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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The manuscript presents a method for distributed estimation of parameters in a linear mixed 

effects model (LMM). The approach is sound, and the topic extremely timely. There is a clear need 

for such algorithms, and the proposal here is a clever proposal. The method is limited to LMMs, 

which is clearly a limitation in practice, but extension to the computationally much more complex 

case of GLMM is evoked. It is fair to start with this simpler case, and this does not diminish the 

value of the study. 

The method is used to analyze data of COVID-19 patients. 

Major comments 

1. From a clinical point of view, length of stay (LOS) is relevant in COVID-19, though less than 

death, need for ventilation support, etc. Moreover, it is also challenging. Depending in the outcome 

(death or discharge alive), a similar LOS cannot be interpreted similarly. Actually, a shorter LOS 

with a treatment because patients die more would not be desirable. It is therefore not certain LOS 

is an ideal outcome to be modelled by linear regression. But suggesting Poisson regression is not 

much wiser, and the outcome likely calls for much more complex models (see Harhay et al.. 

Measuring and Analyzing Length of Stay in Critical Care Trials. Med Care. 2019;57:e53-e59). 

2. The description of the International COVID-19 hospital LOS study in the results is much too 

long. This is basically methods, and details such as the table 1 could better fit into the 

supplementary material. The same for figure 5. 

3. Still on that example, I failed to understand the need to see the BLUPs by dataset and discuss 

the results that way. Random effects assume that datasets can be considered as drawn from a 

larger population, and model how one varies compared to the average (the common effect, for a 

given covariate). I agree that the distribution of random effects carries a lot of information but 

interpreting which dataset had larger or smaller association, without trying to relate this to 

observable (fixed effects) characteristics does not seems so useful. It would be more informative 

to compare the spread among datasets to the common effects. It could also be interesting to use 

two-dimensional bubble plots to study 2-by-2 associations between dataset-specific effects 

(BLUPs). 

4. I assume from the formulas that any formulation of the random effects variance matrix V can 

be chosen. The test for random effects is however more complex with more general structures of 

variance, and this could be acknowledge. Moreover, the LRT shown for variance components only 

tackles an unusual case as soon as more than one covariate would be used: in the general 

formulation, we could want to test one of the sigma square being null, with no condition on the 

others (or assuming they are all > 0). Some insights in the mixture and degrees of freedom for 

this case could be given. Refs 17 and 18 tackle those cases. 

Minor comments 

1. The order of references is difficult to follow: neither citation order nor alphabetical. 

2. It might be due to the journal format, but it seems quite unusual to me to see the model (which 

is mostly a basic LMM, the value of the paper being the distributed estimation in the results, and 

details on the fitting procedure in the methods. 

3. Just before equation (1), it could be stated that u_i is a vector. Otherwise the reader has to wait 

until the definition of V to be sure. 

4. Some efforts could be made to have all panels of a same figure (e.g. figure 3) having a similar 

global shape (size of axis fonts, whether axis labels are parallel to the axis or to the reading 

direction, etc.) 

5. “Association” should be preferred over “effect” whenever possible. 

Reviewer #2: 

Remarks to the Author: 

Paper Summary: 

This paper proposes a lossless distributed method for training a linear mixed model (LMM) on the 



data of multiple sites without sharing individual patient data which is crucial for protecting the 

privacy of the data subjects. The proposed method works in a one-shot manner, i.e., only one 

communication round is required to train the linear mixed model. To evaluate the accuracy of their 

distributed method the authors employ a dataset consisting of medical claims and EHR data from 

multiple sources across the world and perform a large-scale analysis to predict COVID-19 

hospitalization length of stay. Their results demonstrate that the LMM trained in a distributed 

fashion is identical to that trained in a centralized manner, i.e., when all the data is pulled 

together, and yield some interesting observations about the factors that affect COVID-19 

hospitalization. 

Main Comments: 

The paper is timely, as sharing medical data among multiple institutions to better understand and 

fight the COVID-19 pandemic is of tremendous importance. The authors have managed to pull 

together a big EHR/medical claims dataset from multiple sites across the world and the training of 

the LMM with their distributed method yields accurate results (compared to a centrally trained 

model on the data pulled together) and some interesting insights about the factors that affect 

COVID-19 hospitalization length of stay. However, this reviewer has some concerns about the 

paper and its proposed method which are discussed below: 

The system model is not described clearly and the reader cannot directly grasp the benefit of the 

one-shot distributed method proposed. How are the multiple sites interconnected to share their 

data? Is there an entity or a platform that orchestrates the distributed learning process? Is each 

site training its own model on the shared data? Does every participant get access to the globally 

trained linear mixed model? Without these details about the workflow of the proposed system and 

method, medical institutions will not be able to comprehend the merits of joining such a 

collaboration nor appreciate the benefits of one-shot communication when it comes to 

collaborative learning with others. 

The envisioned threat model is missing from the paper. The authors design a method that aims at 

protecting the privacy of the data subjects but it is not clear who is the considered adversary. Is it 

the parties involved in the data sharing process, network eavesdroppers, etc., and what are their 

expected behaviors (active, passive, etc.)? The proposed method does not require sharing 

individual patient level data, however, it is well-known that aggregate level data do not protect 

individuals’ privacy from inference attacks (e.g., data reconstruction attacks, 

membership/attribute inference, etc.) which can result in unexpected information leakage. In fact, 

the database/computer security communities have established the framework of differential 

privacy for sharing aggregate level data while limiting the privacy leakage for individuals. Without 

applying this framework (e.g., see 

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/627 for the case of linear 

mixed models) or other privacy-enhancing techniques while training a joint model (e.g., multi-

party computation or homomorphic encryption) the proposed method can *not* be privacy-

preserving. Indeed, the fact that the distributed learning method is lossless can be seen as an 

indication that it does not protect privacy: to achieve privacy, typically a method designer has to 

“pay” for something else (e.g., a performance or accuracy hit). This reviewer would encourage the 

authors to clearly define what their privacy goals are, what type of adversaries are envisioned, and 

formally analyze the privacy achieved by their method. This analysis should be in place, in 

particular if the authors are heading towards creating a platform that medical institutions will trust 

and use to share COVID-19 data that are related to their patients. 

The proposed method yields an accurate model (compared to a central model trained on all the 

data pulled together) as well as some interesting insights about the fixed and random effects when 

it comes to COVID-19 hospitalization showing how LMMs can account for heterogeneous data. 

However, the scalability of the proposed method is not evaluated: how does the proposed 

distributed learning method scale with the number of participants, the size of the datasets 

(samples and features)? Without this information a medical institution would not be in position of 

deciding whether to join such an initiative. Moreover, the method is not quantitatively compared 

(performance and accuracy) to other techniques that could be used for the same purpose. For 

instance, what are the gains of the proposed method compared to meta-analysis techniques? 



Similarly, what are the benefits of the method with respect to federated learning (FL) approaches? 

Recent works show that (variations of) FL can cope very well with heterogeneous (e.g., non-iid) 

settings and result in models with strong predictive performance. At the same time, FL would allow 

the training of more complex models (e.g., neural networks) that can potentially offer deeper 

insights about the use-case at hand compared to a linear mixed model. Such comparisons are 

essential for convincing the readers about the usefulness and practicality of the proposed method. 

