Aquaporin OsPIP2;2 Links the H₂O₂ Signal and a Membrane-anchored Transcription Factor to Promote Plant Defense

Mou Zhang,¹ Haotian Shi,¹ Ningning Li,¹ Nana Wei,¹ Yan Tian,¹ Jinfeng Peng,¹ Xiaochen

Chen,¹ Liyuan Zhang,^{2,3} Meixiang Zhang^{1,*,†} and Hansong Dong^{1,2,3,*,†}

¹Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.

² National Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.

³Department of Plant Pathology, Shandong Agricultural University, Taian, China.

*Author for communication: <u>hsdong@njau.edu.cn (H.S.D.)</u>

[†]Joint Senior authors: Meixiang Zhang and Hansong Dong

Supplemental Materials

Figure S1. The expression profiles of *OsPIPs* **in response to PXO99^A.** A, Relative expression of *OsPIPs* after PXO99^A inoculation. The rice leaves were inoculated with PXO99^A (OD₆₀₀ = 0.6). Eight hours later, total RNA was extracted for RT-qPCR analysis. B, Relative expression of *OsPIPs* upon H₂O₂ treatment. The leaves were treated with 2 mM H₂O₂. Two hours later, gene expression was analyzed by RT-qPCR and expression level of each gene was shown as the ratio of transcript quantities between treatment and control plants. C, Relative expression of *OsPIPs* to *OsActin1* in normal growth condition. D, H₂O₂ content in 2-week-old rice leaves 8 h after inoculation with PXO99^A. FW, fresh weight. Data are shown as means \pm SEM (*n* = 4). Asterisks indicate significant differences compare with control by Student's *t* test (** *P* ≤ 0.01). These experiments were performed at least twice with similar results.

Figure S2. H₂O₂ **transport mediated by OsPIPs in yeast.** A-C, Chronological changes of H₂O₂ content in yeast cells after treatment with 0 or 300 μ M H₂O₂ detected by 2',7'- dichlorofluorescin diacetate (H₂DCF-DA), Amplex Red (AR), and Amplex Ultra Red (AUR) probes respectively. D-F, Chronological changes of H₂O₂ content in yeast cells after treatment with 0 or 500 μ M H₂O₂ detected by H₂DCF-DA, AR, and AUR probes respectively. G-I, Chronological changes of H₂O₂ content in yeast cells after treatment with 0 or 1000 μ M H₂O₂ detected by H₂DCF-DA, AR, and AUR probes respectively. G-I, Chronological changes of H₂O₂ content in yeast cells after treatment with 0 or 1000 μ M H₂O₂ detected by H₂DCF-DA, AR, and AUR probes respectively. + indicates supplied with H₂O₂, - indicates supplied with H₂O as control. Data are shown as means ± SEM (*n* = 8). These experiments were performed at least twice with similar results.

Figure S3. Confirmation of the OsPIP2;2 mutation and overexpression lines. A,

Schematic presentation of the OsPIP2;2 structure and gene editing sites. PAM, Protospacer

adjacent motif. Red arrows were used to show editing sites in *OsPIP2;2*. B, Sanger sequencing chromatograph of the target sites in *OsPIP2;2* and amino acid sequence alignment between OsPIP2;2 and the mutant lines. The red boxes were used to show mutation sites in *OsPIP2;2*. C, Confirmation of the *OsPIP2;2* overexpression lines by genomic PCR. M, DL2000 DNA marker. Plasmid, the pCAMBIA1301-*OsPIP2;2-His* plasmid as a positive control. D, Relative expression of *OsPIP2;2* in NPB, *OsPIP2;2OE* and *Ospip2;2* lines. Expression level of *OsPIP2;2* was shown as the ratio of transcript quantities between transgenic and NPB plants. Data are shown as means \pm SEM (n = 4). NPB, Wild-type Nipponbare. Lowercase letters indicate significant differences at $P \le 0.01$ followed Duncan's multiple range tests and one-way ANOVA. The experiment was performed twice with similiar results. E, Detection of OsPIP2;2 protein expression by western blotting. The OsPIP2;2 protein was detected by His antibody, and coomassie brilliant blue (CBB) staining was used to show protein loading (bottom panel).

