

Supplemental Figure S1. Geographic distribution of wheat accessions by country or region of origin. Bubble sizes and pie proportions are proportional to the sample sizes. C, cultivar; L, landrace; W, semi-wild.

Supplemental Figure S2. The effect of mapping depth on SNP recall rate. The proportions of detected homozygous SNP in different sequencing coverage were compared to the full data.

Abbreviatino: SNP: Single-nucleotide polymorphism

Supplemental Figure S3. Distribution of normalized read depth per bin along whole genome of all accessions. N refers to reads number of each bin after normalized. Black curveindicates the mean of each plot bins and gray shade illustrates the 45%-75% density of each normalized read depth.

200Mbp 400Mbp 800Mbp 0Mbp 600Mbp Supplemental Figure S4. CNV block distribution of Aikang58 and Lovrin10. (A) Aikang58, (B) Lovrin10. Blue, CNV-deletion blocks; Pink, CNV-duplication blocks

.....

.....

П

Abbreviation: CNV: Copy number variation

chr6D (

chr7B 🧲

chr7D C

chr7A

Supplemental Figure S5. Distribution of CNV-duplication blocks ratios in A, B, D subgenomes. Horizontal line indicates the median value.

Abbreviation: CNV, Copy number variation

Duplication

Supplemental Figure S6. Frequency of CNV-deletion blocks (blue) and CNV-duplication blocks (red) in each window of all accessions along whole genome compared with the Chinese Spring reference genome.

Abbreviation: CNV, Copy number variation

Supplemental Figure S7 Profile of CNV segments distribution in wheat accessions. Left panel: Hierarchical cluster tree based on CNV blocks information of all accessions (left). CNV-deletion blocks, CNV-duplication blocks and un-CNV blocks are encoded as 0,2,1 into matrix to calculate distance between accessions. Mid bar indicates geographic origin of accession in each row (CN, Chinese accessions; EU, European accessions; AU, Australian accessions; AF: African accessions; AM, American accessions) and historical groups (cultivar, landrace, semi-wild). Upright panel: distribution pattern of CNV blocks shared with at least two accessions along whole genome. The order of CNV blocks was sorted according to their frequencies. Red box, CNV-duplication block; Blue box, CNV-deletion blocks. Bottom: Distribution of sample count in each bin along CNV distribution pattern. Red pattern, CNV-duplication block; Blue pattern, CNV-deletion blocks.

Abbreviation: CNV, Copy number variation

Supplemental Figure S8. Distribution of $\log_{10}(DSR+10)$ in each window (1-Mbp length). (A), 300 acession pairs random selected from all accessions pairs; (B), accession pairs of 212 accessions with their top 2 nearest IBS genetic distances accessions.

Abbreviations: DSR, different SNP ratio; IBS, identical by state; SNP: Single-nucleotide polymorphism

Supplemental Figure S9 Distribution of bin-wise SNP density between Bima4 and Bima1 along whole genome.Point colors correspond with the fitted low-, mid-, high- density of log10(DSR+10) distributions.Grey shadows indicate CNV blocks. Y-axis is log-scaled.

Abbreviations: DSR, different SNP ratio; SNP: Single-nucleotide polymorphism; CNV: Copy number varation

Supplemental Figure S10. Distribution of bin-wise SNP density between Bima4 and Chinese Spring along whole genome. Point colors correspond with the fitted low-, mid-, high- density of log10(DSR+10) distributions. Grey shadows indicate CNV blocks. Y-axis is log-scaled.

Abbreviations: DSR, different SNP ratio; SNP: Single-nucleotide polymorphism; CNV: Copy number varation

Supplemental Figure S11 Layout of the Hidden Markov Model.In the smoothing process, raw sharing statuses were considered as observations (*PHR*,*SGR*and*CNV*in blue zone), and the model was used to find their real status (phr,sgrandcnvin the orange) underlying potential noise signals. The transition (arrows between orange circles) probabilities and emission (arrows from orange circles to blue boxes) probabilities we used are annotated on the figure.

Supplemental Figure S12. Comparison of the distributions of PHR, SGR and CNV blocks between Lancer and Norin61 before and after applying HMM strategy. (A), before HMM smoothing. (B), after HMM smoothing. The chromosome 6A is highlighted in (C).

Supplemental Figure S13. Distribution of PHR, SGR and CNV blocks between Nongda5181 and Nongda3097.

Supplemental Figure S14 Distribution of PHR, SGR and CNV blocks between Nongda5181 and Lunxuan987.

Supplemental Figure S15. Dissect the inherited genomic blocks of Nongda5181 from parents. The bottom chromosome-shape track is the recombination events of Nongda5181 from its parental lines, Nongda987 (purple) and Nongda3097 (green). The source of genomic blocks shared between Nongda3097 and Lunxuan987 in Nongda5181 is determined by the donor of adjacent regions.

Abbreviation: SGR, Shared Genomic resource Regions;

Supplemental Figure S16 Distribution of PHR, SGR and CNV blocks between Nongda3097 and Jingdong6.

Supplemental Figure S17 Distribution of PHR, SGR and CNV blocks between Nongda3097 and Nongda3338.

