνB DC part analysis to obtain our final
boosted MO sensitivities. Strictly speaking, ∆m2

32 must
be varied simultaneously (in a synchronised way) in the
χ2 defined in Eq. (5) when it is combined with the χ2

defined in Eq. (14). However, in our analysis, we simply
add ∆χ2 obtained from our simplified LBνB AC simu-
lation which ignored ∆m2

32 uncertainty, to the JUNO’s
boosted χ2 (described in detail in the Appendix C). This
can be justified by considering that a variation of ∆m2

32

of about ∼ 1% imply only a similar magnitude of vari-
ations in the appearance oscillation probabilities, which
would be significantly smaller than the statistical un-
certainties of LBνB-II AC mode, which are expected to
reach at most the level or ∼5% or larger even in our
future projections for T2K and NOvA.

For the MO resolution sensitivity shown in Figure 2
of [1] and used for our analysis throughout this work,

we define the ∆χ2 (labeled as ∆χ2 AC
LBνB), as

∆χ2 AC
LBνB(MO) ≡

± min
sin2 θ23, δCP

[
χ2 AC

LBνB(IMO)− χ2 AC
LBνB(NMO)

]
, (5)

where +(-) sign corresponds to the case where the true

MO is normal (inverted), and χ2 AC
LBνB is computed as

defined in Eq. (3) but with Nobs
νe(ν̄e)

replaced by the theo-
retically expected ones for given values of assumed true
values of θ23 and δCP. In practice, since we do not con-
sider the effect of fluctuation for this part of our anal-
ysis, χ2 AC

LBνB min = 0 by construction for true MO. We
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Figure A1: Reproduction of T2K Bi-Rate and CP Sensitivity Results as of Neutrino 2020 Conference. Left
panel is the bi-rate plot which shows simultaneously the expected number of events for νe and ν̄e by varying continuously
the values of δCP from −π to π, indicated by the solid and dashed curves (ellipses) for 4 different values of s223 = sin2 θ23
indicated in the legend for the exposure of 2.0(1.6) ×1021 POT for neutrino (anti-neutrino) mode. The point corresponding
to the latest T2K data reported at Neutrino 2020 Conference [3] is indicated by the solid dark green square with 1σ error
bars. Right panel shows the ∆χ2 obtained by fitting the data using the χ2 function given in Eq. (3).
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Figure A2: Reproduction of NOvA Bi-Rate and CP Sensitivity Results as of Neutrino 2020 Conference. Left
panel is the bi-rate plot which shows simultaneously the expected number of events for νe and ν̄e by varying continuously
the values of δCP from −π to π, indicated by the solid and dashed curves (ellipses) for 4 different values of s223 = sin2 θ23
indicated in the legend for the exposure of 1.4 (1.3) ×1021 POT for neutrino (anti-neutrino) mode. The point corresponding
to the latest NOvA data reported at Neutrino 2020 Conference [4] is indicated by the solid dark green square with 1σ error

bars. Right panel shows the significance
√

∆χ2 obtained by fitting the data using the χ2 function given in Eq. (3) but by
setting χ2

pull(sin
2 θ23) =0.
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note that when T2K and NOvA are combined, some en-
hancement of sensitivities in the positive (negative) δCP

region for NMO (IMO) occur (see light green curves in
Figure 6 of [1]. This is because that in these δCP ranges,
T2K and NOvA data can not be simultaneously fitted
very well by using the common δCP for the wrong MO,
leading to an increase of ∆χ2.

For simplicity, for our future projection, we simply
increase by a factor of 3 both T2K and NOvA expo-
sures, to the coefficients given in Table A1 for both
ν and ν̄ channels. This corresponds approximately to
8.0 (6.4)×1021 POT for T2K ν (ν̄) mode and to 4.1
(3.8)×1021 POT for NOvA ν (ν̄) mode, to reflect roughly
the currently considered final exposures for T2K [6]
(' 10 × 1021 POT in total for ν and ν̄) and NOvA [5]
(' 3.2 × 1021 POT each for ν and ν̄). This approach
implies that our calculation does not consider future un-
known optimisations on the ν (ν̄) mode running.

B. LBνB Disappearance MO Sensitivity

In the upper panel of Figure A3, we show the 4 curves
of survival oscillation probabilities, P (νµ → νµ) and
P (ν̄µ → ν̄µ) for NMO and IMO, which were obtained
by using the best fitted parameters in NuFit5.0 given in
Table 1 of [1] for the baseline corresponds to NOvA(L =
810 km) and with the matter density of ρ = 2.8 g/cm3.
The NMO and IMO cases are shown, respectively, by
blue and red colours whereas the cases for ν and ν̄
are shown, respectively, by solid thin and dashed thick
curves. We observe that all of these 4 curves coincide
very well with each other, so differences are very small.
In the lower panel of the same Figure A3, we show the
differences of these curves, between ν and ν̄ channels for
both NMO and IMO, as well as between NMO and IMO
for both ν and ν̄, as indicated in the legend. We observe
that the differences of these oscillation probabilities are
≤1% for the energy range relevant for NOvA.