2 Figure S4. Contribution of OsPIP2;2 in H₂O₂-mediated cell elongation. A, Wild-type

- 3 Nipponbare (NPB), *OsPIP2;2*OE, and *Ospip2;2* seedlings were grown on 1/2 MS medium
- 4 containing 0.5 mM H₂O₂ at 28°C for 7 days. Data are shown as means \pm SEM (n = 10). B,
- 5 Quantification of plumule lengths after H₂O₂ treatment. Lowercase letters indicate significant
- 6 differences at $P \le 0.01$ followed Duncan's multiple range tests and one-way ANOVA. The
- 7 experiment was performed at least twice with similar results.

8

9 Figure S5. Growth and development of transgenic lines in the greenhouse. A, Fifiteen-

- 10 day-old rice seedlings. B, One-month-old seedlings. C, Three-month-old rice plants. Scale
- 11 bar, 10 cm.

Figure S6. Analysis of the H₂O₂ content in rice after infection with PXO99^A. A, 3,3-13 diaminobenzidine (DAB) staining of H2O2 production in NPB, OsPIP2; 2OE, and Ospip2; 2 14 plants at 24 h after inoculation with PXO99^A. Scale bar = 50 μ m, applying to all the images. 15 B, Total H₂O₂ content in rice 8 h post inoculation with PXO99^A. Leaf tissues were ground 16 into powder, and mixed with 20 mM phosphate buffer (pH 6.5). The Amplex Red probe was 17 used to detecte total H₂O₂ content. Data are shown as means \pm SEM (n = 4). C, Chronological 18 changes of superoxide dismutase (SOD) activity in leaves of rice in response to PXO99^A. 19 Data are shown as means \pm SEM (n = 4). D, Relative expression of H₂O₂-related genes after 20 PXO99^A inoculation. Data are shown as means \pm SEM (n = 3). DPI, diphenylene iodonium. 21 Lowercase letters indicate significant differences at $P \le 0.01$ followed Duncan's multiple 22 range tests and one-way ANOVA. These experiments were performed at least twice with 23 similar results. 24

-9-

Figure S7. Analysis of the H₂O₂ content in rice after infection with RS105. A, 3,3-26 27 diaminobenzidine (DAB) staining of H₂O₂ production in rice at 24 h after inoculation with RS105. Scale bar = 50 μ m, applying to all the images. B, H₂O₂ content in rice 8 h post 28 inoculation with RS105, Amplex Red was used to detecte total H2O2 in leaves of rice. Data 29 are shown as means \pm SEM (n = 4). C, Chronological changes of superoxide dismutase 30 (SOD) activity in leaves of rice in response to RS105. Data are shown as means \pm SEM (n =31 4). D, Relative expression of H₂O₂-related genes after inoculation with RS105. Data are 32 shown as means \pm SEM (n = 3). DPI, diphenylene iodonium. Lowercase letters indicate 33 significant differences at $P \le 0.01$ followed Duncan's multiple range tests and one-way 34 35 ANOVA. These experiments were performed at least twice with similar results.

9

36

37 Figure S8. Analysis of the H₂O₂ content in rice after infection with HB3. A, 3,3-

diaminobenzidine (DAB) staining of H_2O_2 production in rice at 24 h after infection with

HB3. Scale bar = $50 \mu m$, applying to all the images. B, Chronological changes of superoxide

40 dismutase (SOD) activity in leaves of rice in response to HB3. Data are shown as means \pm

41 SEM (n = 4). C, Relative expression of H₂O₂-related genes after inoculation with HB3. Data

42 are shown as means \pm SEM (n = 3). DPI, diphenylene iodonium. These experiments were

43 performed at least twice with similar results.

