Supplemental Data

Altered flavonoid and lignin profiles in rice mutants deficient in CHS, CHI, and CHIL genes

Pui Ying Lam,^{1†} Lanxiang Wang,^{2†§} Andy C. W. Lui,² Hongjia Liu,³ Yuri Takeda-Kimura,^{1¶} Mo-Xian Chen,⁴ Fu-Yuan Zhu,⁵ Jianhua Zhang,⁶ Toshiaki Umezawa,^{1,7} Yuki Tobimatsu,^{1‡} Clive Lo^{2‡}

¹Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; ²School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; ³State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; ⁴Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; ⁵Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China; ⁶Department of Biology, Hong Kong Baptist University, Hong Kong, China and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China; ⁷Realization of Sustainable Society, Kyoto University, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.; [†]Co-first author; [‡]Senior authors. [§]Present address: Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China: [¶]Present address: Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.

[‡]Senior Authors:

Yuki Tobimatsu (ytobimatsu@rish.kyoto-u.ac.jp; +81-774-38-3626), and Clive Lo (clivelo@hku.hk; +852-2299-0337)

List of Materials

Supplemental Fig. S1.	Predicted effects of mutations on OsCHI in OsCHI-CRISPR mutant lines.
Supplemental Fig. S2.	Predicted effects of mutations on OsCHIL1 and OsCHIL2 in <i>OsCHIL</i> -CRISPR mutant lines.
Supplemental Fig. S3.	Phenotypes of <i>OsCHI</i> -CRISPR and wild-type control lines.
Supplemental Fig. S4.	CHI catalytic activities of crude proteins of <i>OsCHI</i> -CRISPR, <i>OsCHIL</i> -CRISPR and wild- type control lines.
Supplemental Table S1.	Off target analysis of T ₃ generation of OsCHI- CRISPR and OsCHIL-CRISPR mutant lines.
Supplemental Table S2.	Klason lignin assay of <i>OsCHI</i> -CRISPR-b, <i>OsCHIL</i> -CRISPR-b and wild-type control line.
Supplemental Table S3.	Cell wall polysaccharide analysis of <i>OsCHS1</i> -TDNA, <i>OsCHI</i> -CRISPR, <i>OsCHIL</i> - CRISPR and wild-type control lines.
Supplemental Table S4.	Primers used in this study.

>OsCHI		
WT	MAAVSEVEVDGVVFPPVARPPGSGHAHFLAGAGLFVFALCVPCQWRSGNAVQANLLAGLI	60
<i>OsCHI-C</i> RISPR-a	MAAVSEVEVDGVVFPPVARPPGSGHAHFLAGAGLFVFALCVPCQWRSGNAVQANLLAGLI	60
<i>OsCHI-C</i> RISPR-b	MAAVSEVEVDGVVFPPVARPPGSGHAHFLAGAGLFVFALCVPCQWRSGNAVQANLLAGLI	60
WT	DPSCRCEGSGDRRQLHQVHGHRRVPGGGRGRAGAGQEVGRQVRRRARRRRLLPRRRHRR	120
<i>OsCHI-C</i> RISPR-a	DPSCRCEGSGDRRQLHQVHGHRRVPGGGRGRAGAGQEVGRQVRRRARRRRLLPRRRHRR	120
<i>OsCHI-C</i> RISPR-b	DPSCRCEGSGDRRQLHQVHGHRRVPGGGRGRAGAGQEVGRQVRRRARRRRLLPRRRHRR	120
WT	FREVHEGDDDPAAHRRAVLGQGDGELRRGVEGRRRVHGRRGRGRGQVQGGLQAPQLPSGR	180
<i>OsCHI-</i> CRISPR-a	FREVHEGDDDPAAHRRAVLGTR*RRTASR-RGRPPACTRTPRARPRTSSRRPSSPTAS	176
<i>OsCHI-</i> CRISPR-b	FREVHEGDDDPAAHRRAVLGTR*RRTASR-RGRPPACTRTPRARPRTSSRRPSSPTAS	176
WT	VHPLHPLPARRPHRRVLQGLVGARGRRGGGGDREQGALRGGAGFHHRRARG	231
<i>OsCHI-C</i> RISPR-a	LRARPSSSPTPRPASSPSRSPRTRRCQRAPWRRRSRTGRSARRCWIPSSASTGSRRRS	236
<i>OsCHI-C</i> RISPR-b	LRARPSSSPTPRPASSPSRSPRTRRCQRAPWRRRSRTGRSARRCWIPSSASTGSRRRS	236
WT	LAGGEAEHSGPRLAAPEGGIHRRRGGGGARAGVRVKIELRINRASKSSSYTSCTLLLPSC	291
<i>OsCHI-C</i> RISPR-a	GA*RPASRSS*RRN-PPATW-RRRSPRRCPRENRAAN*PRI*ELLLHFLYTSTALVFDNE	290
<i>OsCHI-C</i> RISPR-b	GA*RPASRSS*RRN-PPATW-RRRSPRRCPRENRAAN*PRI*ELLLHFLYTSTALVFDNE	290
WT <i>OsCHI-</i> CRISPR-a <i>OsCHI-</i> CRISPR-b	LTMK* 295 I 291 I 291	