More worryingly, the authors seem to be unaware of several recent proposals aiming at secure 

medical data sharing, see e.g. the ones listed in Table 1 of Froelicher et al. 

Truly Privacy-Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic 

Encryption 

https://www.biorxiv.org/content/10.1101/2021.02.24.432489v1 

Other Comments: 

There is an inconsistency regarding the aggregate values that each site communicates between 

Figure 2 and the text description on page 23. Please be more precise about the aggregate 

information required to communicate among the parties. 

The proposed method allows for the analysis of site-specific random effects which raises an 

additional concern for privacy leakage. It is highly possible that such analysis leaks information 

specific to certain sites (e.g., processes, treatments, etc.) which might be something that an 

institution would like to avoid. In practice, a good privacy-preserving method would hide this 

information and reveal only the common fixed effects (or general knowledge) that exist on the 

data of multiple institutions. 

The caption of Figure 6 mentions 13 worldwide data sources. However, the text description (with 

the UHG broken down into 4 sites) mentions 14 data sources. Please fix. 



 
 
 
We thank the editor and two reviewers for their constructive comments and suggestions which 
resulted in an improved paper. In the revision we have addressed all the reviewers’ comments. 
See below the point-by-point response to the comments, with the response in Italic font. All the 
track changes made to the paper have also been marked in the revised manuscript. 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript presents a method for distributed estimation of parameters in a linear mixed 
effects model (LMM). The approach is sound, and the topic extremely timely. There is a clear 
need for such algorithms, and the proposal here is a clever proposal. The method is limited to 
LMMs, which is clearly a limitation in practice, but extension to the computationally much more 
complex case of GLMM is evoked. It is fair to start with this simpler case, and this does not 
diminish the value of the study. 
The method is used to analyze data of COVID-19 patients. 
 
Major comments 
R1Q1. From a clinical point of view, length of stay (LOS) is relevant in COVID-19, though less 
than death, need for ventilation support, etc. Moreover, it is also challenging. Depending in the 
outcome (death or discharge alive), a similar LOS cannot be interpreted similarly. Actually, a 
shorter LOS with a treatment because patients die more would not be desirable. It is therefore 
not certain LOS is an ideal outcome to be modelled by linear regression. But suggesting Poisson 
regression is not much wiser, and the outcome likely calls for much more complex models (see 
Harhay et al.. Measuring and Analyzing Length of Stay in Critical Care Trials. Med Care. 
2019;57:e53-e591). 
 
Response: We thank the reviewer for this important comment. In this paper we use COVID-19 
LOS study as an illustrating example for the proposed DLMM algorithm. It’s true that the 
interpretation of LOS depends on the outcome, e.g. a patient who eventually died may have a 
shorter LOS. To address this problem, and because a majority of the COVID-19 patients survived, 
we restrict the study cohort to the patients who are discharged alive. See the revised 
Supplementary Materials page 6 lines 6-12: 
 
“In the OHDSI study patients were included into the cohort if they had an inpatient visit between 

January 2020 and September 2020 satisfying 

- age 18 years or older 

- A COVID-19 diagnosis or positive test recorded up to 21 days prior to the visit or during 

the visit  

- Been active in the database for 6 months or more prior to the inpatient visit 



- Did not have a discharge status of “expired” prior to September 30, 2020.” 
 

As a result, the data of 9 sites, i.e. the sizes of sites except UHG and HIRA COVID have been 
changed, see Tables S3 (previous Table 1) and S4 for details, the total sample size is now 
120,609 (was 119,235). Notice that this slight change of sample does not produce qualitatively 
different conclusion about the study. For example, the estimates of the fixed effects shown in 
previous and revised Figure 6 have small differences. 

 
Previous Fig 6 
 



 
Revised Figure 6 
 
On the other hand, the generalized linear mixed model (GLMM) may be used for more general 
types of outcomes, e.g. logistic regression for binary outcome (need for ventilation support, 
death, etc), or Poisson regression for treating LOS as a count outcome. A distributed algorithm 
for GLMM is thus desired and considered as one of our future directions. See Discussion, the end 
of page 12: 
 
“We treated LOS as a continuous outcome mainly for the purpose of illustrating the proposed 
distributed algorithm. It would be more reasonable to model LOS as a count outcome via the 
generalized linear mixed model (GLMM) framework, e.g., Poisson regression with mixed effects, 
to account for the between-site heterogeneity. Other important outcomes, such as mortality, 
can also be modeled within the GLMM framework. … Distributed algorithms for GLMM 
estimation are currently under investigation and will be reported in the future.” 
 
R1Q2. The description of the International COVID-19 hospital LOS study in the results is much 
too long. This is basically methods, and details such as the table 1 could better fit into the 
supplementary material. The same for figure 5. 
 
Response: We thank the reviewer for the suggestion. We now move the data description (Table 
1 and the itemized description) to the Supplementary Materials. We keep Figure 5 in the 
manuscript as a brief introduction of the collaborative databases.  
 
R1Q3. Still on that example, I failed to understand the need to see the BLUPs by dataset and 
discuss the results that way. Random effects assume that datasets can be considered as drawn 



from a larger population, and model how one varies compared to the average (the common 
effect, for a given covariate). I agree that the distribution of random effects carries a lot of 
information but interpreting which dataset had larger or smaller association, without trying to 
relate this to observable (fixed effects) characteristics does not seems so useful. It would be 
more informative to compare the spread among datasets to the common effects. It could also 
be interesting to use two-dimensional bubble plots to study 2-by-2 associations between 
dataset-specific effects (BLUPs). 
 
Response: We thank the reviewer for suggesting a better presentation of the random effects 
estimates. We agree that relating the BLUPs to the estimated fixed effects is a better approach. 
Following your advices, we now present      and its 95% confidence interval, rather than the 
confidence interval for    only in Figure 7. 
  
R1Q4. I assume from the formulas that any formulation of the random effects variance matrix V 
can be chosen. The test for random effects is however more complex with more general 
structures of variance, and this could be acknowledged. Moreover, the LRT shown for variance 
components only tackles an unusual case as soon as more than one covariate would be used: in 
the general formulation, we could want to test one of the sigma square being null, with no 
condition on the others (or assuming they are all > 0). Some insights in the mixture and degrees 
of freedom for this case could be given. Refs 17 and 18 tackle those cases. 
 
Response: We thank the reviewer for raising this specific question regarding random effect 
testing. It’s true that any formulation of the random effects variance matrix V can be chosen, 
and the test for random effects is more complex with a general unconstrained structure of V. For 
example, the distribution of the likelihood ratio test statistic is a 50-50 mixture of a chi-square-0 
and a chi-square-1 distributions when V is diagonal, but may be more complicated when V is 
unconstrained. Since this is not the focus of our paper, we use the simple case to illustrate our 
method where the random effects are independent, i.e. V is diagonal. Also, a LMM with an 
unconstrained V may involve many more parameters and is difficult to estimate. For example, in 
our study we have 16 covariates (including intercept) and it makes less sense to estimate a 16-
by-16 V matrix. In our software package, we allow users specify either diagonal or unstructured 
V matrix when they fit DLMM, if the number of covariates is appropriate. 
 