Two points can be highlighted. First, the fact that
the differences between neutrino and anti-neutrino are
quite small implies that the matter effects are very small
in these channels, hence determining MO by using mat-
ter effects based only on LBνB DC would be almost im-
possible. And second, the fact that the curves for NMO
and IMO agree very well implies that the absolute values
of the effective mass squared differences, called ∆m2

µµ,
defined in Eq. (11) in Appendix D, which correspond
to NMO and IMO cases, should be similar. Indeed,
by using the values given in Table 1 of [1], we obtain
∆m2

µµ = 2.422(−2.431)× 10−3eV2 for NMO (IMO) ex-
hibiting a small ∼ 0.4% difference. In other words, for
each channel, ν and ν̄, there are two degenerate solu-

tions, one corresponds to NMO and the other, to IMO,
which give in practice the same survival probabilities.
We stress that this degeneracy can not be resolved by
considering LBνB experiment with DC alone.

C. Analytic Understanding of Synergy be-
tween JUNO and LBνB based experiments

In this section, we shall detail the relation between true
and false ∆m2

32 solutions in the case of JUNO and
LBνB, as they are different. This difference is indeed
exploited as the main numerical quantification behind
the ∆χ2

BOOST term which was schematically illustrated
in Figure 3 of [1] and will be further quantified in Fig-
ure A4 to be shown in this appendix.

C.1 JUNO Relation between True-False ∆m2
32

The ν̄e → ν̄e survival probability in vacuum can be ex-
pressed as [7]

Pν̄e→ν̄e = 1− c4
13 sin2 2θ12 sin2 ∆21 −

1

2
sin2 2θ13

×
[
1−

√
1− sin2 2θ12 sin2 ∆21 cos(2|∆ee| ± φ)

]
, (6)

where the notation cij ≡ cos θij and sij ≡ sin θij is used,
and ∆ij ≡ ∆m2

ijL/4E, L and E are, respectively, the
baseline and the neutrino energy, and the effective mass
squared difference ∆m2

ee is given by [8]

∆m2
ee ≡ c2

12∆m2
31 + s2

12∆m2
32 = ∆m2

32 + c2
12∆m2

21, (7)

and φ is given by

tanφ =
c2

12 sin(2s2
12∆21)− s2

12 sin(2c2
12∆21)

c2
12 sin(2s2

12∆21) + s2
12 sin(2c2

12∆21)
, (8)

where φ ' 0.36 radian ' 0.11π for s2
12 = 0.304 and

δm2
21 = 7.42 × 10−5 eV2. The +(-) sign in front of φ

in Eq. (6) corresponds to the normal (inverted) mass
ordering.

Upon data analysis, JUNO will obtain two some-
what different values of ∆m2

32 corresponding to NMO
and IMO, which we call ∆m2

32
NMO

JUNO
and ∆m2

32
IMO

JUNO

where one of them should correspond (or closer) to
the true solution. It is expected that by considering
∆NMO
ee + φ = ∆IMO

ee − φ, they are approximately related
by

∆m2
32

IMO

JUNO
' −∆m2

32
NMO

JUNO
− 2c2

12δm
2
21 − δm2

φ, (9)

where the approximated value of δm2
φ can be estimated

by choosing the average representative energy of reactor
neutrinos (∼4 MeV) as

δm2
φ ≡

4E

L
φ ' 2.1× 10−5

(
E

4 MeV

)
eV2. (10)
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Figure A3: LBνB Survival Probability Mass Ordering Dependence. In the upper panel, the νµ → νµ and ν̄µ → ν̄µ
survival probabilities computed by using the mixing parameters found in Table 1 of [1] are shown for NMO (solid and dashed
red curves) and IMO (solid and dashed blue curves) as a function of neutrino energy, as indicated in the legend. In the lower
panel, the differences of these probabilities are shown in percent.

We found that for a given assumed true value of ∆m2
32 =

2.411×10−3 eV2 (corresponding to NMO), we can repro-
duce very well the false value of ∆m2

32 = −2.53 × 10−3

eV2 (corresponding to IMO) obtained by a χ2 fit if we
use E = 4.4 MeV in Eqs. (9) and (10). The relation
between true and false ∆m2

32 for JUNO is illustrated by
the vertical black dashed and black solid lines in Fig-
ure A4 (b) and (d).