Supplemental Fig. S1. Predicted effects of mutations on OsCHI in *OsCHI*-CRISPR mutant lines.

Protein sequence alignment of wild-type OsCHI and the mutated OsCHI in *OsCHI*-CRISPR-a and *OsCHI*-CRISPR-b. If translation starts using the native start codon, frame shift mutation occurs in *OsCHI*-CRISPR-a and *OsCHI*-CRISPR-b, leading to the formation of a premature stop codon. If translation starts using the in frame start codon after the mutation site, the region before the start codon is missing.

Asterisks, stop codons. In red, the first premature stop codon. In blue, protein sequence different with wild-type OsCHI if translation starts using the native start codon. In purple, in frame start codon after the mutation site.

A >OsCHIL1

в

WT <i>OsCHIL-</i> CRISPR-a <i>OsCHIL-</i> CRISPR-b	MYCAVGTEIATVEVEGIPFPQEITVSKPLSL-LANGITDIEIHFLQIK MYCAVGTEIATVEVEGIPFHSGDNRQ*AIVTAC*WHHRH*DPFPSDQIQRHRGVS*KGQC MYCAVGTEIATVEVEGIPFLRR*PSVSHCHCLLMASQTLRSISFR-SN	47 56 46
WT <i>OsCHIL-</i> CRISPR-a <i>OsCHIL-</i> CRISPR-b	YNAIGVYLEKDNVLAHLESWKGKKAE ASAFGELEGQEGRGACAGLMASFRP*FLLRWRNC*G*W*SRRSKDHNTACSWRVQCVTVS TTPSGCILKRTMC*RIWRVGRARRPRSLCRRWLLSGPSF	73 112 84
WT <i>OsCHIL</i> -CRISPR-a <i>OsCHIL</i> -CRISPR-b	ELVQDDGFFQALVSAPVEKLLRIVVIKEIKGSQYGVQLESSVRDRLVSVDK CQ*TSTRRMKKRLWRRSPNSFSP	124 134 139
WT	YEEDEEEALEKVTEFFQSKYFKPNSVITFHFPTTPGIAEISFVTEGKGE	173
OsCHIL-CRISPR-a	SISPTPSSPSTFLPPLELQRYHL*QKARARRS*QWRTRMWPR*	175
WT <i>OsCHIL-</i> CRISPR-a <i>OsCHIL-</i> CRISPR-b	AKLTVEN-KNVAEMIQKWYLGGESAVSPTTVKSLADQFAALLSA* 216 FRSGTWVENLQFLRRL*RAWQINSQHCSLH 204 ADSGEQECG-RDDSEVVPGWRICSFSDDCEEPGRSIRSTALCM 212	
>OsCHIL2		
>OsCHIL2 WT	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL	53
>OsCHIL2 WT <i>OsCHIL-</i> CRISPR-a	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT	53 50
>OsCHIL2 WT <i>OsCHIL</i> -CRISPR-a <i>OsCHIL</i> -CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5
>OsCHIL2 WT <i>OsCHIL</i> -CRISPR-a <i>OsCHIL</i> -CRISPR-b WT	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVESSVR GHLESWKGKKAEELVQDDGFFQALVSAPVEKLFRIVVIKEIKGSQYGVQLESSVR	53 50 5 108
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158 102
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158 102 208
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b	MATVEVEGIPFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGIPFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158 102 208 199
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-a	MATVEVEGI PFPQEITVSKPLSLLAHGITDIEIHFLQIKYNAIGVYLEKDNVL MATVEVEGI PFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158 102 208 199 143
>OsCHIL2 WT OSCHIL-CRISPR-a OSCHIL-CRISPR-b WT OSCHIL-CRISPR-b WT OSCHIL-CRISPR-a OSCHIL-CRISPR-b WT OSCHIL-CRISPR-a OSCHIL-CRISPR-b	* 208	53 50 5 108 100 44 153 158 102 208 199 143
>OsCHIL2 WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-b WT OsCHIL-CRISPR-a OsCHIL-CRISPR-b	MATVEVEGI PFPQE ITVSKPLSLLAHGITD I EI HFLQIKYNAIGVYLEKDNVL MATVEVEGI PFLSGDHRQ*AVITASPWHYRH*DSFPSDQIQRHRGV-S*KGQCT MATVE	53 50 5 108 100 44 153 158 102 208 199 143