Supplemental Figure S18 Dissect the inherited genomic blocks of Nongda5181. The bottom chromosome-shape track, reconstructed recombination events of Nongda5181 from its parental lines, Nongda987 (purple) and Nongda3097 (green). Descended blocks from great-grandparental line Nongda3338 (blue) and grandparental line Jingdong6 (pink) were showed in independent tracks. QTL-rich cluster annotated by Cao et al. are marked (red track). Abbreviation: SGR, Shared Genomic resource Regions;

Supplemental Figure S19 Genome similarity hierarchical clustering based on ward's hierarchical clustering method on a scale of log2(gIBD proportion). CN, Chinese accessions; EU, European accessions; AU, Australian accessions; AF: African accessions; AM, American accessions. C, cultivar; L, landrace; W: semi-wild. Heat map shows the value of log2(1/gIBD proportion) between each accession.

Abbreviation: gIBD, germplasm resource-based Identity-By-Descent

Supplemental Figure S20. Distribution of PHR, SGR and CNV blocks between Bima1 and Bima4.

Supplemental Figure S21 Distribution of PHR, SGR and CNV blocks between Chengduguangtou and CS (Chinese Spring).

Supplemental Figure S22 Distribution of PHR, SGR and CNV blocks between Yunnan098 and Nanda2419.

Supplemental Figure S23 Comparison between gIBD-based (left) and IBS-based (right) hierarchical clustering results. Both trees based on ward's hierarchical clustering method and gIBD-based tree on a scale of log2(1/gIBD proportion). Leaves are colored based on regions of accessions. CN, Chinese accessions; EU, European accessions; AU, Australian accessions; AF: African accessions; AM, American accessions.

Abbreviations: gIBD, germplasm resource-based Identity-By-Descent; IBS, identical by state

Supplemental Figure S24. The chromosome scale GGNet of 1B chromosome. The edge colours indicate the ranges of the gIBD ratio (genome similarity) for accession pairs. Blue edges: 50% ≥ gIBD-ratio ≥ 40%; Red edges: gIBD-ratio ≥ 50%. A node represents an accession The right annotation bar shows the geographic origin (CN, Chinese accessions; EU, European accessions; AU, Australian accessions; AF: African accessions; AM, American accessions) and historical groups (cultivar, landrace, semi-wild) of each accession.

Supplemental Figure S25. Distribution of PHR, SGR and CNV blocks between Aimengniu and lovrin10.

Supplemental Figure S26.

A, Distribution of concordance ratio between gHap and haplotype identified by Brinton et al. among ArinaLrFor, Jagger, Lancer, Landmark, Mace, Norin61, CDC Stanley and SY Mattis. The concordance ratio refers to the ratio between the haplotype length that both identified by gHap and Brinton et al. and the total haplotype length that identified by Brinton et al. in each sample pairs. B, Diagrammatic representation of all gHaps on chromosome 6A in the 4 accessions (upper) and haplotypes shared among 4 accessions defined in Brinton et al 2020 (lower). Regions with the same colour at the same position share common haplotypes (except for white regions which are not contained gHap blocks). C, NUCmer alignments (\geq 20 Kbp length) between region highlighted by red dashed box in (B) of the Jagger and SY Mattis assemblies. Each data point represents a single pairwise alignment, with the position corresponding to the midpoint of the alignment with respect to the Jagger (x-axis) and SY Mattis (y-axis) assemblies. D, Boxplots show the pairwise NUCmer alignments between chr6A of Jagger and SY Mattis from (B) grouped into 5-Mbp bins with respect to the position in the SY Mattis assembly. Purple-filled boxplots indicate bin median \geq 99.99% sequence identity and green-filled boxplots indicate bin median <99.99% sequence identity. E, Diagrammatic representation of all gHaps on chromosome 6A pythiscal position from 200Mb to 400Mb in the 8 accessions. Regions with the same colour at the same position share common haplotypes (except for white regions which are not contained gHap blocks).

Supplemental Figure S27. The trajectories of semi-dwarf alleles Rht-B1b and Rht-D1b utilization in Chinese cultivars were presented in context of GGNet.

Abbreviation: GGNet, genomic-based germplasm network

Sample ID	Vcf ID	Accession name	Origin	Accession	Source
				type	
					fastq from Cheng et al., Genome
C37	S24	Zhumaoyuanzitou	Zhejiang, China	CNL	Biology, 2019
					fastq from Cheng et al., Genome
C29	36-44210	Uzbekistan1	Uzbekistan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C30	37-44211	Uzbekistan2	Uzbekistan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C11	18-40978	America1	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C12	19-40979	America2	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C13	20-40982	America3	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C14	21-40983	America4	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C15	22-40984	America5	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C16	23-40985	America6	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C17	24-40989	America7	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C18	25-40990	America8	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C19	26-40991	America9	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C49	ALS	Alsen	USA	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C7	7-87821	Spain1	Spain	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C38	S26	Chengduguangtou	Sichuan, China	CNL	Biology, 2019
					fastq from Cheng et al., Genome
C45	S10	Chuanmai42	Sichuan, China	CNC	Biology, 2019
					fastq from Cheng et al., Genome
CS	CS	CS	Sichuan, China	CNL	Biology, 2019
					fastq from Cheng et al., Genome
C43	S8	Xinong979	Shannxi, China	CNC	Biology, 2019
_					fastq from Cheng et al., Genome
C47	XIA	Xiaoyan54	Shannxi, China	CNC	Biology, 2019
_	_				fastq from Cheng et al., Genome
C44	S9	Jimai6	Shandong, China	CNC	Biology, 2019