We now use sequential selection of the significant random effects, i.e. forward select the 
random effects starting from a model with random intercept only (assume random effects are 
independent). This results in 15 significant random effects, see Table S5. Compared to previous 
univariate selection which results in all 16 covariates being significant, the forward selection is a 
more reasonable selection procedure and obtains a more parsimonious model.  
 
See the end of page 14: 
“… Notice that if the potential random effects are not independent, e.g. matrix   admits an 
unconstrained structure, the distribution of the above test statistics is more complicated and 
may depends on  .” 
 



 
Minor comments 
1. The order of references is difficult to follow: neither citation order nor alphabetical. 
 
Response: we now arrange the references in citation order. 
 
2. It might be due to the journal format, but it seems quite unusual to me to see the model 
(which is mostly a basic LMM, the value of the paper being the distributed estimation) in the 
results, and details on the fitting procedure in the methods. 
 
Response: Nature Communication requires the Results section after Introduction, and Methods 
section in the end of the manuscript. In order to introduce the notations that used for the 

proposed DLMM algorithm (e.g. aggregated data   
    

      
     

      
    

    and 
sample size    from the  th site etc), we thus start from introducing the basic LMM setting.  
 
3. Just before equation (1), it could be stated that    is a vector. Otherwise the reader has to 
wait until the definition of V to be sure. 
 
Response: We now add “   is the  -dimensional random effect” before equation (1). 
 
4. Some efforts could be made to have all panels of a same figure (e.g. Figure 3) having a similar 
global shape (size of axis fonts, whether axis labels are parallel to the axis or to the reading 
direction, etc.) 
 
Response: The figures (e.g. Figure 3) are now modified to have a consistent presentation.  
 
5. “Association” should be preferred over “effect” whenever possible. 
 
Response: We now change “effect” to “association” when interpreting the estimation results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Reviewer #2 (Remarks to the Author): 
 
Paper Summary:  
This paper proposes a lossless distributed method for training a linear mixed model (LMM) on 
the data of multiple sites without sharing individual patient data which is crucial for protecting 
the privacy of the data subjects. The proposed method works in a one-shot manner, i.e., only 
one communication round is required to train the linear mixed model. To evaluate the accuracy 
of their distributed method the authors employ a dataset consisting of medical claims and EHR 
data from multiple sources across the world and perform a large-scale analysis to predict 
COVID-19 hospitalization length of stay. Their results demonstrate that the LMM trained in a 
distributed fashion is identical to that trained in a centralized manner, i.e., when all the data is 
pulled together, and yield some interesting observations about the factors that affect COVID-19 
hospitalization. 
 
Main Comments: 
The paper is timely, as sharing medical data among multiple institutions to better understand 
and fight the COVID-19 pandemic is of tremendous importance. The authors have managed to 
pull together a big EHR/medical claims dataset from multiple sites across the world and the 
training of the LMM with their distributed method yields accurate results (compared to a 
centrally trained model on the data pulled together) and some interesting insights about the 
factors that affect COVID-19 hospitalization length of stay. 
 
Response: Thank you for your positive review of this work. Hereafter, we are addressing the 
concerns from you and have made corresponding the revisions in our revised manuscript. 
 
R2Q1: However, this reviewer has some concerns about the paper and its proposed method 
which are discussed below: 
The system model is not described clearly and the reader cannot directly grasp the benefit of 
the one-shot distributed method proposed. How are the multiple sites interconnected to share 
their data? Is there an entity or a platform that orchestrates the distributed learning process? Is 
each site training its own model on the shared data? Does every participant get access to the 
globally trained linear mixed model? Without these details about the workflow of the proposed 
system and method, medical institutions will not be able to comprehend the merits of joining 
such a collaboration nor appreciate the benefits of one-shot communication when it comes to 
collaborative learning with others. 
 
Response: The reviewer asked a set of great questions. We address them one-by-one in what 
follows. 
 
R2Q1a: The system model is not described clearly and the reader cannot directly grasp the 
benefit of the one-shot distributed method proposed. How are the multiple sites 
interconnected to share their data? 
 



Response: Our work with the emphasis on the one-shot distributed algorithm was largely 
motivated from our participation and collaborations within the Observational Health Data 
Sciences and Informatics (OHDSI) community. However, the one-shot distributed method can be 
applied in networks of many other secure healthcare databases12,13,14. In these databases, the 
computational application programming interface (API) facilitating iterative data 
communication is usually not feasible, hence the usage of traditional federated learning is 
limited. 
 
We elaborate more about the OHDSI setting as an example. The OHDSI community is an 
international, interdisciplinary collaborative consortium whose network spans more than 600 
million patients and more than 2700 researchers. Within this OHDSI community, each data 
owner keeps their own data at their institute, and participates a collaborative project by sharing 
their aggregated data through SSH File Transfer Protocol (sftp) or secure email communications. 
From our experiences of collaborations within OHDSI, it is critical for the data owners to be able 
to manually review the aggregated data to be shared. In this case, the automated data transfer 
(e.g., API portal at data server) is less preferred. This is indeed a key difference with many of the 
existing federated learning algorithms, with automated iterative communications across data 
owners. 
 
Over the past years, collaboration within the OHDSI community has produced large-scale high-
quality evidence via this research network; see for example, the comparative effectiveness 
studies of hypertension interventions2, a study on the effect of RAS inhibitors on COVID-193, or 
the safety of hydroxychloroquine4. The new evidence generated from the multi-site studies has 
greatly advanced the methodology and knowledge on drug efficacy, drug safety, health policy, 
and other fields, using real-world settings. 
Since not everyone is familiar with OHDSI, we agree that it is helpful to clarifying the motivation 
for one-shot algorithms and the actual workflow of data sharing, which was missing in our 
manuscript. We now added a detailed description and a diagram in the Supplementary 
Materials, see page 3: 

1. Project Initiation – Protocol Development: the project leaders initiate a project and 
develop an analysis protocol (attached at the end of this response letter, and also 
submitted as a research supplementary material in our submission of revision). In 
addition to the analysis protocol, the project leaders need to prepare and test computing 
programs (e.g., R programs) that are ready for the participating sites to run at their local 
site (usually data in OMOP CDM) with results prepared in the right format; 

2. Recruitment of participating sites: the project leaders post the research project to the 
OHDSI forum (currently in Microsoft Team) with a deadline of 2-3 weeks for the 
participants to comment, ask questions, and join this project; 

3. Communication: the project leaders create an email list or SSH File Transfer Protocol (sftp) 
file sharing platform with the contact persons from all participating sites, distribute the 
prepared R program, and set a deadline for returning the results (of aggregated data) 
(usually 4 weeks). During these four weeks, the participating sites can ask questions that 
they encounter during the application of the algorithms. At the end of four weeks, the 



participating sites share all the requested results (i.e., aggregated data specified by the 
algorithm); 

4. Aggregation of multi-site results and submitting the final results: the project leaders 
conduct the final analyses by aggregating the results from all participating sites, and 
share the results to all participants in a written manuscript for comments before 
submission. 

 
 
 
R2Q1b: Is there an entity or a platform that orchestrates the distributed learning process? 
 
Response: Currently, the study was initiated on the OHDSI forum and the results were shared via 
email communications. See the workflow in the answer to R2Q1a. Such process is less 
automated, but the data owner has full control on the data to be shared. As added to the 
Discussion Section, we are currently building a web platform for secure data sharing coupled 
with our DLMM algorithm to facilitate multi-center collaboration and allow all sites join the 
collaboration and contribute their aggregated data conveniently. 
 
