SUPPLEMENTAL INFORMATION

Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review

Pengfei Guo^{a,b}, Tristan Furnary^a, Vasilis Vasiliou^a, Qi Yan^c, Kate Nyhan^{a,d}, Dean P. Jones^{e,f}, Caroline H. Johnson^a, Zeyan Liew^{a,b,*}

^a Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA

^b Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA

^c Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, USA

d Harvey Cushing / John Hay Whitney Medical Library, Yale University, New Haven, USA

^e Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA

^f Department of Biochemistry, Emory University School of Medicine, Atlanta, USA

*Corresponding Author Zeyan Liew Email: <u>zeyan.liew@yale.edu</u> Address: 1 Church Street, New Haven, CT, 06510, USA

Contents

Appendix A. Search terms and database used.

Supplementary Table 1. Definitions of per- and polyfluoroalkyl substances (PFAS) mixtures from the

studies reviewed.

Supplementary Table 2. Methodological and reporting quality of the studies reviewed.

Supplementary Table 3. A summary of statistical methods of the studies reviewed.

Supplementary Table 4. Analytical methods for PFAS exposure measurement.

Supplementary Figure 1. Scoring procedure for the reporting of exposure and metabolomics data.

Supplementary Figure 2. Venn diagrams of the commonly detected metabolic pathways associated with

PFAS exposure by (A) sample type for metabolomics analysis, (B) study population, and (C) pathway

analysis algorithm.

Abbreviations

Appendix A. Search terms and database used.

Dimensions:

(PFAS OR PFASs OR perfluoro* OR polyfluoro* OR perfluorinated* OR polyfluorinated* OR PFOS OR PFOA OR PFNA OR PFHxS OR PFSA OR PFCA OR PFOSA OR PFDA OR PFUnDA OR PFDeA OR PFDoA OR PFHpA OR PFUdA OR EtFOSAA OR MeFOSAA) AND (metabolome OR metabolomics OR metabolic OR metabonomics) AND (non-targeted OR non-target OR untargeted OR untarget OR mwas OR metabolome-wide)

Web of Science Core Collection as licensed at Yale:

TS=((PFAS OR PFASs OR perfluoro* OR polyfluoro* OR perfluorinated* OR polyfluorinated* OR PFOS OR PFOA OR PFNA OR PFNA OR PFSA OR PFCA OR PFOSA OR PFDA OR PFDA OR PFDeA OR PFDo A OR PFHpA OR PFUdA OR EtFOSAA OR MeFOSAA) AND (metabolome OR metabolomics OR metabolic OR metabolomics) AND (non-targeted OR non-target OR untargeted OR untarget OR mwas OR metabolome-wide))

The databases linked through the Web of Science (WOS) as licensed at Yale were: *Web of Science Core Collection: Citation Indexes*

- Science Citation Index Expanded (SCI-EXPANDED) -- 1900-present
- Social Sciences Citation Index (SSCI) --1900-present
- Arts & Humanities Citation Index (A&HCI) --1975-present
- Conference Proceedings Citation Index- Science (CPCI-S) -- 1991-present
- Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH) --1991-present
- Book Citation Index- Science (BKCI-S) -- 2005-present
- Book Citation Index- Social Sciences & Humanities (BKCI-SSH) -- 2005-present
- Emerging Sources Citation Index (ESCI) -- 2015-present

Web of Science Core Collection: Chemical Indexes

- Current Chemical Reactions (CCR-EXPANDED) -- 1985-present (Includes Institut National de la Propriete Industrielle structure data back to 1840)
- Index Chemicus (IC) -- 1993-present

Embase via Ovid

#	Query
1	(non-targeted or non-target or untargeted or untarget or mwas or metabolome-wide).mp.
2	(metabolome or metabolomics or metabolic or metabonomics).mp.
3	exp metabolome/
4	metabolomics/
5	(PFAS or PFASs or perfluoro* or polyfluoro* or perfluorinated* or polyfluorinated* or PFOS or PFOA or PFNA or PFHxS or PFSA or PFCA or PFOSA or PFDA or PFUnDA or PFDeA or PFDoA or PFHpA or PFUdA or EtFOSAA or MeFOSAA).mp.
6	exp perfluoroalkanoic acid/ or perfluorooctanesulfonic acid/ or perfluoro compound/
7	1 and (2 or 3 or 4) and (5 or 6)