	TMD1	
OsPIP2;2	MAKDIEASAPEGGEFSAKDYTDPPPAPLIDVEELTKWSLYRAVIAEFIATLLFLYITVAT	60
ZmPIP2;5	MAKDIEAAAAHEGKDYSDPPPAPLVDAEELTKWSLYRAVIAEFVATLLFLYITVAT	56
AtPIP2;1	MAKDVEAVPGEGFQT—RDYQDPPPAPFIDGAELKKWSFYRAVIAEFVATLLFLYITVLT	58
SoPIP2;1	MGKDIEVG-GDHRRELAKDYQDPPPSPLFDGEELGKWSFYRALIAEFIATMLFLYITVLT	59
	*. **:* :** ****:*: * ** ***:***:***:	
	TMD2	
OsPIP2;2	VIGYKHQSDATVNTTDAACSGVGILGIAWAFGGMIFILVYCTAGISGGHI <mark>NPA</mark> VTFGLFL	120
ZmPIP2;5	VIGYKHQTDAAASGPDAACGGVGVLGIAWAFGGMIFILVYCTAGVSGGHINPAVTFGLFL	116
AtPIP2;1	VIGYKIQSDTDAGG—VDCGGVGILGIAWAFGGMIFILVYCTAGISGGHINPAVTFGLFL	116
SoPIP2;1	VIGHKSQNATDQCGGVGILGIAWAFGGMIFVLVYCTAGISGGHINPAVTFGLLL	113
	:* * * * *	
	TMD3	
OsPIP2;2	ARKV <mark>S</mark> LIRAVLYIIAQCLGAICGVGLVKGFQSSYYARYGGGANELSDGYSKGTGLGAEII	180
ZmPIP2;5	ARKV <mark>S</mark> LVRALLYIVAQCLGAICGVGLVKGFQSAFYVRYGGGANELSAGYSKGTGLAAEII	176
AtPIP2;1	ARKV <mark>S</mark> LPRALLYIIAQCLGAICGVGFVKAFQSSYYTRYGGGANSLADGYSTGTGLAAEII	176
SoPIP2;1	ARKL <mark>S</mark> LVRAILYMVAQCLGAICGVGLVKAFQSAYYHEYGGGANTLSQGYSKGTGLAAEII	173
	:** **:**::*******:**:**:**:** . ******* *: ****.****	
	TMD4TMD5	
OsPIP2;2	GTFVLVYTVFSATDPKRNARDSHIPVLAPLPIGFAVFMVHLATIPITGTGINPARSLGTA	240
ZmPIP2;5	GTFVLVYTVFSATDPKRNARDSHVPVLAPLPIGFAVFMVHLATIPITGTGINPARSLGAA	236
AtPIP2;1	GTFVLVYTVFSATDPKRSARDSHVPVLAPLPIGFAVFMVHLATIPITGTGINPARSFGAA	236
SoPIP2;1	GTFVLVYTVFSATDPKRSARDSHVPVLAPLPIGFAVFMVHLATIPVTGTGINPARSFGAA	233

	TMD6	
OsPIP2;2	VIYNKDKAWDDQWIFWVGPLIGAAIAAAYHQYVLRASAAKLGSYRSNA 288	
ZmPIP2;5	VIYNNDKAWDDHWIFWVGPFIGAAIAAAYHQYVLRASAAKLGSSASFSR 287	
AtPIP2;1	VIYNKSKPWDDHWIFWVGPFIGAAIAAFYHQFVLRASGSKSLGSFRSAANV 285	
SoPIP2;1	VIFNSKQAWADQWIFWVGPMIGAAIAAIYHQYILRAGFVKALGSFRSSSNM 284	
	:*:.* *:****:********************	

45 Figure S9. Protein alignment of several PIPs proteins showing conserved S125 residue

- 46 in OsPIP2;2. TMD1-6, transmembrane domain 1-6. Green boxes, conserved asparagine-
- 47 proline-alanine (NPA) domain. Red boxes, conserved Ser residue in several PIPs.

Α

α-His

CBE

В

er a

Figure S10. Phosphorylation of OsPIP2;2 at S125 does not change its expression level. 49 A, Western blot analyzed OsPIP2;2 and its mutant expression in yeast (left) and tobacco 50 (right). Empty vector (EV) was used as negative control. a-His, anti-His antibody. coomassie 51 brilliant blue (CBB) was used to show loading protein (bottom panel). B, Immunoblotting 52 detection of phosphorylation of OsPIP2;2 at S125 induced by H_2O_2 after Phos-tag gel 53 separation. Phospho-proteins can be dephosphorylated by phosphatase. Protein samples 54 treated with (+) or without (-) calf intestinal alkaline phosphatase were separated by Phos-tag 55 gels. The yeast cells were treated with 300 µM H₂O₂ for 30 min. S125A, phosphodeficient 56