Supplemental Table S1: Detailed information of the whole	genome resequencin	ng data of wheat used in this study
--	--------------------	-------------------------------------

					fastq from Cheng et al., Genome
C9	9-76299	Portugal1	Portugal	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C10	10-83979	Portugal2	Portugal	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C58	PAS	Pastor	Mexico	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C24	31-44196	Jordan1	Jordan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C25	32-44203	Jordan2	Jordan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C41	S6	Yang15	Jiangsu, China	CNC	Biology, 2019
					fastq from Cheng et al., Genome
C8	8-82678	Italy1	Italy	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C60	VOL	Volcanidd1	Israel	ASC	Biology, 2019
			InnerMongolia,		fastq from Cheng et al., Genome
C40	S25	Huoliaomai	China	CNL	Biology, 2019
					fastq from Cheng et al., Genome
C31	11-43461	India1_C	India	ASC	Biology, 2019
					fastq from Cheng et al., Genome
C32	13-90293	India2_C	India	ASC	Biology, 2019
					fastq from Cheng et al., Genome
C33	12-82173	India1_L	India	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C34	14-108679	India2_L	India	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C35	15-108680	India3_L	India	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C46	S11	Aikang58	Henan, China	CNC	Biology, 2019
			Heilongjiang,		fastq from Cheng et al., Genome
C36	S23	Baimangmai	China	CNL	Biology, 2019
			Heilongjiang,		fastq from Cheng et al., Genome
C39	S22	Yangmai	China	CNL	Biology, 2019
					fastq from Cheng et al., Genome
C22	28-42030	Egypt_C	Egypt	AFC	Biology, 2019
					fastq from Cheng et al., Genome
C23	29-82283	Egypt_L	Egypt	AFL	Biology, 2019
					fastq from Cheng et al., Genome
C48	ACB	AcBarrie	Canada	AMC	Biology, 2019
					fastq from Cheng et al., Genome
C4	4-87909	Bulgaria1	Bulgaria	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C2	2-90377	Austria2	Austria	EUL	Biology, 2019

					fastq from Cheng et al., Genome
C3	3-90350	Austria3	Austria	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C50	YIT	Yitpi	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C51	BAX	Baxter	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C52	CH7	Chara	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C53	DRY	Drysdale	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C54	EXC	Excalibur	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C55	GLA	Gladius	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C56	H45	H45	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C57	KUK	Kukri	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C59	RAC	Rac875	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C61	WES	Westonia	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C62	WYA	Wyalkatchem	Australia	AUC	Biology, 2019
					fastq from Cheng et al., Genome
C21	17-44520	Armenia2	Armenia	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C5	5-43363	Andorra1	Andorra	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C6	6-43390	Andorra2	Andorra	EUL	Biology, 2019
					fastq from Cheng et al., Genome
C26	33-83965	Afghanistan1	Afghanistan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C27	34-99221	Afghanistan2	Afghanistan	ASL	Biology, 2019
					fastq from Cheng et al., Genome
C28	35-90184	Afghanistan3	Afghanistan	ASL	Biology, 2019
					fastq from Chenyang Hao, et al.
SRR10766588	SRR10766588	Aifeng3	Shannxi, China	CNC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766624	SRR10766624	Xiaoyan22	Shannxi, China	CNC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766512	SRR10766512	Aimengniu	Shandong, China	CNC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766631	SRR10766631	Taishan1	Shandong, China	CNC	Molecular Plant, 2020

					fastq from Chenyang Hao, et al.
SRR10766628	SRR10766628	Xumai856	Jiangsu, China	CNC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766529	SRR10766529	Funo	Italy	EUC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766564	SRR10766564	Een1	Hubei, China	CNC	Molecular Plant, 2020
					fastq from Chenyang Hao, et al.
SRR10766583	SRR10766583	Mengxian201	Henan, China	CNC	Molecular Plant, 2020
					bam from Guo et al., Nature
S6	ZY-6	Yntieke6	Yunnan, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S175	S175	Yunnan098	Yunnan, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S176	S176	Yunnan109	Yunnan, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S17	ZY-17	Jiachasuisui8	Xizang, China	CNW	Communications, 2020
					bam from Guo et al., Nature
S24	ZY-24	Langxiansuisui17	Xizang, China	CNW	Communications, 2020
					bam from Guo et al., Nature
S31	ZY-31	Chayazheda18	Xizang, China	CNW	Communications, 2020
					bam from Guo et al., Nature
S75	S75	Rikazelasa1367	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S78	S78	Qushui1340	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S83	S83	Mozhugongka2064	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S91	S91	Duilongdeqing1521	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S143	S143	Langxiansuisui6	Xizang, China	CNW	Communications, 2020
					bam from Guo et al., Nature
S147	S147	Jiachazheda37	Xizang, China	CNW	Communications, 2020
					bam from Guo et al., Nature
S243	S243	Zhahong	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S244	S244	Motuo	Xizang, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S245	S245	Bianbachunmai6	Xizang, China	CNL	Communications, 2020
_	_				bam from Guo et al., Nature
S247	S247	Wujiangzhuo	Xizang, China	CNL	Communications, 2020
_	_				bam from Guo et al., Nature
S248	S248	Mozongzhuoga	Xizang, China	CNL	Communications, 2020
		_			bam from Guo et al., Nature
Zang1817	Zang1817	Zang1817	Xizang, China	CNW	Communications, 2020