R2Q1c: Is each site training its own model on the shared data? Does every participant get 
access to the globally trained linear mixed model? 
 
Response: For clarification, instead of each site training its own model, the proposed DLMM 
algorithm aims for training a unified model while accounting for between-site heterogeneity. 
Specifically, each site shares the aggregated data to all participating sites, so that any site can 
build the globally trained linear mixed model by themselves. Such design enables the true 
decentralization of the algorithm and transparency/reproducibility of the analysis results. 
 
R2Q1d: Without these details about the workflow of the proposed system and method, medical 
institutions will not be able to comprehend the merits of joining such a collaboration nor 
appreciate the benefits of one-shot communication when it comes to collaborative learning 
with others. 
 
Response: We have added a new diagram on the workflow for the development of the 
algorithm. We also provide a step-by-step description of the workflow. Hopefully this will 
improve the clarity of the proposed DLMM algorithm. See the answer to R2Q1a. 



 
 
R2Q2: The envisioned threat model is missing from the paper. The authors design a method 
that aims at protecting the privacy of the data subjects but it is not clear who is the considered 
adversary. Is it the parties involved in the data sharing process, network eavesdroppers, etc., 
and what are their expected behaviors (active, passive, etc.)? The proposed method does not 
require sharing individual patient level data, however, it is well-known that aggregate level data 
do not protect individuals’ privacy from inference attacks (e.g., data reconstruction attacks, 
membership/attribute inference, etc.) which can result in unexpected information leakage. In 
fact, the database/computer security communities have established the framework of 
differential privacy for sharing aggregate level data while limiting the privacy leakage for 
individuals. Without applying this framework (e.g., see 
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/627 
 for the case of linear mixed models) or other privacy-enhancing techniques while training a 
joint model (e.g., multi-party computation or homomorphic encryption) the proposed method 
can *not* be privacy-preserving. Indeed, the fact that the distributed learning method is 
lossless can be seen as an indication that it does not protect privacy: to achieve privacy, 
typically a method designer has to “pay” for something else (e.g., a performance or accuracy 
hit). This reviewer would encourage the authors to clearly define what their privacy goals are, 
what type of adversaries are envisioned, and formally analyze the privacy achieved by their 
method. This analysis should be in place, in particular if the authors are heading towards 
creating a platform that medical institutions will trust and use to share COVID-19 data that are 
related to their patients. 
 
Response: We thank the reviewer for raising these important questions. We are addressing 
them one-by-one below. 
 
R2Q2a: The authors design a method that aims at protecting the privacy of the data subjects 
but it is not clear who is the considered adversary. Is it the parties involved in the data sharing 
process, network eavesdroppers, etc., and what are their expected behaviors (active, passive, 
etc.)? 
 
Response: As we clarified in our response to the R2Q1, this algorithm was motivated from 
OHDSI – an international collaborative research community, who has been sharing aggregated 
data over the last 10 years for collaborative projects. The participants joined OHDSI as 
volunteers and most of them are active research participants. On the other hand, when we 
design our algorithm, we have tried our best to minimize the workload/request for the 
participating sites. Indeed, the contact person at the participating site only needs to run a 
specific program and share the results from running that program. There was only one-round of 
communication involved. Per your advice, we have added a diagram to explain the workflow; 
see Figure S4 in the revised Supplementary Materials.  

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/627


 
 
Possible adversary is from collaborators that participate in the study through passive attack, i.e. 
re-identify patients’ partial protected health information (PHI, e.g. i.e. COVID-19 status) by 
linking the released aggregated data with some external databases. This is possible when some 
characteristics are extremely rare (e.g. only one patient in a certain site has cancer). To further 
avoid this possibility in future collaboration, we will require the collaborative sites to have an 
adequate number of patients (e.g. above 500), and review the aggregated data to avoid sparse 
cells (e.g. no cell count less than 5) before submitting it in case some characteristics are 
extremely rare.  
 
R2Q2b: The proposed method does not require sharing individual patient level data, however, 
it is well-known that aggregate level data do not protect individuals’ privacy from inference 
attacks (e.g., data reconstruction attacks, membership/attribute inference, etc.) which can 
result in unexpected information leakage. 
  
Response: The reviewer’s comment reminds us to further discuss the privacy-protection of our 
aggregated data release mechanism. See the Discussion section page 12, lines 1-16: 
 
“Our DLMM algorithm is considered privacy-preserving as it only requires one-shot 
communication of aggregated data from collaborative sites, and the aggregated data are only 
shared within collaborators who participate in the study. However, our aggregated data release 
mechanism has not been rigorously studied to meet privacy-preserving criteria such as  -
anonymity or differential privacy 27–29. Specifically, the  -anonymity property protects against 
the risk of re-identification27, which arises from linking potential quasi-identifiers (i.e. 
combinations of patient’s characteristics in our study) to external sources 27. In DLMM 
aggregated data, if all the cell counts are not sparse, the algorithm can potentially meet the  -
anonymity requirement. In future collaborations using DLMM, we suggest data contributors 
review the aggregated data to avoid sparse cells (e.g. no cell count less than 5) before sending 
them to other sites. We will quantify the risk of privacy leaking more rigorously, and enhance 
our DLMM algorithm via techniques such as differential privacy and multiparty homomorphic 
encryption30 in the future. On the other hand, when reporting the estimated BLUPs for site-
specific random effects, caution must be exercised if there is sensitive information specific to 
sites that could be inferred from the result. We thus suggest the estimated BLUPs not be 



disclosed if the covariates are sensitive characteristics and write this in the protocol when 
initiating a collaborative project using the DLMM algorithm in the future.” 
 
On the other hand, the aggregated data (e.g., counts, averages, standard deviations, and 
Kaplan-Meier curves as estimated survival functions) are commonly reported in medical 
literature (e.g., the summary Table of patients’ characteristics in a cohort in many medical 
papers). Earlier algorithms in distributed regression, such as the iterative distributed logistic 
regression (GLORE) and iterative distributed Cox regression (WebDISCO), require sharing of 
weighted matrices (e.g., XTWX and XTWY) iteratively. They were considered as privacy-
preserving algorithms in biomedical informatics community, assuming there are large enough 
number of patients at each site. Compared to these existing algorithms, the proposed DLMM 
algorithm has less privacy concerns, as it only requires one round of communication.  We believe 
that the DLMM algorithm would work in the OHDSI and other clinical research network settings.  
     
In our international study of COVID-19 LOS, to further illustrate what summary statistics were 
actually communicated, we present below an example of the aggregated data from a synthetic 
data of 2,000 patients, with the first several patients’ data in Figure R1. All the covariates are 
binary variables and the outcome LOS is integer days. 

 
Figure R1. Example (synthetic) patient-level data. 
 
For our DLMM algorithm, the shared aggregated data from a participating site are presented in 
Figure R2. In fact, in our real-world study, all the numbers in the aggregated data were integers 
representing counts. For example, the (2,2) cell 958 is the count of patients with age between 65 
and 80, and the (2,6) cell 466 is the count of male patients with age between 65 and 80.  