- 57 mutant of OsPIP2;2; S125D, phosphomimetic mutant of OsPIP2;2, coomassie brilliant blue
- 58 (CBB) was used to show loading protein (bottom panel). These experiments were performed
- at least twice with similar results. C, Subcellular localization of OsPIP2;2 and its mutants in
- 60 *N. benthamiana* (Figure 4F duplicate placed here to show coorelations of the responses with
- each other). Scale bar = $50 \mu m$, applying to all the images. S125A, phosphodeficient mutant
- of OsPIP2;2; S125D, phosphomimetic mutant of OsPIP2;2.

- maMYBs. TMD, transmembrane domain. R2, a conserved MYB domain. NLS, nuclear
- 66 localization signal. B, Cluster analysis of maMYBs. Bootstrap values indicate the confidence
- of each branch, and the scale indicates branch length (an average of 0.2 substitutions per site).
- 68 Os, Oryza sativa. Td, Triticum dicoccoides. Zm, Zea mays. At, Arabidopsis thaliana. Rh,
- 69 *Rosa hybrida*. Sly, *Solanum lycopersicum*.

Figure S12. Promotion of plant resistance by OsmaMYB C terminus. A, Subcellular 71 localization of OsmaMYB and OsmaMYB^{ATMD} in N. benthamiana. GFP, green-fluorescent 72 protein. DAPI, 4,6-diamidino-2-phenylindole, a nuclear staining dye. To provide 73 fluorescence-undetectable background, GFP and DAPI fluorescence signals were captured 74 under lasers intensity setings as 2% and 6%, respectively. Scale bar = 50 μ m, applying to all 75 the images. B, Titers of DC3000 AhopQ1-1 3 days post-inoculation. A. tumefaciens was used 76 to transiently express OsmaMYB and OsmaMYB^{Δ TMD} on one-half of an *N. benthamiana* leaf 77 and LTI6b control on the other. Data are shown as means \pm SEM (n = 6). Δ TMD, deletion of 78 the transmembrane domain (TMD). Lowercase letters indicate significant differences at $P \leq$ 79 0.01 followed Duncan's multiple range tests and one-way ANOVA. C, Transactivation 80 activity assay of OsmaMYB in yeast. BD, GAL4 DNA-binding domain; Δ TMD, deletion of 81 the transmembrane domain. Empty vector (EV) served as a negative control. These 82 83 experiments were performed at least twice with similar results.

Figure S13. Association between OsmaMYB and OsPIPs. A, Association of OsPIP1;3,

86 OsPIP2;2, OsPIP2;3 or their mutants with OsmaMYB indicated by the split-luciferase

87 complementation assay. The indicated constructs were co-expressed in *N. benthamiana*

88 leaves and then luciferase activities were examined. Cluc-CPR5 and BIK1-Nluc were used as

negative control, and Cluc-XLG2 and BIK1-Nluc were used as positive control. Data are

shown as means \pm SEM (n = 8). Lowercase letters indicate significant differences at $P \le 0.01$

- 91 followed Duncan's multiple range tests and one-way ANOVA. B, Association of OsPIP1;3,
- 92 OsPIP2;2, OsPIP2;3 or their mutants with OsmaMYB in the split-ubiquitin yeast two-hybrid
- 93 system. Yeast cells co-transformed with bait and prey vectors were grown on SD-Trp-Leu-
- His-Ade (SD-WLHA) medium supplemented with 10 mM of 3-amino-1,2,4-triazole (3-AT).
- 95 C, Subcellular localization of OsmaMYB-GFP after co-expression with phosphorylation
- 96 mutants of OsPIP1;3, OsPIP2;2, or OsPIP2;3 in N. benthamiana. To provide fluorescence-
- 97 undetectable background, GFP and DAPI fluorescence signals were captured under lasers
- 98 intensity setings as 2% and 6%, respectively. To provide fluorescence-undetectable
- 99 background, GFP and DAPI fluorescence signals were captured under lasers intensity setings
- as 2% and 6%, respectively. S130A, phosphonull mutant of OsPIP1;3. S130D,
- 101 phosphomimetic mutant of OsPIP1;3. S126A, phosphonull mutant of OsPIP2;3. S126D,
- 102 phosphomimetic mutant of OsPIP2;3. GFP, green-fluorescent protein. DAPI, 4,6-diamidino-
- 103 2-phenylindole, a nuclear staining dye. Scale bar = $50 \mu m$, applying to all the images.