Supplemental Fig. S2. Predicted effects of mutations on OsCHIL1 and OsCHIL2 in *OsCHIL*-CRISPR mutant lines.

A, Protein sequence alignment of wild-type OsCHIL1 and the mutated OsCHIL1 in *OsCHIL*-CRISPR-a and *OsCHIL*-CRISPR-b.

B, Protein sequence alignment of wild-type OsCHIL2 and the mutated OsCHIL2 in *OsCHIL*-CRISPR-a and *OsCHIL*-CRISPR-b.

If translation starts using the native start codon, frame shift mutation occurs in *OsCHIL*-CRISPR-a and *OsCHIL*-CRISPR-b, leading to the formation of a premature stop codon. If translation starts using the in frame start codon after the mutation site, the region before the start codon is missing.

Asterisks, stop codons. In blue, protein sequence different with wild-type OsCHIL1 (A) or OsCHIL2 (B) if translation starts using the native start codon. In red, the first premature stop codon. In purple, in frame start codon after the mutation site.

Supplemental Fig. S3. Phenotypes of *OsCHI*-CRISPR and wild-type control lines.

A and B, Mature culm tissues of WT2 and *OsCHI*-CRISPR-a without any treatment (A), and after fixation and solvent extraction (B). Culm of *OsCHI*-CRISPR-a appears to be yellow.

C, Rice grains of WT2 and OsCHI-CRISPR-a. Spikelets of OsCHI-CRISPR-a appear to be yellow.

D, Transverse sections of culm tissues of WT2 and *OsCHI*-CRISPR-a after fixation and solvent extraction and before subjecting to any staining. The secondary cell walls of the vascular bundles and cortical sclerenchyma fibers in *OsCHI*-CRISPR-a appear to be yellow.

Supplemental Fig. S4. CHI catalytic activities of crude proteins of *OsCHI*-CRISPR, *OsCHIL*-CRISPR and their isogenic wild type.

Crude proteins extracted from wild-type control (WT2), *OsCHI*-CRISPR and *OsCHIL*-CRISPR mutants were used to perform CHI enzyme assay with naringenin chalcone as a substrate. Crude proteins of WT2 and *OsCHIL*-CRISPR mutant lines could rapidly consume naringenin chalcone. Crude proteins of *OsCHI*-CRISPR mutant lines harbored similar CHI activities with that of spontaneous isomerization occurred in reaction mixtures that only contained extraction buffer. These results suggest that OsCHILs unlikely harbor CHI catalytic activities nor serve as enhancers of CHI.