 
Figure R2. Example aggregated data. 
 



R2Q2c: In fact, the database/computer security communities have established the framework 
of differential privacy for sharing aggregate level data while limiting the privacy leakage for 
individuals. Without applying this framework (e.g., see 
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/627 for the case of linear 
mixed models10) or other privacy-enhancing techniques while training a joint model (e.g., multi-
party computation or homomorphic encryption9) the proposed method can not be privacy-
preserving. 
 
Response: We are well aware of the relevant privacy literature. We agree that incorporation 
with differential privacy or homomorphic encryption can add more rigorous justification of the 
privacy-protection property of our algorithms. This will be an interesting area for our future 
investigation. In the revised manuscript, we have added a discussion along this line. See the 
Discussion section, page 12, lines 3-12: 
 
“…However, our aggregated data releasing mechanism has not been rigorously studied to meet 
privacy-preserving criteria such as  -anonymity or differential privacy 27–29. … In future 
collaborations using DLMM, we suggest data contributors review the aggregated data to avoid 
sparse cells (e.g. no cell count less than 5) before sending them to other sites. We will quantify 
the risk of privacy leaking more rigorously, and enhance our DLMM algorithm via techniques 
such as differential privacy and multiparty homomorphic encryption30 in the future.” 
 
R2Q2d: Indeed, the fact that the distributed learning method is lossless can be seen as an 
indication that it does not protect privacy: to achieve privacy, typically a method designer has 
to “pay” for something else (e.g., a performance or accuracy hit). 
 
Response: We agree that in normal circumstances, an algorithm being lossless has to pay for 
something else (such as privacy, or communication-efficiency). However, there are rare 
exceptions algorithms can be both lossless and privacy-protected. One such example is the 
lossless distributed algorithm for linear regression (Chen et al., 200611), and our proposed 
algorithm inherited such unique property from the distributed algorithm for linear regression by 
Chen et al. 11, yet being able to account for between-study heterogeneity. 
 
We thank the reviewer for making this important point (as it may be counterintuitive to have 
both lossless and privacy-protection). In our revised manuscript, we have made the clarification 
that due to the properties of linear mixed effect models, our algorithm inherited a unique 
property as in distributed linear regression for being both lossless and privacy-preserving at the 
same time.   
 
In the revision, we have added the following on the page 4 of the manuscript: 
 
“We note that, generally, an algorithm being lossless has to sacrifice certain properties of the 
algorithm, such as the privacy protection or communication-efficiency. However, there are rare 
exceptions algorithms can be both lossless and privacy-protected. One such example is the 
lossless distributed algorithm for linear regression, being lossless, communication-efficient and 

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/627


privacy-protected. Our proposed algorithm inherits such unique property of the distributed 
linear regression for being both lossless and privacy-preserving, yet being able to account for 
between-study heterogeneity.” 
 
Thanks again to the reviewer for raising this point for clarifications. 
 
 
R2Q3: The proposed method yields an accurate model (compared to a central model trained on 
all the data pulled together) as well as some interesting insights about the fixed and random 
effects when it comes to COVID-19 hospitalization showing how LMMs can account for 
heterogeneous data. However, the scalability of the proposed method is not evaluated: how 
does the proposed distributed learning method scale with the number of participants, the size 
of the datasets (samples and features)? Without this information a medical institution would 
not be in position of deciding whether to join such an initiative. Moreover, the method is not 
quantitatively compared (performance and accuracy) to other techniques that could be used 
for the same purpose. For instance, what are the gains of the proposed method compared to 
meta-analysis techniques? Similarly, what are the benefits of the method with respect to 
federated learning (FL) approaches? Recent works show that (variations of) FL can cope very 
well with heterogeneous (e.g., non-iid) settings and result in models with strong predictive 
performance. At the same time, FL would allow the training of more complex models (e.g., 
neural networks) that can potentially offer deeper insights about the use-case at hand 
compared to a linear mixed model. Such comparisons are essential for convincing the readers 
about the usefulness and practicality of the proposed method. 
 
Response: Here we address these questions one-by-one. 
 
R2Q3a: However, the scalability of the proposed method is not evaluated: how does the 
proposed distributed learning method scale with the number of participants, the size of the 
datasets (samples and features)? Without this information a medical institution would not be in 
position of deciding whether to join such an initiative. 
 
Response: For the scalability, the proposed DLMM algorithm scales to large number of 
participating sites and the sample size of the datasets, as the required aggregated data are only 
the     matrix and does not involve the sample size   . This is in fact another advantage of 
the DLMM algorithm, as LMM estimation via this algorithm depends on the IPD only through 
the aggregated data, and thus avoids involving the IPD computation in a central model. 
However, we have not extended the current model to high-dimensional features (i.e., large p). 
This would be an interesting topic for future investigation. The current DLMM algorithm can 
handle a moderate number of features (p<n), given n is relatively large (hundreds of patients 
per site). Such algorithm is sufficient for many of epidemiological models for association 
analyses. 
 
In the revised manuscript, we have added the following to the discussion, see page 12, lines 2-7: 
 



“Regarding scalability, our DLMM algorithm has great scalability in terms of large number of 
sites and large number of patients per site. However, in the presence of high dimensional 
features (i.e., large p), the current algorithm will require sharing of     dimensional matrices, 
which may be challenging. Extension of DLMM algorithm to improve the scalability on large 
number of features remains an important area for future research.” 
 
R2Q3b: Moreover, the method is not quantitatively compared (performance and accuracy) to 
other techniques that could be used for the same purpose. For instance, what are the gains of 
the proposed method compared to meta-analysis techniques? 
 
Response: The proposed method focuses on a presumption that linear mixed effect model (LMM) 
is appropriate for an association study on impacts of risk factors of a continuous outcome. 
Under this context, we showed that the DLMM algorithm is communication-efficient and 
lossless, both mathematically and empirically. There are certainly other methods that can be 
used. For example, meta-analysis that averages the individual estimates from each site is a 
simple way to integrate data from multiple sites. Comparing to meta-analysis, a LMM model 
benefits site-specific prediction due to the shrinkage to the common fixed effects. We believe 
that the DLMM algorithm achieves a good balance between handling heterogeneity, preserving 
privacy, accuracy (lossless) and communication efficiency (one round of transferring aggregate 
data), and comparing to other methods may not be needed.  
 
R2Q3c: Similarly, what are the benefits of the method with respect to federated learning (FL) 
approaches? Recent works show that (variations of) FL can cope very well with heterogeneous 
(e.g., non-iid) settings and result in models with strong predictive performance. At the same 
time, FL would allow the training of more complex models (e.g., neural networks) that can 
potentially offer deeper insights about the use-case at hand compared to a linear mixed model. 
Such comparisons are essential for convincing the readers about the usefulness and practicality 
of the proposed method. 
 
Response: We generally agree that the FL models are flexible and useful in many settings. We 
also consider the proposed method as one variation of FL based on a specific statistical model, 
i.e. LMM. LMMs are commonly used for its flexibility and interpretability, especially in 
epidemiological studies (including association analyses). Traditional FL models have a focus on 
prediction, whilst the LMM model in our analyses of LOS outcome was focusing on quantifying 
associations of risk factors, which is commonly used in biomedical researches. 
 