Name	Gen ID	Primer sequence (5' to 3')
Primers for qRT-PCR		
q <i>PIP1;1-</i> F	LOC_Os02 g44630	CGCAATCGTGATGTCCTGTT
q <i>PIP1;1-</i> R		CACGATTGAGTTGTTCAGGGTT
q <i>PIP1;2</i> -F	LOC_Os04 g47220	GCTCCGACGACAAGGACTAC
q <i>PIP1;2-</i> R		AGGAAGGTGGCCATGAACTC
q <i>PIP1;3-</i> F	LOC_Os02 g57720	ACCGTCTGGTGATCGATGAAG
q <i>PIP1;3-</i> R		TCCGCACACAAGTACCAT
q <i>PIP2;1</i> -F	LOC_Os07 g26690	GCAGCCATTGTTGGGGGGATA
q <i>PIP2;1-</i> R		GCTGCTGAAACAAAACGACCA
q <i>PIP2;2</i> -F	LOC_Os02 g41860	TGCATTTCGCCTCGTGGATA
q <i>PIP2;2-</i> R		CAAACTTGGAAGCACCAGCG
q <i>PIP2;3</i> -F	LOC_Os04 g44060	AGCTGACCAAGTGGTCCCTG
q <i>PIP2;3-</i> R		GACTGGTGCTTGTACCCGAT
q <i>PIP2;4-</i> F	LOC_Os07 g26630	ACAGAGCACCTGTTCGTCAG
q <i>PIP2;4</i> -R		AGACAACAGAGGGACAGAGTTT
q <i>PIP2;5-</i> F	LOC_Os07 g26660	CCGTGTTCATGGTGCACCT
q <i>PIP2;5-</i> R		CCGGGTTGATGCCGGT
q <i>PIP2;6</i> -F	LOC_Os04 g16450	GCGGCGTATCACCAGTACA
q <i>PIP2;6</i> -R		ATGACCAAGTCCAACCAGGC
q <i>PIP2;7-</i> F	LOC_Os09 g36930	GTGTGCGTATGTTGTCGTGG
q <i>PIP2;7</i> -R		GAATGGCGATCGCATGCATTA
q <i>PIP2;8</i> -F	LOC_Os03 g64330	CTGTTGGTGTGCATCAGTGT
q <i>PIP2;8</i> -R		GCAGTACACCAGCACGAAGAT
qActin1-F	Os05g0438 800	TGAAGATCAAGGTGGTCGCC
qActin1-R		CACAATGGATGGGCCAGACT
q <i>PPO1-</i> F	LOC433705 5	TATGCGACTTGCTGGACGAC
qPPO1-R		ACTTAGCGTAGCCGATGCTG
qPPO2-F	LOC432412	CTCAAGTGCCAGTTAGGCCA
· · · · · · · · · · · · · · · · · · ·		

Table S1. List of primers used in this study.