Values refer to means \pm standard deviations from biologically independent plants (n = 3).

sgRNA name	Off-target site name	Sequence (5' to 3') ^a	CRISPR-P off- target score	Location (Chromosome:start)	Gene locus	Mutation
	Off-target-a1	CGGC AG GCAGTACTCGGAC G <u>TGG</u>	0.8	Chr3:+19289	Exon (LOC_Os03g01018)	n.d.
sgRNA-a	Off-target-a2	CG T CG C G G AG C ACTCGGACA <u>CGG</u>	0.5	Chr3:+8809743	Exon (LOC_Os03g15980)	n.d.
	Off-target-a3	CGG G G C G G AGTACTCG T ACA <u>TGG</u>	0.4	Chr3:+31598624	Exon (LOC_Os03g55530)	n.d.
	Off-target-b1	G A A CTC CATCCCATTTCCTCAAG	0.8	Chr6:+15503611	Exon (LOC_Os06g27380)	n.d.
sgRNA-b	Off-target-b2	GCAGGGAATCCCATTTCAGCAGG	0.1	Chr1:+4971979	Exon (LOC_Os01g09649)	n.d.
	Off-target-b3	AGGGGGCATCCCATTGCCTG <u>AAG</u>	0.1	Chr3:-28010595	Exon (LOC_Os03g49170)	n.d.
	Off-target-c1	G CT G T GCTT T TGCAGGATGA <u>GGG</u>	1.3	Chr3:-563747	Exon (LOC_Os03g01915)	n.d.
sgRNA-c	Off-target-c2	GAG C AGCT A GTG G AGGATGA <u>AAG</u>	0.6	Chr4:+218051	Exon (LOC_Os04g01280)	n.d.
	Off-target-c3	GAGG C GCTTGTG G AGG T TGA <u>TGG</u>	0.4	Chr6:-12412691	Exon (LOC_Os06g21480)	n.d.

Supplemental Table S1. Off target analysis of T₃ generation of OsCHI-CRISPR and OsCHIL-CRISPR mutant lines.

Top 3 off target sites predicted by CRISPR-P 2.0 (Liu et al., 2017) were sequenced.

^aBold: mismatch nucleotides compared with the sequence of sgRNA. Underlined: PAM sites.

n.d.: not detected.

Reference

Liu H, Ding Y, Zhou Y, Jun W, Xie K, Chen L-L (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10: 530-532

Supplemental Table S2. Klason lignin assay of OsCHI-CRISPR-b, OsCHIL-CRISPR-b and wild-type control line.

	WT2	OsCHI-CRISPR-b	OsCHIL-CRISPR-b
Klason lignin (mg/g CWR)	120.4 ± 6.3	112.0 ± 9.8	126.0 ± 3.2

Values refer to means \pm standard deviations from biologically independent plants (Student's *t*-test, n = 3).

Supplemental Table S3. Cell wall polysaccharide analysis of *OsCHS1*-TDNA, *OsCHI*-CRISPR-a, *OsCHIL*-CRISPR-a and their isogenic wild types.

	WT1 (cv. Zhonghua 11)	<i>OsCHS1</i> -TDNA (cv. Zhonghua 11)	WT2 (cv. Nipponbare)	OsCHI-CRISPR-a (cv. Nipponbare)	<i>OsCHIL</i> -CRISPR-a (cv. Nipponbare)
Crystalline glucan (mg/g CWR)	391.2 ± 5.6	381.3 ± 3.9	376.9 ± 2.7	342.0 ± 11.7**	381.1 ± 6.5
Amorphous glucan (mg/g CWR)	44.8 ± 6.0	53.8 ± 5.2	46.7 ± 1.1	52.9 ± 4.6	48.9 ± 2.6
Arabinan (mg/g CWR)	38.1 ± 2.3	36.3 ± 2.5	36.0 ± 2.3	39.0 ± 0.3	32.8 ± 1.6
Xylan (mg/g CWR)	127.6 ± 15.6	129.5 ± 15.5	108.2 ± 3.4	124.0 ± 6.9*	112.6 ± 3.2
Mannan (mg/g CWR)	2.4 ± 0.2	2.3 ± 0.1	3.0 ± 0.2	3.3 ± 0.1	2.5 ± 0.1**
Galactan (mg/g CWR)	18.2 ± 2.2	17.0 ± 1.4	15.3 ± 1.6	16.5 ± 1.0	14.1 ± 0.9