Scopus

TITLE-ABS-

KEY (((pfas OR pfass OR perfluoro* OR polyfluoro* OR perfluorinated* OR polyfluorinated* OR pf os OR pfoa OR pfna OR pfns OR pfsa OR pfca OR pfosa OR pfda OR pfuda OR pfdea OR pfdo a OR pfhpa OR pfuda OR etfosaa OR mefosaa) AND (metabolome OR metabolomics OR metabolic OR metabolomics) AND (non-targeted OR non-

target OR untargeted OR untarget OR mwas OR metabolome-

wide))) AND (EXCLUDE(SRCTYPE, "b") OR EXCLUDE(SRCTYPE, "re") OR EXCLUDE(SR CTYPE, "AGRI"))

Supplementary Table 1. Definitions of per- and polyfluoroalkyl substances (PFAS) mixtures from the studies reviewed.

Publication	PFAS mixture definition
Schillemans	Two principal components (PC1 and PC 2) of six PFAS were derived using the principal
2021	component analysis. High loadings were observed for the long-chain PFDA, PFNA and
	PFUnDA in PC1 and for the shorter-chain PFHxS, PFOS and PFOA in PC2.
Chen 2020	n/a
Jin 2020	A principal component analysis of 3 PFAS (PFOA, PFOS, PFHxS) was conducted and the first
	component ("PC1"), which explained 73.2% of the variance, was used as a composite variable
	representing PFAS burden.
Li 2020	A PFAS community (PFOA, PFOS, PFHxS, EtFOSA) detected among the chemical variables
	from the correlation network, which was defined by all pairs of variables with Spearman
	correlation coefficient above 0.5.
Kingsley	n/a
2019	
Hu 2019	n/a
Alderete	A principal component analysis of 3 PFAS (PFOA, PFOS, PFHxS) was conducted and the first
2019	component ("PC1"), which explained 96.7% of the variance, was used as a composite variable
	representing PFAS burden.
Maitre 2018	n/a
Salihovic	Total PFASs was constructed using the multivariable multiple regression (MMLR). All of the
2019	six PFASs (PFHxS, PFOS PFHpA, PFOA, PFNA, PFUdA) were included as independent
	variables and all metabolites were included as dependent variables. A significance testing was
	used to determine if the total metabolic profile differs between the PFASs.
Wang 2017	A molarity sum of all the detected PFCs, expressed as the total PFCs, including PFOS, PFOA,
	PFDA, PFNA, PFUnA, PFHxS, PFHxA, PFBA, PFDoA, PFHpA, and PFBS.
Lu 2019	Two kinds of total PFASs were used as mixtures: Σ6PFASs (PFBA, PFOA, PFBS, PFHxS,
	PFOS, 6:2 Cl-PFESA) and Σ 13PFASs. The concentration of Σ 6PFASs accounted for 99.7 ±
	0.6% of the Σ 13PFASs in the workers and for 88.6 \pm 18.2% in the general population.

Supplementary Table 2. Methodological and reporting quality of the studies reviewed.

Publication	1. Study participants described	2. PFAS exposure assessment and study design	3. Sample collection and analysis	4. Data processing workflow	5. Certainty of metabolite identification	Total points
Schillemans 2021	1	1	1	1	1	5
Chen 2020	1	1	1	1	1	5
Jin 2020	1	1	1	0	0	3
Li 2020	1	1	1	1	0	4
Kingsley 2019	1	1	1	1	1	5
Hu 2019	1	1	1	0	1	4
Alderete 2019	1	2	1	0	0	4
Maitre 2018	1	2	1	1	1	6
Salihovic 2019	1	1	1	1	1	5
Wang 2017	1	1	1	1	0	4
Lu 2019	1	1	1	1	0	4