S170	S170	Xjm1	Xinjiang, China	CNL (
S172	S172	Xjm29	Xinjiang, China	CNL (
S252	S252	Hongchunmai	Xinjiang, China	CNL (
S253	S253	Hongdongmai	Xinjiang, China	CNL (
S254	S254	Hongjinbaoyin	Xinjiang, China	CNL (
S231	S231	Clark	USA	AMC (
S232	S232	Atlas66	USA	AMC (
S234	S234	Spark	UK	EUC (
S133	S133	Turkmenistan5	Turkmenistan	ASL (
S123	S123	Turkey96	Turkey	ASL (
S131	S131	Turkey56	Turkey	ASL (
S203	S203	Turkey49	Turkey	ASL (
S126	S126	Tajikistan1	Tajikistan	ASL (
S127	S127	Tajikistan4	Tajikistan	ASL (
S94	S94	Sc1666	Sichuan, China	CNL (
S97	S97	Sc1588	Sichuan, China	CNL (
S216	S216	Fan6	Sichuan, China	CNC (
S242	S242	Bendihuanghua	Sichuan, China	CNL (
S246	S246	Baimangxiaomai	Sichuan, China	CNL (
S249	S249	Kangding1	Sichuan, China	CNL (
S180	S180	Dingxingzhai	Shanxi, China	CNL (
S181	S181	Baihuomai	Shanxi, China	CNL (

bam from Guo et al., Nature Communications, 2020 bam from Guo et al., Nature Communications, 2020

S209	S209	Changzhi6406	Shanxi, China	CNC
S182	S182	Chunxiaomai	Shannxi, China	CNL
S183	S183	Mazhamai	Shannxi, China	CNL
S184	S184	Xiaosanyueh	Shannxi, China	CNL
S213	S213	Bima4	Shannxi, China	CNC
S214	S214	Fengchan3	Shannxi, China	CNC
S136	S136	Yannong15	Shandong, China	CNC
S137	S137	Lumai21	Shandong, China	CNC
S185	S185	Xishanbiansui	Shandong, China	CNL
S186	S186	Baibiansui	Shandong, China	CNL
S187	S187	Dalibanmang	Shandong, China	CNL
S188	S188	Laolaixia	Shandong, China	CNL
S215	S215	Jinan17	Shandong, China	CNC
S130	S130	Russian5	Russia	EUL
S237	S237	Aodesa3	Russia	EUC
S212	S212	Lovrin10	Romania	EUC
S110	S110	Xiaohongmai	Qinghai, China	CNL
S111	S111	Xiaomai	Qinghai, China	CNL
S112	S112	Maohongmai	Qinghai, China	CNL
S113	S113	Liuyuehuang	Qinghai, China	CNL
S114	S114	Duanbaimai	Qinghai, China	CNL
S241	S241	Gejiaxiang	Qinghai, China	CNL

bam from Guo et al., Nature Communications, 2020 bam from Guo et al., Nature Communications, 2020

S132	S132	Palestinian/	Palestine	451	C
5152	5152	FaleSullial14	FaleSille	AGL	b.
S108	S108	Shanmai	Ningxia China	CNI	C
0100	0100	Chainnaí		0.12	bi
S109	S109	Tutoumai	Ningxia, China	CNL	C
			0		b
S206	S206	Nepal6	Nepal	ASL	С
					b
S207	S207	Nepal7	Nepal	ASL	С
					b
S124	S124	Morocco9	Morocco	AFL	С
					b
S204	S204	Jordan47	Jordan	ASL	С
					b
S210	S210	Sumai3	Jiangsu, China	CNC	С
					b
S238	S238	Norin10	Japan	ASC	С
					b
S219	S219	Nanda2419	Italy	EUC	C .
0000	0000	71	lt-h.	FUO	b
5223	5223	Znengyin4	Italy	EUC	C b
\$208	S208	India 1	India	A 91	
3200	3200	India4_L	India	AGE	b
S211	S211	Enmai4	Hubei China	CNC	C
0211	0211	Linnari		0110	bi
S10	ZY-10	Pingyuan50	Henan, China	CNL	C
					b
S135	S135	Zhoumai18	Henan, China	CNC	С
					b
S139	S139	Yumai18	Henan, China	CNC	С
					b
S217	S217	Zhengmai9023	Henan, China	CNC	С
					b
S218	S218	Yanzhan1	Henan, China	CNC	С
					b
S221	S221	Yumai21	Henan, China	CNC	С
_	_				b
S224	S224	Bainong3217	Henan, China	CNC	C
004	7)/ 0.4	01:1105			b
564	ZY-64	Shi4185	Hebei, China	CNC	C
S14 2	8140	Chiluan00D4			bi
3142	5142	Shiiuanu2D1	Hebel, China	CINC	U