q <i>PPO2-</i> R		ATTCGCATCACACGCAAC
q <i>POD1-</i> F	LOC432696 9	TTCCACGACTGCTTCGTCAG
qPOD1-R		GGCGTCGATCACCTCGAAA
qSOD-F	LOC434009	GATAGATAGCGCGGCAGAGG
	1	
qSOD-R		GCGGAGTAGTGAGAGCGTAG
q <i>PR1a-</i> F	LOC434231	CGTGTCGGCGTGGGTGT
	7	
q <i>PR1a</i> -R		GGCGAGTAGTTGCAGGTGATG
q <i>PR10-</i> F	LOC_Os03	CCATGAAGCTTAACCCCGATG
	g18850	
q <i>PR10</i> -R		AGCTTGCCCACCTTGCTTT
qPot2-F	MGG_0585	ACGACCCGTCTTTACTTATTTGG
	0	
q <i>Pot2</i> -R		AAGTAGCGTTGGTTTGTTGGAT
Primers for over-expressio	n constructs to H	I ₂ O ₂ translocation assay
<i>PIP1;1-Bam</i> H I -F		GGGATCCATGGAGGGGAAGGAGGAGGAC
<i>PIP1;1-Xba</i> I-R		GCTCTAGAAGACCTGCTCTTGAATGGGATC
PIP1;2-BamH I-F		GGGATCCCATGGAGGGGGAAGGAGGAGG
PIP1;2-Xba I-R		GCTCTAGACGACCTGCTCTTGAATGGAATT
<i>PIP1;3-Bam</i> H I-F		GGGATCCATGGAGGGGGAAGGAGGAGGATG
<i>PIP1;3-Xba</i> I-R		GCTCTAGAGTCCCGGCTCTTGAAGGGGA
<i>PIP2;1-Bam</i> H I-F		GGGATCCATGGGGAAGGACGAGGTGATG
PIP2;1-Xba I-R		GCTCTAGACGCGTTGCTCCTGAAGGAGC
PIP2;2-BamH I-F		GGGATCCATGGCGAAAGACATTGGGTCG
<i>PIP2;2-Xba</i> I-R		GCTCTAGAGGCGTTGCTCCGGTAGGAC
<i>PIP2;3-Bam</i> H I-F		GGGATCCATGGCGAAGGACATTGAGGC
PIP2;3-Xba I-R		GCTCTAGAGCCGCGGAAGGAGGAGGAAGA
PIP2;4-BamH I-F		GGGATCCATGGGCAAAGAGGTGGACGT
PIP2;4-Xba I-R		GCTCTAGACGCGTTGCTCCGGAAGGAG
<i>PIP2;5-Bam</i> H I-F		GGGATCCATGGGCAAAGAGGCCGACGTC
PIP2;5-Xba I-R		GCTCTAGAAGCATTGCTCCGGAAGGAG
PIP2;6-BamH I-F		GGGATCCATGTCGAAGGAGGTGAGCGAG
PIP2;6-Xba I-R		GCTCTAGAGTTGCTGGGGGTTGCTCCGGAA
PIP2;7-BamH I-F		GGGATCCATGGCGTCGAAGGAGGAGGT
PIP2;7-Xba I-R		GCTCTAGACGCCGTCACGCTGGTGC
PIP2;8-BamH I-F		GGGATCCATGGCTGCAGGCAGCGGCA
PIP2;8-Xba I-R		GCTCTAGAAAAATGGGGTGATCGGTAGGAGG
Primers for PIPs mutation	(overlap-PCR)	
PIP1;3 S130A-mutation-F		ATTAAGCTTGGTACCGAGCTCATGGAGGGGAAGGAGG
		AGGATGTG
PIP1;3 S130A-mutation-		AACACCGCCCGCGTCAGCGCCAGCTTCCGCGCCA