C.2 LBνB Relation between True-False ∆m2
32

For LBνB experiments like T2K and NOvA the L/E
are such that |∆31| ∼ |∆32| ∼ π/2. From the disappear-
ance channels νµ → νµ and ν̄µ → ν̄µ, it is possible to
measure precisely the effective mass squared difference
∆m2

µµ whose value is independent of the MO. In terms of
fundamental mixing and oscillation parameters, ∆m2

µµ

can be expressed, with very good approximation, as [8],

∆m2
µµ ≡ ∆m2

32 +

(s2
12 + cos δCPs13 sin 2θ12 tan θ23)δm2

21. (11)

From this relation, one can extract two possible values
of ∆m2

32 corresponding to two different MO as

∆m2
32

MO

LBνB = +(−)|∆m2
µµ| −

(s2
12 + cos δMO

CP s
MO
13 sin 2θ12 tan θMO

23 )δm2
21, (12)

where superscript MO implies either NMO or IMO, and
+ and - sign correspond, respectively, to NMO and IMO.
Note that the best fitted values for the mixing and os-
cillation parameters, with the exception of solar param-
eters θ12 and δm2

21, can be different in the NMO and
IMO scenarios. Eq. (12) can be rewritten as

∆m2
32

IMO

LBνB
= −∆m2

32
NMO

LBνB
− δm2

21

{
2s2

12 + sin 2θ12

(cos δNMO
CP sNMO

13 tan θNMO
23 + cos δIMO

CP sIMO
13 tan θIMO

23 )}
' −∆m2

32
NMO

LBνB
− δm2

21

{
2s2

12 + sin 2θ12

×s13 tan θ23(cos δNMO
CP + cos δIMO

CP )} , (13)

where in the last line of the above equation, some sim-
plifications were considered based on the fact that best
fitted values of sin2 θ13 and sin2 θ23 in recent global anal-
ysis [9] are similar for both MO solutions. By using the
relation given in Eq. (13), for a given assumed true value
of ∆m2

32 (common for all experiments) we obtain the
yellow colour bands shown in Figure A4 (b) and (d).

C.3 Boosting Synergy Estimation

The extra synergy for MO determination sensitivity by
combining JUNO and LBνB DC can be achieved thanks
to the mismatch (or disagreement) of the fitted ∆m2

32

values for the wrong MO solutions between these two
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types of experiments. For the correct MO, ∆m2
32 val-

ues measured by different experiments should agree with
each other within the experimental uncertainties. But
for those values which correspond to the wrong MO do
not agree. The difference can be quantified and used to
enhance the sensitivity.

Following the procedure described in [10, 11], we in-
clude to the JUNO analysis the external information on
the external information on ∆m2

32 from LBνB with an
additional pull term as

χ2 = χ2
JUNO +

(
∆m2

32 −∆m2
32

NMO or IMO

LBνB

σ(∆m2
32)LBνB

)2

, (14)

where χ2
JUNO implies the χ2 function for JUNO alone

computed in a similar fashion as in [11], σ(∆m2
32)LBνB

is the experimental uncertainty on ∆m2
32 achieved by

LBνB based experiments. As typical values in this pa-
per, we consider 3 cases σ(∆m2

32)LBνB = 1, 0.75 and
0.5%.

In order to take into account the possible fluctuation
of the central values of the measured ∆m2

32LBνB
we define

the extra boosting ∆χ2 due to the synergy of JUNO and
LBνB based experiments as the difference of χ2 defined
in Eq. (14) for normal and inverted MO as,

∆χ2
boost ≡ ±

(
χ2

IMO − χ2
NMO

)
, (15)

where +(-) sign corresponds to the case where the true
MO is normal (inverted). Note that in our simplified
phenomenological approach (based on the future simu-
lated JUNO data), for the case with no fluctuation, by
construction, χ2

NMO (IMO) = 0 for NMO (IMO).
Let us try to see how the boosting will be realized by

applying our discussion to JUNO and T2K for illustra-
tion. In Figure A4 for the cases where the true MO is
normal in the panel (a) and inverted in the panel (c) we
show by the solid (dashed) black curve ∆χ2 for JUNO
alone case for true (false) MO. The difference of ∆χ2 be-
tween true and false MO is 9 if only JUNO is considered
implying that the false MO (indicated by the dashed
curves) can be rejected at 3σ. On the other hand, let us
assume the case where T2K can determine |∆m2

32| with
1% uncertainty, and the corresponding ∆χ2 curves are
given by the solid (dashed) blue curves for true (false)
MO in the same plots, rejecting the wrong MO only at
2σ by T2K alone. If we combine JUNO and T2K follow-
ing the procedure described in this section, the resulting
∆χ2 are given by the solid (dashed) red curves for true
(false) MO, rejecting the wrong MO with more than 4σ
for both NMO and IMO.

The large (∼ 10) increase of the combined ∆χ2 for
the wrong MO fit comes from the mismatch of the false

|∆m2
32| values between JUNO (black dashed line) and

T2K (yellow colour bands) shown in the panels (b) and
(d) of Figure A4. This is nothing the boosting effect,
which can be analytically understood and quantified as
follows.