bam from Guo et al., Nature communications, 2020 am from Guo et al., Nature communications, 2020

					bam from Guo et al., Nature
S227	S227	Shijiazhuang54	Hebei, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S233	S233	Rektor	Germany	EUC	Communications, 2020
					bam from Guo et al., Nature
S128	S128	Georgia7	Georgia	ASL	Communications, 2020
					bam from Guo et al., Nature
S129	S129	Georgia9	Georgia	ASL	Communications, 2020
					bam from Guo et al., Nature
S101	S101	Hongqimai	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S102	S102	Duanyaomai	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S103	S103	Dabaimai	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S104	S104	Baimuxianban	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S105	S105	Honghuosui	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S106	S106	Baidatou	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S240	S240	Lanhuamai	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S250	S250	Yizhimai	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S251	S251	Huoliyan	Gansu, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S12	ZY-12	Apache	France	EUC	Communications, 2020
					bam from Guo et al., Nature
S235	S235	Aztec	France	EUC	Communications, 2020
					bam from Guo et al., Nature
S125	S125	Ethiopia3	Ethiopia	AFL	Communications, 2020
					bam from Guo et al., Nature
S205	S205	Egypt40	Egypt	AFL	Communications, 2020
					bam from Guo et al., Nature
S11	ZY-11	Yanda1817	Beijing, China	CNL	Communications, 2020
					bam from Guo et al., Nature
S67	ZY-67	Nongda3338	Beijing, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S3331	s3331	Nongda3331	Beijing, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S6554	s6554	Jingdong6	Beijing, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S140	S140	Nongda5181	Beijing, China	CNC	Communications, 2020

					bam from Guo et al., Nature
S225	S225	Beijing8	Beijing, China	CNC	Communications, 2020
					bam from Guo et al., Nature
S134	S134	Azerbaijan3	Azerbaijan	ASL	Communications, 2020
					bam from Guo et al., Nature
S239	S239	Optimus	Australia	AUC	Communications, 2020
					bam from Guo et al., Nature
S122	S122	Armenia1	Armenia	ASL	Communications, 2020
PH46	WXB2	Bima1	Shannxi, China	CNC	this study
PH49	WXB10	Jimai19	Shandong, China	CNC	this study
PH51	WXB21	Jinan13	Shandong, China	CNC	this study
PH52	WXB22	Jinan16	Shandong, China	CNC	this study
PH56	WXB44	Lumai15	Shandong, China	CNC	this study
PH68	WXB89	Yuejin5	Shandong, China	CNC	this study
PH148	WXB472	Wangshuibai	Jiangsu, China	CNL	this study
PH95	WXB206	Xinmai26	Henan, China	CNC	this study
PH105	WXB268	Zhoumai16	Henan, China	CNC	this study
PH108	WXB273	Zhoumai22	Henan, China	CNC	this study
PH135	WXB409	Zhongmai875	Henan, China	CNC	this study
PH151	WXB562	Wenmai6	Henan, China	CNC	this study
PH153	WXB576	Neixiang5	Henan, China	CNC	this study
PH126	WXB331	Hengguan35	Hebei, China	CNC	this study
PH132	WXB387	Nongda179	Beijing, China	CNC	this study
PH133	WXB394	Nongda413	Beijing, China	CNC	this study
PH09	Fielder	Fielder	USA	AMC	this study
XM01	S47-1	Jinmai47	Shanxi, China	CNC	this study
PH10	JM20	Jimai20	Shandong, China	CNC	this study
NZ05	LX987	Lunxuan987	Beijing, China	CNC	this study
YM05	LX99-1-1	Liangxing99	Shandong, China	CNC	this study
YM02	N981-1	Nongda981	Beijing, China	CNC	this study
YM07	s3753-1	Nongda3753	Beijing, China	CNC	this study
YM03	s3097-1	Nongda3097	Beijing, China	CNC	this study
NZ10	C4-2	Jimai22	Shandong, China	CNC	this study
S141	S141	Feimai	Denmark	EUC	this study
					fastq from Walkowiak, et al.
Jagger	Jagger	Jagger	USA	AMC	Nature, 2020
					fastq from Walkowiak, et al.
CDC_Landmark	CDC_Landmark	CDC_Landmark	USA	AMC	Nature, 2020
					fastq from Walkowiak, et al.
CDC_Stanley	CDC_Stanley	CDC_Stanley	USA	AMC	Nature, 2020
-	-	-			fastq from Walkowiak, et al.
ArinaLrFor	ArinaLrFor	Arinalrfor	Switzerland	EUC	Nature, 2020
					fastq from Walkowiak, et al.
Norin61	Norin61	Norin61	Japan	ASC	Nature, 2020

					fastq from Walkowiak, et al.
SY_Mattis	SY_Mattis	SY_Mattis	France	EUC	Nature, 2020
					fastq from Walkowiak, et al.
Lancer	Lancer	Lancer	Australia	AUC	Nature, 2020
					fastq from Walkowiak, et al.
Mace	Mace	Mace	Australia	AUC	Nature, 2020

Abbreviations: CNC, Chinese cultivar; CNL, Chinese landrace; CNW, Chinese semi-wild; EUC, European cultivar; EUL, European landrace; AUC, Australian cultivar; AFC, African cultivar; AFL, African landrace; AMC, American cultivar; ASC, Asian cultivar; ASL, Asian landrace.