R			
PIP1;3 S130A-mutation-F	TGGCGCGGAAGCTGGCGCTGACGCGGGCGGTGTT		
PIP1;3 S130A-mutation-	TGATGGATATCTGCAGAATTC		
R	GATTAGTCCCGGCTCTTGAAGGGGAT		
PIP1;3 S130D-mutation-	ATTAAGCTTGGTACCGAGCTCATGGAGGGGAAGGAGG		
F	AGGATGTG		
PIP1;3 S130D-mutation-	AACACCGCCCGCGTCAGGTCCAGCTTCCGCGCCA		
R			
PIP1;3 S130D-mutation-	TGGCGCGGAAGCTGGACCTGACGCGGGCGGTGTT		
F			
PIP1;3 S130D-mutation-	TGATGGATATCTGCAGAATTC		
R	GATTAGTCCCGGCTCTTGAAGGGGAT		
PIP2;2 S125A-mutation-F	ATTAAGCTTGGTACCGAGCTCATGGCGAAAGACATTGAG		
	GCGTCGGCGCC		
PIP2;2 S125A-mutation-	CCGCCCTGATCAGCGCCACCTTCCTCGCC		
R			
PIP2;2 S125A-mutation-F	GGCGAGGAAGGTGGCGCTGATCAGGGCGG		
PIP2;2 S125A-mutation-	TGATGGATATCTGCAGAATTCGGCGTTGCTCCGGTAGGA		
R	CCCGAGCTTGG		
PIP2;2 S125D-mutation-	ATTAAGCTTGGTACCGAGCTCATGGCGAAAGACATTGAG		
F	GCGTCGGCGCC		
PIP2;2 S125D-mutation-	CCGCCCTGATCAGGTCCACCTTCCTCGCC		
R			
PIP2;2 S125D-mutation-	GGCGAGGAAGGTGGACCTGATCAGGGCGG		
F			
PIP2;2 S125D-mutation-	TGATGGATATCTGCAGAATTC		
R	GGCGTTGCTCCGGTAGGACCCGAGCTTGG		
PIP2;3 S126A-mutation-F	ATTAAGCTTGGTACCGAGCTCATGGCGAAGGACATTGAG		
	GCGGCGGCGG		
PIP2;3 S126A-mutation-	GCGCGCACCAGCGCCACCTTGCGCGC		
R			
PIP2;3 S126A-mutation-F	GCGCGCAAGGTGGCGCTGGTGCGCGC		
PIP2;3 S126A-mutation-	TGATGGATATCTGCAGAATTCGCCGCGGAAGGAGGAGG		
R	AAGAGCCGAGC		
PIP2;3 S126D-mutation-	ATTAAGCTTGGTACCGAGCTCATGGCGAAGGACATTGAG		
F	GCGGCGGCGG		
PIP2;3 S126D-mutation-	GCGCGCACCAGCGTCACCTTGCGCGC		
R			
PIP2;3 S126D-mutation-	GCGCGCAAGGTGACGCTGGTGCGCGC		
F			
PIP2;3 S126D-mutation-	TGATGGATATCTGCAGAATTCGCCGCGGAAGGAGGAGG		
R	AAGAGCCGAGC		
Primers for yeast two-hybrid (homologous recombination)			

PIP1;3/PIP1;3		ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
<i>S130A/PIP1;3 S130D</i> -F		GGAGGGGAAGGAGGAGGATGTG
PIP1;3/PIP1;3		TCCGCCACCAACCACTTTGTACAAGAAAGCTGGGT
<i>S130A/PIP1;3 S130D</i> -R		AGTCCCGGCTCTTGAAGGGGAT
PIP2;2/PIP2;2		ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
<i>S125A/PIP2;2 S125D</i> -F		GGCGAAAGACATTGAGGCGTC
PIP2;2/PIP2;2		TCCGCCACCAACCACTTTGTACAAGAAAGCTGGGT
<i>S125A/PIP2;2 S125D</i> -R		AGGCGTTGCTCCGGTAGGACC
<i>maMYB</i> -F	LOC434471	ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
	1	GGAGTTCATCGACGACGACTG
<i>maMYB</i> -R		TCCGCCACCACCACCACTTTGTACAAGAAAGCTGGGT
		ATGGAGCTGCCTCCGATGCTG
<i>PIP2;3/PIP2;3</i>		ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
<i>S126A/PIP2;3 S126D</i> -F		GGCGAAGGACATTGAGGCG
<i>PIP2;3/PIP2;3</i>		TCCGCCACCACCACCACTTTGTACAAGAAAGCTGGGT
<i>S126A/PIP2;3 S126D</i> -R		AGCCGCGGAAGGAGGAGGAAGA
<i>PIP2;4-</i> F		ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
		GGGCAAAGAGGTGGACGT
PIP2;4-R		TCCGCCACCACCACCACTTTGTACAAGAAAGCTGGGT
		ACTACGCGTTGCTCCGGA
<i>PIP2;6</i> -F		ACAAGTTTGTACAAAAAAGCAGGCTCTCCAACCACCAT
		GTCGAAGGAGGTGAGCGA
PIP2:6-R		TCCGCCACCACCACCACTTTGTACAAGAAAGCTGGGT
		AGTTGCTGGGGTTGCTCC
Primers for co-IP		
PIP2:2-Knn I-F		GGTACCCATCATCACCATCACCATATGGCGAAAGACATT
		GAGGCGTC
PIP2:2-Xba I-R		TCTAGAGGCGTTGCTCCGGTAGGACC
maMYB-Kpn I-F		GGTACCATGGAGTTCATCGACGACGACTG
maMYB-Xba I-R		CTTGTCATCGTCATCCTTGTAGTCGATGTCATGATCTTTAT
manifib now i it		AATCACCGTCATGGTCTTTGTAGTCTGGAGCTGCCTCCG
		ATGCTG
Primers for Split-luciferase	complementatio	n assavs
PIP1·3/PIP1·3		GGTACCATGGAGGGGAAGGAGGAGGATGTG
\$1304/PIP1·3 \$130D_		
Kon I-F		
		GTCGACTAGTCCCGGCTCTTGAAGGGGAT
S1304/PIP1+3 S130D_Sac		
I-R		
PIP2·2/PIP2·2 \$1254/		GGTACCATGGCGAAAGACATTGAGGCGTC
PIP2.2 S125D_Knn LF		
PIP2.2/PIP2.2 \$125A/		GTCGACGCGTTGCTCCGGTAGGACC
$PIP2 \cdot 2 S125D Sac I D$		
1 11 2,2 5125D-50C I-K	1	