Suppose that we try to perform a χ2 fit assuming the
wrong MO. Let us first assume that σ(∆m2

32)JUNO �
σ(∆m2

32)LBνB and no fluctuation for simplicity (i.e.
χ2

true MO =0). The first term in Eq. (14), χ2
JUNO, forces

to drive the fitted value of ∆m2
32 very close to the false

one favoured by JUNO or ∆m2
32

false

JUNO
(otherwise, χ2

JUNO

value increases significantly). Then the extra increase of
χ2 is approximately given by the second term in Eq. (14)
with ∆m2

32 replaced by ∆m2
32

false

JUNO
,

∆χ2
boost ∼

[
∆m2

32
false

JUNO
−∆m2

32
false

LBνB

σ(∆m2
32)LBνB

]2

,

∼

[
δm2

φ + 2δm2
21(cos 2θ12 − sin 2θ12s13 tan θ23 cos δCP)

σ(∆m2
32)LBνB

]2

∼ 4, 9, 16 , respectively, for δCP = 0,±π/2,±π, (16)

where the numbers in the last line were estimated for
σ(∆m2

32)LBνB = 1%. The case where δCP = ±π/2 and
∆χ2

boost ∼ 9 can be directly compared with more precise
results shown in Figure 4(a) of [1], see the blue solid
curve at δtrue

CP = ±π/2 which gives ∆χ2
boost ∼ 8 which

is in rough agreement. The expression in Eq. (16) is in
agreement with the one given in Eq. (18) of [10] apart
from the term δm2

φ which is not so large.

D. Full 3 ν versus effective 2ν formulation

In the previous discussions found in [10, 11], in or-
der to demonstrate the boosting synergy effect be-
tween JUNO and LBνB experiments, the effective mass
squared differences ∆m2

ee and ∆m2
µµ, defined respec-

tively, in Eqs. (7) and (11) originally found in [8] were
used. While we used these parameters in some inter-
mediate steps of our computations, as described in Ap-
pendix C, we did not use these parameters explicitly in
our combined χ2 describing the extra synergy between
JUNO and LBνB (DC) based experiments defined in
Eq. (14), as well as in the final sensitivity plots pre-
sented in this paper. The main advantage of using these
effective mass squared differences is that no a priori as-
sumptions have to be made about any other parameters
not accessible by JUNO, in particular, CP phase (δCP),
whereas by using them, one must specify explicitly the
δCP value as done in Ref. [10].

In order to check the consistency between our work
and previous studies, we have explicitly verified that
the results do not depend on the parameters used in
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Figure A4: JUNO & LBνB Mass Ordering Synergy. The behaviours of ∆χ2 terms (parabolas) are shown as a

function of |∆m2
32| for JUNO (black), T2K (or NOvA), and their enhanced combination (red). The ∆m2

32
true

is fixed to the
NuFit5.0 best value shown, respectively, in panels (a) and (c) for NMO and IMO. The extra gain in ∆χ2

BOOST discrimina-
tion numerically originates from the fact that the true |∆m2

32| solutions should match between JUNO (solid black vertical
line) and LBνB (solid blue vertical circle); hence the false solutions (dashed vertical lines) must differ. Panels (b) and (d)
illustrate this origin. The relation between true-false ∆m2

32 solutions is different and complementarity for JUNO and LBνB
experiments. The difference is large (≈ 1.5×δm2

21) for JUNO. Instead, LBνB exhibits a smaller difference that modulates

with δCP. So, the relative difference between ∆m2
32

false
JUNO and ∆m2

32
false
LBνB is maximal (minimal) for the δCP-conserving ±π (0)

value. Hence, ∆χ2
BOOST depends on δCP , and ambiguity arises (yellow band) from the a priori different values of δCP for the

true or false solutions. The T2K data (red points) contrasts the precision on |∆m2
32| now [12] compared to needed scenarios

≤1.0% scenario (blue points and parabolas). The precision of each contribution is indicated by the parabolas’ width, where
JUNO is fixed to the nominal value [11].
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µµ coming from LBνB experiments following the procedure described in
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once upgraded to the latest global data inputs [9]. We observe that they are consistent with each other, if the curves for the
δCP values of 0◦ (blue) and 180◦ (red) were interchanged, as a result of a typo in the legend of [10].

8



the analysis and in the presentation of the final results,
provided that that comparisons are done properly. In
Figure A5, we show ∆χ2(JUNO⊕LBνB-DC) computed
by using explicitly ∆mµµ (instead of using ∆m2

32) in our
χ2 analysis as done in [10, 11], as a function of the pre-
cision of ∆m2

µµ. There is general good agreement with
the result shown in Figure 7 of [10], if δCP curves for 0◦

and 180◦ were interchanged, as described in Figure A5.
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