See Discussion, page 13 lines 7-13: 
“Lastly, federated learning methods have gained a great deal of attention in many clinical 
settings in recent years. We also consider the proposed method as one variation of federated 
learning based on a specific statistical model, i.e. LMM. The LMM holds the promise of flexibility 
and interpretability of regression coefficients, which are particularly suitable for epidemiological 
studies. Traditional federated learning models have a focus on prediction, whilst the LMM 
model in our analyses of LOS outcome focused on quantifying associations of risk factors, which 
is commonly used in biomedical researches. In the future, we plan to investigate 



communication-efficient federated learning algorithms in distributed research network settings, 
which is a much-needed area for new methods.” 
 
   
R2Q4: More worryingly, the authors seem to be unaware of several recent proposals aiming at 
secure medical data sharing, see e.g. the ones listed in Table 1 of Froelicher et al. Truly Privacy-
Preserving Federated Analytics for Precision Medicine with Multiparty Homomorphic 
Encryption9

  
https://www.biorxiv.org/content/10.1101/2021.02.24.432489v1 
 
Response: We thank the reviewer for suggesting us this state-of-the-art reference article. The 
Multiparty Homomorphic Encryption is truly a useful technique for privacy-preserving of the 
site-specific data. This technique could potentially be combined with DLMM and further protect 
the aggregated data from privacy leaking when some covariates are extremely rare. See 
Discussion, page 12 lines 10-12: 
 
“…We will quantify the risk of privacy leaking more rigorously, and enhance our DLMM algorithm 

via techniques such as differential privacy and multiparty homomorphic encryption30 in the 

future.” 
 
 
Other Comments:  
 
1. There is an inconsistency regarding the aggregate values that each site communicates 

between Figure 2 and the text description on page 23. Please be more precise about the 
aggregate information required to communicate among the parties. 

 
Response: We thank the reviewer to point out this inconsistency. To avoid notation confusion, 
we now assume the random effects covariates     is part or all of     , and thus in the Methods 

section, the proposed DLMM algorithm requires the     site to communicate 

●              
    

     

●                
      

       

 
     

●          
    

                  . 
 
2. The proposed method allows for the analysis of site-specific random effects which raises an 

additional concern for privacy leakage. It is highly possible that such analysis leaks 
information specific to certain sites (e.g., processes, treatments, etc.) which might be 
something that an institution would like to avoid. In practice, a good privacy-preserving 
method would hide this information and reveal only the common fixed effects (or general 
knowledge) that exist on the data of multiple institutions. 

 
Response: We thank the reviewer for reminding us this privacy issue. In this study, site specific 
information could be inferred from the estimated BLUPs for site-specific random effects (e.g. 

https://www.biorxiv.org/content/10.1101/2021.02.24.432489v1


HIRA COVID, Optum EHR and SIDIAP have estimated BLUPs of effect of Q3 admission being 0, 
meaning that they have no patients admitted during Q3), which is non-sensitive and is already 
disclosed in the patient characteristic table (Table S4). It’s generally true that estimation of 
BLUPs could leaks sensitive information specific to certain sites (e.g., processes, treatments, etc). 
We thus suggest the estimated BLUPs not been disclosed if the covariates are sensitive 
characteristics. We will write this in the protocol when initiating collaborative project using the 
DLMM algorithm in the future. See page 12, lines 12-16: 
 
“On the other hand, when reporting the estimated BLUPs for site-specific random effects, 
caution must be exercised if there is sensitive information specific to sites that could be inferred 
from the result. We thus suggest the estimated BLUPs not be disclosed if the covariates are 
sensitive characteristics and write this in the protocol when initiating a collaborative project 
using the DLMM algorithm in the future.” 
 
 
3. The caption of Figure 6 mentions 13 worldwide data sources. However, the text description 

(with the UHG broken down into 4 sites) mentions 14 data sources. Please fix. 
 
Response: It’s now fixed as “14 sites” to be consistent with the text.  
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

I thank the authors for their answers and revisions. There are two points that I could have brought 

before (sorry for that). 

1. The lossless property may be considered as important. One alternative approach that can be 

used when no individual patients data (IPD) can be shared is to fit the models on each dataset and 

then meta-analyze the results. Methods have been studies when IPD are available for one center 

(or study), but not the others (Debray et al. Statist Med. 2012;31:2697-2712, Debray et al. Statist 

Med. 2014;33:2341-2362) or using only aggregated information (Sheng et al. Statist Med. 

2014;33:2567-2576). The focus in those articles was more on logistic or Cox regression than on 

linear regression, but I wondered how much loss there would be compared to the proposed DLMM 

approach. I’m not asking for extensive additional analyses but perhaps some discussion could 

help. 

2. Another issue that could be considered when building DLMMs with interactions between 

variables is the potential for aggregation bias. This has been raised for testing interactions in 

meta-analyses of randomized trials using IPDs, including linear models, and some solutions have 

been proposed (Riley et al. Statist Med. 2020;39:2115-2137). Again, there is no need to 

implement that, but the issue could be brought to the readers as a caveat in the discussion. 

Reviewer #2: 

Remarks to the Author: 

- System/Threat Model: The authors seem to have clarified this issue, and motivate it via the 

OHDSI network example (which they are part of). 

- Model Access: Each party gets the resulting global model in clear. While this allows 

fairness/reproducibility etc., we know that this model access (white-box) is prone to various 

privacy attacks. 

- Privacy Mechanism: Still, besides simple (cleartext) aggregation, the authors have not 

incorporated any protection mechanism, e.g., encryption or differential privacy: We mentioned 

that aggregates leak information about individuals and their response to our criticism is "we might 

do this in the future" or "we will inspect the aggregates before sharing them" (this can not work 

without any rigorous analysis). Overall, they push the whole criticism to future work as per their 

response: 

"However, our aggregated data releasing mechanism has not been rigorously studied to meet 

privacy-preserving criteria such as k-anonymity or differential privacy 27–29. … In future 

collaborations using DLMM, we suggest data contributors review the aggregated data to avoid 

sparse cells (e.g. no cell count less than 5) before sending them to other sites. We will quantify the 

risk of privacy leaking more rigorously, and enhance our DLMM algorithm via techniques such as 

differential privacy and multiparty homomorphic encryption30 in the future.” 

- Scalability Analysis: The authors did not do a scalability analysis with respect to the pxp matrix 

that is being shared by each party. Again, they leave this as future work: 

"Regarding scalability, our DLMM algorithm has great scalability in terms of large number of sites 

and large number of patients per site. However, in the presence of high dimensional features (i.e., 

large p), the current algorithm will require sharing of high dimensional matrices, which may be 

challenging. Extension of DLMM algorithm to improve the scalability on large number of features 

remains an important area for future research.” 

- Comparison with other methods: The authors did not compare their method's results 

(performance/accuracy) with meta-analysis or federated learning. They believe that this "may not 

be needed": 



We believe that the DLMM algorithm achieves a good balance between handling heterogeneity, 

preserving privacy, accuracy (lossless) and communication efficiency (one round of transferring 

aggregate data), and comparing to other methods may not be needed. 