Supplementary Table S2. Chromosomal crossover counts in Nongda5181 between its parents Nongda3097 and Lunxuan987

Chromosome	Number of crossovers
chr1A	1
chr1B	3
chr1D	6
chr2A	9
chr2B	1
chr2D	1
chr3A	5
chr3B	2
chr3D	11
chr4A	2
chr4B	3
chr4D	2
chr5A	7
chr5B	7
chr5D	7
chr6A	2
chr6B	5
chr6D	7
chr7A	4
chr7B	3
chr7D	3

Supplementary Table S3. Accessions that carried 1RS chromosome

Accession name	Released year
Nongda3331	-
Nongda3338	1985
Lumai15	1996
Jingdong6	1991
YuMai21	1982
Shi4185	2014
JiNan16	1998

ZhouMai16	2002
LunXuan987	2003
ZhouMai18	2004
HengGuan35	2004
Ak58	2005
ZhouMai22	2007
ZhongMai875	2014
NongDa5181	2014
Een1	1985
Xiaoyan22	1998
Xumai856	2004
Changzhi6406	1982
Lovrin10	1971
LOVINITO	(introduced into China)
Aimengniu	1983

Supplementary Table S4. Rht-B1 and Rht-D1 allele types in wheat accessions

Accession name	Rht-B1 type	Rht-D1 type
AcBarrie	Rht-B1a others	Rht-D1a others
Afghanistan1	Rht-B1a others	Rht-D1a others
Afghanistan2	Rht-B1a others	Rht-D1a others
Afghanistan3	Rht-B1a others	Rht-D1a others
Aifeng3	Rht-B1h	Rht-D1b
Aimengniu	Rht-B1a others	Rht-D1b
Aikang58	Rht-B1m	Rht-D1b
Alsen	Rht-B1b	Rht-D1a others
America1	Rht-B1i	Rht-D1a others
America2	Rht-B1b	Rht-D1n2
America3	Rht-B1i	Rht-D1n2
America4	Rht-B1i	Rht-D1b
America5	Rht-B1a others	Rht-D1n2
America6	Rht-B1h	Rht-D1b
America7	Rht-B1i	Rht-D1b
America8	Rht-B1i	Rht-D1b
America9	Rht-B1a others	Rht-D1b
Andorra1	Rht-B1a others	Rht-D1a others
Andorra2	Rht-B1a others	Rht-D1a others
Aodesa3	Rht-B1a others	Rht-D1a others
Apache	Rht-B1a others	Rht-D1a others
Arinalrfor	Rht-B1i	Rht-D1a others
Armenia1	Rht-B1a others	Rht-D1a others
Armenia2	Rht-B1a others	Rht-D1a others
Atlas66	Rht-B1a others	Rht-D1a others

Austria2	Rht-B1a others	Rht-D1a others
Austria3	Rht-B1a others	Rht-D1a others
Azerbaijan3	Rht-B1a others	Rht-D1a others
Aztec	Rht-B1h	Rht-D1b
Baibiansui	Rht-B1a others	Rht-D1n1
Baidatou	Rht-B1a others	Rht-D1a others
Baihuomai	Rht-B1a others	Rht-D1a others
Baimangmai	Rht-B1h	Rht-D1n1
Baimangxiaomai	Rht-B1a others	Rht-D1a others
Baimuxianban	Rht-B1a others	Rht-D1a others
Bainong3217	Rht-B1h	Rht-D1b
Baxter	Rht-B1b	Rht-D1n1
Beijing8	Rht-B1a others	Rht-D1a others
Bendihuanghua	Rht-B1a others	Rht-D1a others
Bianbachunmai6	Rht-B1a others	Rht-D1a others
Bima1	Rht-B1a others	Rht-D1a others
Bima4	Rht-B1m	Rht-D1a others
Bulgaria	Rht-B1a others	Rht-D1a others
CDC_Landmark	Rht-B1b	Rht-D1a others
CDC_Stanley	Rht-B1a others	Rht-D1a others
Changzhi6406	Rht-B1a others	Rht-D1a others
Chara	Rht-B1b	Rht-D1a others
Chayazheda18	Rht-B1a others	Rht-D1a others
Chengduguangtou	Rht-B1a others	Rht-D1a others
Chuanmai42	Rht-B1b	Rht-D1a others
Chunxiaomai	Rht-B1a others	Rht-D1n1
Clark	Rht-B1b	Rht-D1a others
CS	Rht-B1a others	Rht-D1a others
Dabaimai	Rht-B1a others	Rht-D1a others
Dalibanmang	Rht-B1i	Rht-D1a others
Dingxingzhai	Rht-B1a others	Rht-D1a others
Drysdale	Rht-B1a others	Rht-D1b
Duanbaimai	Rht-B1a others	Rht-D1a others
Duanyaomai	Rht-B1a others	Rht-D1a others
Duilongdeqing1521	Rht-B1a others	Rht-D1a others
Een1	Rht-B1a others	Rht-D1n2
Egypt	Rht-B1a others	Rht-D1a others
Egypt	Rht-B1a others	Rht-D1a others
Egypt40	Rht-B1a others	Rht-D1a others
Enmai4	Rht-B1a others	Rht-D1n2
Ethiopia3	Rht-B1a others	Rht-D1a others
Excalibur	Rht-B1a others	Rht-D1b
Fan6	Rht-B1m	Rht-D1n2
Feimai	Rht-B1h	Rht-D1a others