Values refer to means \pm standard deviations from biologically independent plants. Asterisks indicate significant differences between mutant line and its isogenic wild type (Student's *t*-test, *n* = 3, *: *p* < 0.05, **: *p* < 0.01). CWR, cell wall residue.

Supplemental Table S4. Primers used in this study.

Primer name	Sequence (5' to 3')	Target gene(s)	Purpose
LL302-a-F	GGCAGGAGGGCATCCCATTTCCTC		Construction of sgRNA-b in CRISPR/Cas9 binary vector used in the generation of OsCHIL-CRISPR
LL302-a-R	AAACGAGGAAATGGGATGCCCTCC	OsCHIL1 &	
LL302-b-F	GCCGGAGGAGCTTGTGCAGGATGA	OsCHIL2	Construction of sgRNA-c in CRISPR/Cas9 binary
LL302-b-R	AAACTCATCCTGCACAAGCTCCTC		vector used in the generation of OsCHIL-CRISPR
CL2223	ATGGTCGAGCTCAAGGAGAA	0-0481	Left primer. Genotyping of OsCHS1-TDNA
CL2224	CAAACCGTTGTCCTCTTTCC	080131	Right primer. Genotyping of OsCHS1-TDNA
CL2227	AATCCAGATCCCCCGAATTA	T-DNA	Border primer. Genotyping of OsCHS1-TDNA
CL3988	CGGAGTAATCGGCAACAACG		Constuning of OsCH/CRISPR
CL3989	CATCAAGTTCACGGCCATCG	- OSCHI	
CL4569	TGATTGTTGTAAGTGCAGTGGG		Consturing of OcCHIL CRISPR
CL4570	CCACACGTAAACATCATCAATCA	- USCHILI	Genotyping of OSCHIL-CRISPR
CL4571	TGGTAGTAGCTGCACACACA		Constraint of OccHIL CRISPR
CL4572	GAGCGGCAGACTGAACCTTA		Genotyping of OSCHIL-CRISPR

Supplemental Table S4. Primers used in this study (continued).

Primer name	Sequence (5' to 3')	Target gene(s)	Purpose
OsUBQ5-F	ACCACTTCGACCGCCACTACT	0-11005	
OsUBQ5-R	ACGCCTAAGCCTGCTGGTT	- USUBQ5	RI-qPCR of USUBQ5
OsCHS1-F	ACCCGGACTACTACTTCAGGAT	0-01/04	
OsCHS1-R	TCTTCCTGATCTGCGACTTGT		RT-qPCR of USCHS1
OsCHS2-F	CACCAACAGCGAGCACCTAA	0.000	
OsCHS2-R	ACACGCACATGCTAGGGTTC		RT-qPCR OF USCHS2
OsCHI-F	CGCAGGTTTGTTTGTGTTTGC	Occhil	
OsCHI-R	CGGATCGATCAAACCAGCAAG		RT-qPCR of OSCHI
OsCHIL1-F	GAGGATAGTGGTGATCAAGGAG		
OsCHIL1-R	CATCCTCCTCGTACTTGTCTAC		RI-GPCR OF OSCHILT
OsCHIL2-F	CCATGGCATTACAGACATTGAG		
OsCHIL2-R	GATCACCACGATCCTGAATAGT		RI-YPCR OF USCHILZ