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eAppendix. Model architecture and implementation details 

Convolutional autoencoder for feature extraction 

The layer-by-layer description of the neural network architecture of the encoder and 

decoder is presented in the table below. The inputs are semantically segmented 

echocardiographic video frames. Each pixel is represented as a one-hot vector of 

dimensionality 4 for the 2-chamber view, and dimensionality of 6 for the 4-chamber 

view, respectively.  

Encoder 

Layer type Output shape (2-ch. / 4-ch.) 

Input (segmented frame, one-hot pixel vector) 112x112x4 / 112x112x6 

Conv. 4x4 kernel size, 16 filters, stride 2, ReLU 55x55x16 

Conv. 4x4 kernel size, 16 filters, stride 2, ReLU 26x26x16 

Conv. 4x4 kernel size, 32 filters, stride 2, ReLU 12x12x32 

Conv. 4x4 kernel size, 32 filters, stride 2, ReLU 5x5x32 

Flatten 800 

Fully-connected, 16 latent nodes, linear  16 (latent nodes) 

 

 

Decoder 

Layer type 

Output shape (2-ch. / 4-

ch.) 

Input (compressed frame representation) 16 (latent nodes) 
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Fully-connected. 800 units, ReLU 800 

Reshaping 5x5x32 

Transp. conv. 4x4 kernel size, 32 filters, stride 2, ReLU 12x12x32 

Transp. conv. 4x4 kernel size, 16 filters, stride 2, ReLU 26x26x16 

Transp. conv. 4x4 kernel size, 16 filters, stride 2, ReLU 55x55x16 

Transp. conv. 4x4 kernel size, 4/6 filters, stride 2, 

ReLU 

112x112x4 / 112x112x6 

 

We trained the neural network on the artificially augmented training dataset by 

backpropagation using the Adam optimizer with a learning rate of 0.0005. We run 100 

steps per epoch with a mini-batch size consisting of 64 frames. 20% of the data were used 

for early stopping and we stopped training if the loss did not decrease during the last 20 

epochs. We used a weighted linear combination of the mean squared reconstruction loss 

and cross-entropy-loss as our loss function. The trained autoencoder model is able to 

extract disease informative features and furthermore removes artefacts present in the 

input data and outputs smooth, and more likely semantic segmentations. 

 

Temporal neural network for sequence classification 

We used a fully convolutional neural network architecture based on 1D convolutional 

layers for the sequence encoders for the 2-chamber and the 4-chamber view as described 

in the tables below. The output of these encoder network is concatenated and we used a 

fully connected layer with a Softmax activation function to output the disease 



 

 

© 2022 American Medical Association. All rights reserved. 

 

 

3 

probabilities. The layer-by-layer description of the neural network is reported in the table 

below. The input sequences were first resampled to a fixed number of 70 time steps. The 

same artificially augmented dataset as for the autoencoder training was used for training 

the temporal neural network. Additionally, 10 random subsequences of length 70 were 

extracted from each sequence that was larger than 70 time steps. 

 

Sequence encoder (2-ch) 

Layer type Output shape 

Input (extracted sequences, time steps x latent nodes) 70x16 

1D Conv. 3 kernel size, 32 filters, stride 1, ReLU 68x32 

Average pooling, pool size 3 22x32 

1D Conv. 3 kernel size, 32 filters, stride 1, groups 8, ReLU 20x32 

Average pooling, pool size 3 6x32 

1D Conv. 3 kernel size, 32 filters, stride 1, ReLU 4x32 

Average pooling, pool size 3 1x32 

Flatten 32 

 

 

 

 

Sequence encoder (4-ch) 

Layer type Output shape 
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Input (extracted sequences, time steps x latent nodes) 70x16 

1D Conv. 3 kernel size, 8 filters, stride 1, ReLU 68x8 

Average pooling, pool size 3 22x8 

1D Conv. 3 kernel size, 8 filters, stride 1, groups 8, ReLU 20x8 

Average pooling, pool size 3 6x8 

1D Conv. 3 kernel size, 16 filters, stride 1, ReLU 4x16 

Average pooling, pool size 3 1x16 

Flatten 16 

 

In the first two 1D convolutional layers we used kernel, bias and activity regularizer. We 

trained the neural network by backpropagation using the Adam optimizer with a learning 

rate of 0.0005. We used a mini-batch size consisting of 64 samples and 100 steps per 

epoch. 20% of the data was used for early stopping, and we stopped training if the loss 

did not decrease during the last 20 epochs. We used categorical cross-entropy as loss 

function. 

For the experiments where only one chamber was used as input, the sequence encoder 

architecture for the respective chamber was used and only the classification layer was 

adapted to take one chamber feature input instead of two. 

Statistical analyses were performed using Python 3.7 and IBM SPSS Statistics, version 

25.0. The machine learning models were developed and tested in Tensorflow 2.2. 
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Pitfalls and important lessons learned 

Developing a machine learning pipeline on real world data is a challenging task. 

Especially, in clinical practice where standardized protocols for data acquisition have not 

yet fully established. For example, echocardiography images are influenced by many 

factors of variations, e.g. resolution, scanner model and software settings. Those factors 

influence the video’s grey value distribution giving rise to potential confounding factors. 