PIP2;3/PIP2;3	GGTACCATGGCGAAGGACATTGAGGCG
S126A/PIP2;3 S126D-	
<i>Kpn</i> I-F	
<i>PIP2;3/PIP2;3</i>	GTCGACGCCGCGGAAGGAGGAGGAAGA
S126A/PIP2;3 S126D-Sac	
I-R	
<i>maMYB</i> -Kpn I-F	GGTACCATGGAGTTCATCGACGACGACTG
maMYB-Sac I-R	GTCGACTGGAGCTGCCTCCGATGCTG
PIP2;4-Kpn I-F	GGTACCATGGGCAAAGAGGTGGACGT
PIP2;4-Sac I-R	GTCGACCTACGCGTTGCTCCGGA
PIP2;6-Kpn I-F	GGTACCATGTCGAAGGAGGTGAGCGA
PIP2;6-Sac I-R	GTCGACGTTGCTGGGGGTTGCTCC
Primers for subcellular localization	n construct
PIP2;2/PIP2;2 S125A/	GGTACCATGGCGAAAGACATTGAGGCGTC
PIP2;2 S125D-Kpn I-F	
PIP2;2/PIP2;2 S125A/	TCTAGATCTAGAGGCGTTGCTCCGGTAGGACC
PIP2;2 S125D-Xba I-R	
maMYB-Kpn I-F	GGTACCATGGAGTTCATCGACGACGACTG
maMYB-Xba I-R	TCTAGATGGAGCTGCCTCCGATGCTG
homologous recombination	
$maMYB^{\Delta TMD}$ -F	GCTTTCGCGAGCTCGGTACCATGACCGGCGGCGACGTC
	ТС
$maMYB^{\Delta TMD}$ -R	CTAGAGGATCCCCGGGTACCTGGAGCTGCCTCCGATGC
Transactivation assay (homologous	s recombination)
$maMYB^{\Delta TMD}$ -F	TGGCCATGGAGGCCGAATTCACCGGCGGCGACGTCTC
$maMYB^{\Delta TMD}$ -F	CGACGGATCCCCGGGAATTCTGGAGCTGCCTCCGATGC
Primers for transgenic plants	
pip2;2-F (mutation)	GTGTGGCGAAAGACATTGAGGCGT/GTGTGCTGTACCGC
	GCGGTGATCG
pip2;2-R (mutation)	AAACACGCCTCAATGTCTTTCGCC/AAACCGATCACCGC
	GCGGTACAGC
35S: <i>PIP2;2-Bam</i> H I-F	GGATCCATGGCGAAAGACATTGAGGCGTC
35S:PIP2;2-Hind III-R	ATGGTGATGGTGATGATGAAGCTTGGCGTTGCTCCGGTA
	GGACC
Primers for detection transgenic pl	ants
<i>pip2;2</i> -F	TGAGGCTAAGTCGGTTGTGG
<i>pip2;2-</i> R	ATTTGGGACCTGAGATGCCG
<i>PIP2;2</i> -F	TTCATTTGGAGAGAACACGGGGGGAC
PIP2;2-R	CTCTGGAACCCCTTGACGAGCC