 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for their answers and revisions. There are two points that I could have brought before 
(sorry for that). 
1. The lossless property may be considered as important. One alternative approach that can be used when no 
individual patients data (IPD) can be shared is to fit the models on each dataset and then meta-analyze the 
results. Methods have been studies when IPD are available for one center (or study), but not the others 
(Debray et al. Statist Med. 2012;31:2697-2712, Debray et al. Statist Med. 2014;33:2341-2362) or using only 
aggregated information (Sheng et al. Statist Med. 2014;33:2567-2576). The focus in those articles was more 
on logistic or Cox regression than on linear regression, but I wondered how much loss there would be 
compared to the proposed DLMM approach. I’m not asking for extensive additional analyses but perhaps 
some discussion could help. 
 

Response: We thank the reviewer for these important comments and pointing out these relevant literature. 

The linear mixed model (LMM) use in our study is closely connected with the (random-effects) meta-analysis. 
Debray et al. 2012 used the meta-analysis to synthesize the common effects of predictors and further 
calibrate local IPD prediction. Specifically, if a (random-effects) meta-analysis approach is used, the BLUP for 
site-specific random effects could also be estimated for the purpose of site-specific prediction. This is very 
similar to what LMM aims to do. We thus provide a comparison of LMM with (random-effects) meta-analysis 
approach for the LOS study, as summarized by Supplementary Figure 5. Specifically, we compared three 
methods:  

1) BLUP (meta): best linear unbiased predictor (BLUP) of intercept or a covariate effect using two-stage 
IPD-meta-analysis; 

2) Individual LM est: Estimate based on the data from a given site only; 
3) BLUP (LMM): BLUP based on the proposed (one-stage) DLMM algorithm (which is identical to the 

BLUP based on a LMM). 
The results in the plot below show similar (but not identical) fixed-effects estimates (dotted and dashed 
horizontal lines), as well as the shrinkage pattern from the individual estimates to the estimated BLUPs based 
on the BLUP (meta) or BLUP (LMM), for the intercepts (left panel) and effects of age group of 65-80 (right 
panel). More details are provided in the revised Supplementary Materials. We note that overall the estimated 
BLUPs and the fixed effects are similar, yet such similarity could be dependent on various factors, such as the 
number of patients per site, the ratio between the within-site heterogeneity and the between-site 
heterogeneity (which is corresponding to the intra-cluster correlation), and the number of sites.  
 



 
 
Regarding the other literature (Debray et al. 2014; Sheng et al. 2014), they more or less require assuming 
homogeneity of the associations cross sites (i.e. studies). The advantage of these approaches is the flexibility 
with missing predictors among sites when integrating data. As a result, their main benefit is on prediction at 
some site, but not on the synthesis of association effects. 
 
We have added the following discussion to the discussion of the manuscript: 
 
“As suggested by a reviewer, the linear mixed model is closely connected with the (random-effects) meta-
analysis, as they both assume the association effects are random and can shrink site-specific (or study-specific) 
estimation which benefits prediction performance. A comparison of our LMM (or equivalently DLMM) and the 
random-effects meta-analysis for the LOS study is demonstrated in the Supplementary Materials. The results 
show that the estimation of common fixed-effects and site-specific random effects (i.e. BLUPs) are similar but 
not identical. However, such difference depends on various factors, such as the number of patients per site, 
the ratio between the within-site heterogeneity and the between-site heterogeneity, and the number of sites.  
Meta-analysis-based model aggregation is extensively studied in literature; for example, see Debray et al 
2012; Debray et al 2014; and Sheng et al. 2014 for prediction purposes. A comprehensive comparison 
between LMM and meta-analysis is however beyond the scope of this paper.” 
 
 
2. Another issue that could be considered when building DLMMs with interactions between variables is the 
potential for aggregation bias. This has been raised for testing interactions in meta-analyses of randomized 
trials using IPDs, including linear models, and some solutions have been proposed (Riley et al. Statist Med. 
2020;39:2115-2137). Again, there is no need to implement that, but the issue could be brought to the 
readers as a caveat in the discussion. 
 

Response: We thank the reviewer for the comments and suggested literature of meta-analyses on 

interaction effects. Testing interactions between treatment and covariates can help identify which individuals 
benefit most from particular treatments and thus is an important topic in personalized medicine (Fisher et al. 
2017). When integrating IPDs from multiple clinical trials to estimating the interactions, it’s important to 
separate the between-study information from the within-study information, and thus avoid the aggregation 
bias (Fisher et al. 2017; Riley et al. 2020). This boils down to either including a meta-regression term in the 
main effect of treatment (models 6-8 in Riley et al. 2020), or assuming the main effect of treatment is 
common across studies (models 9-11 in Riley et al. 2020). All these models are fitted in the mixed-effect 
framework. Specifically, for a continuous outcome, the linear mixed models, i.e. models 6 and 9 in Riley et al. 



2020, can be conveniently fitted by our proposed DLMM algorithm, when some or all sites (or studies) are not 
able to share IPDs. Moreover, we are also developing a similar distributed algorithm for fitting mixed-effect 
models with non-continuous outcomes, see a preprinted paper https://doi.org/10.1101/2021.05.03.21256561. 
This distributed Penalized Quasi Likelihood algorithm is based on DLMM and can be used to test interaction 
models such as those in Riley et al. 2020. 
 
In the revised manuscript, we have added the following to the discussion 
“We also note that in the setting of modeling interactions, caution should be taken in the formulation of the 
regression model in LMM. Through various proposed formulations that distinct between-study information 
from the within-study information (Fisher et al. 2017; Riley et al. 2020), the aggregation bias can be avoided.” 
 
 
Reviewer #2 (Remarks to the Author): 
 
- System/Threat Model: The authors seem to have clarified this issue, and motivate it via the OHDSI network 
example (which they are part of). 
 
- Model Access: Each party gets the resulting global model in clear. While this allows fairness/reproducibility 
etc., we know that this model access (white-box) is prone to various privacy attacks. 
 
- Privacy Mechanism: Still, besides simple (cleartext) aggregation, the authors have not incorporated any 
protection mechanism, e.g., encryption or differential privacy: We mentioned that aggregates leak 
information about individuals and their response to our criticism is "we might do this in the future" or "we 
will inspect the aggregates before sharing them" (this can not work without any rigorous analysis). Overall, 
they push the whole criticism to future work as per their response: 
 
"However, our aggregated data releasing mechanism has not been rigorously studied to meet privacy-
preserving criteria such as k-anonymity or differential privacy 27–29. … In future collaborations using DLMM, 
we suggest data contributors review the aggregated data to avoid sparse cells (e.g. no cell count less than 5) 
before sending them to other sites. We will quantify the risk of privacy leaking more rigorously, and enhance 
our DLMM algorithm via techniques such as differential privacy and multiparty homomorphic encryption30 in 
the future.” 
 
 
- Scalability Analysis: The authors did not do a scalability analysis with respect to the pxp matrix that is being 
shared by each party. Again, they leave this as future work: 
 
"Regarding scalability, our DLMM algorithm has great scalability in terms of large number of sites and large 
number of patients per site. However, in the presence of high dimensional features (i.e., large p), the current 
algorithm will require sharing of high dimensional matrices, which may be challenging. Extension of DLMM 
algorithm to improve the scalability on large number of features remains an important area for future 
research.” 
 