Fengchan3	Rht-B1a others	Rht-D1a others
Fielder	Rht-B1b	Rht-D1a others
Funo	Rht-B1a others	Rht-D1n2
Gejiaxiang	Rht-B1a others	Rht-D1a others
Georgia7	Rht-B1a others	Rht-D1a others
Georgia9	Rht-B1a others	Rht-D1a others
Gladius	Rht-B1m	Rht-D1b
H45	Rht-B1b	Rht-D1n1
Hengguan35	Rht-B1b	Rht-D1n1
Hongchunmai	Rht-B1a others	Rht-D1a others
Hongdongmai	Rht-B1a others	Rht-D1a others
Honghuosui	Rht-B1a others	Rht-D1a others
Hongjinbaoyin	Rht-B1a others	Rht-D1a others
Hongqimai	Rht-B1a others	Rht-D1a others
Huoliaomai	Rht-B1a others	Rht-D1a others
Huoliyan	Rht-B1a others	Rht-D1a others
India4_L	Rht-B1a others	Rht-D1a others
India1_L	Rht-B1a others	Rht-D1a others
India1_C	Rht-B1a others	Rht-D1b
India2_L	Rht-B1a others	Rht-D1a others
India2_C	Rht-B1b	Rht-D1n1
India3_L	Rht-B1i	Rht-D1a others
Italy	Rht-B1a others	Rht-D1a others
Jagger	Rht-B1b	Rht-D1n2
Jiachasuisui8	Rht-B1a others	Rht-D1a others
Jiachazheda37	Rht-B1a others	Rht-D1a others
Jimai19	Rht-B1a others	Rht-D1b
Jimai20	Rht-B1a others	Rht-D1b
Jimai22	Rht-B1i	Rht-D1b
Jimai6	Rht-B1m	Rht-D1b
Jinan13	Rht-B1m	Rht-D1b
Jinan16	Rht-B1a others	Rht-D1b
Jinan17	Rht-B1a others	Rht-D1b
Jingdong6	Rht-B1a others	Rht-D1a others
Jinmai47	Rht-B1a others	Rht-D1a others
Jordan1	Rht-B1a others	Rht-D1a others
Jordan2	Rht-B1a others	Rht-D1a others
Jordan47	Rht-B1a others	Rht-D1a others
Kangding1	Rht-B1a others	Rht-D1a others
Kukri	Rht-B1a others	Rht-D1b
Lancer	Rht-B1b	Rht-D1a others
Langxiansuisui17	Rht-B1a others	Rht-D1a others
Langxiansuisui6	Rht-B1a others	Rht-D1a others
Lanhuamai	Rht-B1a others	Rht-D1a others

Laolaixia	Rht-B1a others	Rht-D1n1
Liuyuehuang	Rht-B1a others	Rht-D1a others
Lovrin10	Rht-B1a others	Rht-D1n1
Lumai15	Rht-B1h	Rht-D1b
Lumai21	Rht-B1a others	Rht-D1b
Lunxuan987	Rht-B1b	Rht-D1n2
Lx99	Rht-B1a others	Rht-D1b
Mace	Rht-B1m	Rht-D1b
Maohongmai	Rht-B1a others	Rht-D1a others
Mazhamai	Rht-B1a others	Rht-D1a others
Mengxian201	Rht-B1a others	Rht-D1n2
Morocco9	Rht-B1a others	Rht-D1a others
Motuo	Rht-B1a others	Rht-D1a others
Mozhugk2064	Rht-B1a others	Rht-D1b
Mozongzhuoga	Rht-B1a others	Rht-D1a others
Nanda2419	Rht-B1a others	Rht-D1n1
Neixiang5	Rht-B1a others	Rht-D1n1
Nepal6	Rht-B1a others	Rht-D1a others
Nepal7	Rht-B1a others	Rht-D1a others
Nongda179	Rht-B1b	Rht-D1n1
Nongda3097	Rht-B1a others	Rht-D1n1
Nongda3331	Rht-B1a others	Rht-D1b
Nongda3338	Rht-B1b	Rht-D1b
Nongda3753	Rht-B1a others	Rht-D1a others
Nongda413	Rht-B1a others	Rht-D1b
Nongda5181	Rht-B1b	Rht-D1n1
Nongda981	Rht-B1h	Rht-D1n1
Norin10	Rht-B1b	Rht-D1b
Norin61	Rht-B1a others	Rht-D1b
Optimus	Rht-B1i	Rht-D1a others
Palestinian4	Rht-B1a others	Rht-D1a others
Pastor	Rht-B1b	Rht-D1n2
Pingyuan50	Rht-B1a others	Rht-D1n1
Portugal1	Rht-B1a others	Rht-D1a others
Portugal2	Rht-B1a others	Rht-D1a others
Qushui1340	Rht-B1a others	Rht-D1a others
Rac875	Rht-B1m	Rht-D1b
Rektor	Rht-B1h	Rht-D1a others
Rikazelasa1367	Rht-B1b	Rht-D1a others
Russian5	Rht-B1a others	Rht-D1a others
Sc1588	Rht-B1a others	Rht-D1a others
Sc1666	Rht-B1a others	Rht-D1a others
Shanmai	Rht-B1a others	Rht-D1a others
Shi4185	Rht-B1b	Rht-D1a others