Machine learning models are very good in learning so-called shortcuts. Shortcuts are 

predictions made on features that are not causally related to the disease. For example, if 

all the TTS samples are brighter than the AMI samples a machine learning algorithm 

would pick up this shortcut and start basing its decision on this feature, which is unrelated 

to the underlying disease. In our first iteration of the algorithm, this was the case. We had 

developed a similar classification algorithm as the one presented in this manuscript.  We 

used one dataset of 220 Patients (110 AMI and 110 TTS) for training and evaluation. We 

trained the algorithm on raw (not segmented) frames and evaluated its performance via 

nested cross-validation. The performance was quite good and achieving a mean ROC-

AUC of 0.801 with an overall mean accuracy of 74.5% calculated over 5 different 

validation folds. 

We acquired a second independent dataset consisting of 228 Patients (114 AMI and 114 

TTS). We retrained the algorithm on the full original dataset and tested it on the new 

dataset. The performance dropped drastically, achieving a ROC-AUC between 0.38 and 

0.52, and accuracies between 44% and 54% when evaluated over different training runs 

with different seeds. Training on the new dataset and evaluating on the original one, 
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resulted in similarly bad scores with ROC-AUC ranging from 0.37 to 0.50 and accuracies 

between 41% and 53%. 

The algorithm had learned a shortcut to classify the patients. Confounders introduced by 

the different ultrasound scanner models were not removed by cropping away scanner 

meta data nor by data standardization. Below, in eTable 1, the scanner models for each 

cohort are listed. 

eTable. Scanner Models for Each Cohort 

Is it possible to observe that the scanner models within one cohort correlate with the disease labels. However, the 

disease per scanner distribution is quite different in the other cohort 

Scanner 

Model 

Training Cohort Test Cohort 

AMI TTS AMI TTS 

iE33 

Vivid E9 

Vivid E95 

Vivid 7 

Vivid q 

EPIQ 7C 

Sequoia 

CX50 

TUS AI900 

unknown 

7 

12 

33 

0 

0 

57 

1 

3 

1 

0 

70 

18 

10 

0 

0 

16 

0 

0 

0 

0 

75 

12 

0 

7 

1 

5 

2 

1 

0 

7 

35 

10 

38 

8 

0 

12 

2 

0 

0 

5 

SUM 114 114 110 110 

 

The original model, besides learning disease specific patterns, also picked up scanner 

model specific features to classify the echocardiography videos into AMI and TTS. The 

different distribution of scanner models in the training and test cohorts explains the 

massive drop in performance. As a solution, we semantically segmented the videos and 

trained the machine learning model on the segmentation maps. The segmentation process 
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removed any confounders present in the grey value distribution of the echocardiography 

video. While this segmentation process removes scanner specific characteristics it also 

removes information about the tissue composition that might be relevant for diagnosis. 

Furthermore, extensive data augmentation both during training and inference time, as 

described in the main document, were necessary to achieve satisfactory results. 

Echocardiography-based diagnosis of TTS vs AMI by trained cardiologists were 

only available for the 220 patients of the original dataset. As we wanted to compare the 

performance in image-based disease diagnosis of the machine learning algorithm to 

medical experts, we decided to develop and train the new confounder free model on the 

newer dataset of 228 patients and to evaluate it on the original dataset to enable direct 

comparison of performance between the two entities.  
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Supplementary figures 

 

 

 

eFigure 1. Result of the sensitivity analysis of the different latent feature nodes 

The result of the sensitivity analysis of the 16 different latent feature values (𝐿1 − 𝐿16) is 

visualized in the raw echocardiogram. The top four rows present a random selection of 2-

chamber view videos and the bottom rows show a random selection of 4-chamber view 

videos. One can see how the different latent feature values (𝐿1 − 𝐿16) focus on different 

regions within the echocardiogram. These regions are consistent across the different 

videos. 
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eFigure 2. Per patient diagnostic performance of AMI (humans vs algorithm) 

The cardiologists specified on a 0 to 9 integer scale their confidence that a particular 

patient has TTS. While 9 corresponds to 100% confidence for TTS, 0 corresponds to 

100% confidence for AMI. This means that predictions 0-4 correspond to diagnosing 

AMI and predictions 5-9 correspond to diagnosing TTS. This plot shows the diagnostic 

performance of the cardiologists for all AMI patients. The predictions from the four 

cardiologists where averaged per patient and sorted according to their stated confidence 

that a particular patient suffers from AMI. For the figure, the cardiologists’ predictions 

were rescaled between −1 and 1, with -1 corresponding to 9 (meaning 100% confidence 

for TTS) and 1 corresponding to 0 (meaning 100% confidence for AMI). 93 out of 100 
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patients with AMI were correctly diagnosed by the medical experts. In the cases where 

cardiologists decided against AMI, considering the machine prediction would reduce the 

number of false negatives to only 5 out of 110 (visible on the right hand side of the plot 

after the green dotted line). 
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eFigure 3. Per patient diagnostic performance of TTS (humans vs algorithm) 

This plot shows the diagnostic performance of the cardiologists for all TTS patients. The 

predictions from the four cardiologists were averaged per patient and sorted according to 

their stated confidence that a particular patient has TTS. For the figure, the cardiologists’ 

predictions were rescaled between −1 and 1, with -1 corresponding to 0 (meaning 100% 

confidence for AMI) and 1 corresponding to 9 (meaning 100% confidence for TTS). The 

cardiologists identified only 59 out of 110 TTS patients correctly.  

 

 