Response: We thank the reviewer for acknowledging our clarification in the previous responses. While we 

admit the lack of rigorous analysis of privacy protection, we want to point out that the main contribution of 
this paper is a convenient one-shot lossless algorithm for association study in the biomedical area. The 
protection of patients’ privacy by aggregation, though not rigorously guaranteed, enables many of multi-site 
collaborations when patient-level data cannot be shared in many of multi-site biomedical studies with an 
umbrella research IRB, such as the ones at the OHDSI consortium and various PCORnet consortia including 
PEDSnet (a national pediatric learning health system in United States, Forrest, et al. 2014 JAMIA). 

https://doi.org/10.1101/2021.05.03.21256561


 
Regarding the scalability, the communication of pxp matrix is affordable and remains privacy-preserving as 
long as the number of predictors p is not very large. This is usually the case in biomedical studies with 
clinician-driven modeling strategy, as predictors can be chosen by clinical knowledge, such as patients’ 
characteristics related to COVID-19 inpatient treatment. If the dimension of predictors is high, some pre-
screening of candidate predictors using IPDs at individual sites could guide the selection of predictors. 
 
 
- Comparison with other methods: The authors did not compare their method's results 
(performance/accuracy) with meta-analysis or federated learning. They believe that this "may not be 
needed": 
 
We believe that the DLMM algorithm achieves a good balance between handling heterogeneity, preserving 
privacy, accuracy (lossless) and communication efficiency (one round of transferring aggregate data), and 
comparing to other methods may not be needed. 

 

Response: We thank the reviewer for emphasizing the importance of comparison with other methods.  

 
Regarding the comparison with meta-analysis method: 
 
The linear mixed model (LMM) use in our study is closely connected with the (random-effects) meta-analysis. 
Debray et al. 2012 used the meta-analysis to synthesize the common effects of predictors and further 
calibrate local IPD prediction. Specifically, if a (random-effects) meta-analysis approach is used, the BLUP for 
site-specific random effects could also be estimated for the purpose of site-specific prediction. This is very 
similar to what LMM aims to do. We thus provide a comparison of LMM with (random-effects) meta-analysis 
approach for the LOS study, as summarized by the Figure below. Specifically, we compared three methods:  

1) BLUP (meta): best linear unbiased predictor (BLUP) of intercept or a covariate effect using two-stage 
IPD-meta-analysis; 

2) Individual LM est: Estimate based on the data from a given site only; 
3) BLUP (LMM): BLUP based on the proposed (one-stage) DLMM algorithm (which is identical to the 

BLUP based on a LMM). 
The results in the plot below show similar (but not identical) fixed-effects estimates (dotted and dashed 
horizontal lines), as well as the shrinkage pattern from the individual estimates to the estimated BLUPs based 
on the BLUP (meta) or BLUP (LMM), for the intercepts (left panel) and effects of age group of 65-80 (right 
panel). More details are provided in the revised Supplementary Materials. We note that overall the estimated 
BLUPs and the fixed effects are similar, yet such similarity could be dependent on various factors, such as the 
number of patients per site, the ratio between the within-site heterogeneity and the between-site 
heterogeneity (which is corresponding to the intra-cluster correlation), and the number of sites.  
 



 
 
We have added the following discussion to the discussion of the manuscript: 
 
“As suggested by a reviewer, the linear mixed model is closely connected with the (random-effects) meta-
analysis, as they both assume the association effects are random and can shrink site-specific (or study-specific) 
estimation which benefits prediction performance. A comparison of our LMM (or equivalently DLMM) and the 
random-effects meta-analysis for the LOS study is demonstrated in the Supplementary Materials. The results 
show that the estimation of common fixed-effects and site-specific random effects (i.e. BLUPs) are similar but 
not identical. However, such difference depends on various factors, such as the number of patients per site, 
the ratio between the within-site heterogeneity and the between-site heterogeneity, and the number of sites.  
Meta-analysis-based model aggregation is extensively studied in literature; for example, see Debray et al 
2012; Debray et al 2014; and Sheng et al. 2014 for prediction purpose. A comprehensive comparison between 
LMM and meta-analysis is however beyond the scope of this paper.” 
 
Regarding the comparison with “federated learning”: 
We are not sure about which federated learning approaches should be compared with. We do believe that our 
DLMM algorithm belongs to the general federated learning framework (with the unique feature of being 
“one-shot” and lossless) and we do not see the need of comparing with other federated learning methods for 
the sake of doing comparison. Please kindly advise if you insist on comparing with a specific federated 
learning approach. 
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

I thank the authors for their thoughtful answers, additional analyses and added discussion. 

I have no comment left. 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed most of our concerns. Hereunder are a few comments / suggestions. 

Privacy: The authors insist that aggregation is sufficient for this kind of studies (and apparently in 

the US they can get the necessary permissions). It is unlikely that this would be acceptable under 

EU GDPR. The authors should include a note about this. 

Scalability Analysis: The authors claim that the variable p (i.e., number of features) is small for the 

kind of studies they are interested in, so scalability is not really their concern (although that would 

be a problem in other kinds of studies, e.g., genomics). The authors should include a note about 

this. 

Method Comparison: The authors addressed this concern by comparing their method with a meta-

analysis technique and while the results are not fabulous they at least did it. 



 
REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for their thoughtful answers, additional analyses and added discussion. 
I have no comment left. 
 
Response: We thank the reviewer for accepting our last revision. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed most of our concerns. Hereunder are a few comments / suggestions. 
 
Privacy: The authors insist that aggregation is sufficient for this kind of studies (and apparently in the US 
they can get the necessary permissions). It is unlikely that this would be acceptable under EU GDPR. The 
authors should include a note about this. 
 
Response: We thank the reviewer for the reminder. Our international data do contain a site from the EU, 
i.e. the SIDIAP data from Spain, and a site, i.e. the HIRA data from South Korea. Our collaborator 
confirms that the aggregated data is allowed to be transferred under GDPR. However the data privacy 
regulations vary across countries. In general, we do agree with the reviewer that the transferring of any 
aggregated data should be subject to local privacy regulations. We add a note in paragraph 4 of the 
Discussion: 
“… Also, the privacy regulation of releasing aggregated data could vary across countries and data 
providers. The disclosure of aggregated data in the DLMM algorithm needs to meet the local privacy 
requirement. …” 
 
 
Scalability Analysis: The authors claim that the variable p (i.e., number of features) is small for the kind 
of studies they are interested in, so scalability is not really their concern (although that would be a 
problem in other kinds of studies, e.g., genomics). The authors should include a note about this. 
 
Response: We thank the reviewer for this note. We agree with the reviewer that the proposed 
distributed algorithm should be used in a proper setting, i.e. a multi-site association analysis with a small 
number of predictors and possible heterogeneous association across sites. Studies that involve large 
number of predictors/features are not suitable for the proposed method as the aggregated data would 
be too large to be transferred across sites due to privacy concerns. We now add a note in the Discussion: 
“… the current algorithm will require sharing of     dimensional matrices, which may be too large to 
be transferred across sites due to privacy concerns. As a result, studies that involve a large number of 
predictors/features (e.g. a large-scale genomic study) are not suitable for the proposed method. …” 
 
 
Method Comparison: The authors addressed this concern by comparing their method with a meta-
analysis technique and while the results are not fabulous they at least did it. 
 
Response: We thank the reviewer for agreeing with our last revision. 
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