Shijiazhuang54	Rht-B1a others	Rht-D1a others
Shiluan02D1	Rht-B1b	Rht-D1n1
Spain	Rht-B1a others	Rht-D1a others
Spark	Rht-B1m	Rht-D1a others
Sumai3	Rht-B1a others	Rht-D1n2
Sy_Mattis	Rht-B1b	Rht-D1a others
Taishan1_Nk	Rht-B1m	Rht-D1n1
Tajikistan1	Rht-B1a others	Rht-D1a others
Tajikistan4	Rht-B1a others	Rht-D1a others
Turkey49	Rht-B1a others	Rht-D1a others
Turkey56	Rht-B1a others	Rht-D1a others
Turkey96	Rht-B1a others	Rht-D1a others
Turkmenistan5	Rht-B1a others	Rht-D1a others
Tutoumai	Rht-B1a others	Rht-D1a others
Uzbekistan1	Rht-B1a others	Rht-D1a others
Uzbekistan2	Rht-B1a others	Rht-D1a others
Volcanidd1	Rht-B1a others	Rht-D1b
Wangshuibai	Rht-B1a others	Rht-D1n1
Wenmai6	Rht-B1m	Rht-D1b
Westonia	Rht-B1a others	Rht-D1b
Wujiangzhuo	Rht-B1a others	Rht-D1a others
Wyalkatchem	Rht-B1a others	Rht-D1b
Xiaohongmai	Rht-B1a others	Rht-D1a others
Xiaomai	Rht-B1a others	Rht-D1a others
Xiaosanyueh	Rht-B1a others	Rht-D1a others
Xiaoyan22	Rht-B1b	Rht-D1n2
Xiaoyan54	Rht-B1b	Rht-D1n1
Xinmai26	Rht-B1a others	Rht-D1b
Xinong979	Rht-B1h	Rht-D1b
Xishanbiansui	Rht-B1a others	Rht-D1a others
Xjm1	Rht-B1a others	Rht-D1a others
Xjm29	Rht-B1a others	Rht-D1a others
Xumai856	Rht-B1h	Rht-D1b
Yanda1817	Rht-B1a others	Rht-D1a others
Yang15	Rht-B1b	Rht-D1n2
Yangmai	Rht-B1a others	Rht-D1a others
Yannong15	Rht-B1a others	Rht-D1n2
Yanzhan1	Rht-B1a others	Rht-D1b
Yitpi	Rht-B1m	Rht-D1b
Yizhimai	Rht-B1a others	Rht-D1a others
Yntieke6	Rht-B1a others	Rht-D1a others
Yuejin5	Rht-B1a others	Rht-D1a others
Yumai18	Rht-B1a others	Rht-D1b
Yumai21	Rht-B1a others	Rht-D1b

Yunnan098	Rht-B1a others	Rht-D1n1
Yunnan109	Rht-B1a others	Rht-D1a others
Zang1817	Rht-B1a others	Rht-D1a others
Zhahong	Rht-B1a others	Rht-D1a others
Zhengmai9023	Rht-B1h	Rht-D1b
Zhengyin4	Rht-B1b	Rht-D1n2
Zhongmai875	Rht-B1a others	Rht-D1b
Zhoumai16	Rht-B1a others	Rht-D1b
Zhoumai18	Rht-B1a others	Rht-D1b
Zhoumai22	Rht-B1a others	Rht-D1b
Zhumaoyuanzitou	Rht-B1a others	Rht-D1a others

Supplementary Table S5. Initial transition frequency matrix between observations

	SGR	PHR	CNV
SGR	0.8082	0.1415	0.0503
PHR	0.0442	0.9409	0.0149
CNV	0.208	0.1889	0.6031

Abbreviations: PHR, polymorphism hotspot regions; SGR, Shared Genomic resource Regions; CNV, Copy number variation

Supplementary	Table	S6.	Trained	state	transition	probability	matrix	and	emission
probability matrix	,								

	state tr	ansition proba	abilities	emi	ssion probabili	ties
	SGR	PHR	CNV	SGR	PHR	CNV
sgr	0.9564	0.0377	0.0035	0.9621	0.0379	0
phr	0.0016	0.9980	0.0104	0.0016	0.9984	0
cnv	0.0035	0.1576	0.8388	0	0	1

Abbreviations: PHR, polymorphism hotspot regions; SGR, Shared Genomic resource Regions; CNV, Copy number variation

References

1. Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, et al: Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun 2020, 11:5085.

2. Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, et al: Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588:277-283.

3. Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, et al: Frequent intraand inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol 2019, 20:136.

4. Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, et al: Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China. Mol Plant 2020, 13:1733-1751.