Supplementary 1 able 5. A summary of statistical methods in the studies reviewed.							
Publication	Statistical models employed to assess the associations between PFAS and metabolites	Covariates considered	Additional analyses				
Sahillamana	Speerman's portial	any and complexion	<i>n/a</i>				
Schinemans	Spearman's partial	sex, age, sample year,	II/a				
2021	correlation (<i>i.e.</i> ,	marital status,					
	covariate-adjusted	education, smoking					
	Spearman's rank	status, physical					
	correlation)	activity and case-					
		control status					
Chen 2020	Linear regression	age, sex, parental	The xMWAS integrated network analysis was				
		education,	used to investigate the associations among				
		race/ethnicity,	PFAS exposure levels, intensities of				
		cigarette and e-	annotated metabolites, and cardiometabolic				
		cigarette smoking	outcomes.				
		status in the past					
		week, physical	The Sobel test for mediation analysis was				
		activity levels and	conducted to evaluate the mediation effect of				
		dietary covariates	specific metabolites identified in the targeted				
			metabolomic analysis.				
Jin 2020	Linear regression	age, sex, ethnicity.					
		and body mass index					
		(BMI) Z-score					
Li 2020	Hierarchical	/	1				
212020	community network						
	model						
Kingsley	Linear regression	child age sex and					
2019		race					
Hu 2019	Linear regression	total cholesterol, age.	/				
		and p.p'-DDE levels					
Alderete	Linear regression	baseline age, sex, and	/				
2019		social position					
		(selected by directed					
		acyclic graphs)					
Maitre	Spearman's partial	gestational week age					
2018	correlation	and BMI	'				
Salihovic	Multivariable	all PEAS sev	Structural equation models were used to				
2019	multiple regression	education level	investigate a potential mediation of RMI on				
2019	(<i>i.a.</i> modeling	emoking habits	the relationship between DEAS and				
	multiple dependent	avaraisa habita	metabolitas				
	variables with a	onorgy intoles and					
	variables, with a	elicity intake and					
	single set 01	alconor make					
	predictor variables)						
Wang 2017	Spearman's partial	age, BMI, smoking	/				
	correlation	and drinking status					
Lu 2019	Spearman's partial	age, BMI, gender,	/				
	correlation	smoking, and					
		drinking status					

Supplementary Table 3. A summary of statistical methods in the studies reviewed.

Sun	nlementary	Table 4	Analytical	methods	for PFAS	exposure	measurement
Sup	piemental y	1 abic 4. <i>P</i>	Maiyu cai	methous	IUI I FAS	exposure	measurement.

D 11					
Publication	Quality	Lower limit of	Reported	Reported	Statistical methods to
	assurance and	detection	measured	frequency of	address exposure
	quality control	(LOD)	PFAS	detection (%)	values below the LOD
	procedure	(ng/mL)			
	described				
Schillomana	Vec	0.027.0.040	N/A	DEHAS DEUS	Concentrations below
2021	105	0.027-0.049	IN/A	DECA DENA	
2021		(Koponen et		PFOA, PFNA;	the LOQ were set to
		al., 2013)		PFDA (74),	the $LOQ/2 = 0.075$
				PFUdA (58)	ng/mL for 26% of the
					subjects in PFDA and
					42% in PFUnDA
Chen 2020	Ves: CV<0.10	0.02-0.1	N/A	PEOA (100)	N/A
0101 2020	105, 0 1 0.10	0.02 0.1	1,11	PEOS(100)	
				$PEU_{res}^{(100)}$	
1: 0000	III (C) 1	0.00.01	27/4	PFRX5 (97.2)	
Jin 2020	Yes (Go et al.,	0.02-0.1	N/A	PFOA (100),	Set to a value equal to
	2015.)			PFOS (100),	the detection limit
				PFHxS (94.6)	divided by the square
					root of 2
Li 2020	Yes (Cohn et	0 028-0 11	11 PFAS	PFOS (100)	Set to missing
212020	al 2020)	0.020 0.11		PEOA (98)	
	al., 2020)			$\frac{110A(90)}{00}$	
				$PF\Pi XS (99),$	
				Others (1-50)	
Kingsley	Yes; CV~0.06	PFOS (0.2),	N/A	(100)	All serum PFAS
2019	(Kato et al.,	PFNA (0.082),			concentrations were
	2014)	PFOA and			greater than the LODs
	,	PFHxS (0 1)			2
Hu 2019	N/A	N/A	11 PEAS	PEOS	N/A
110 2017	11/11	11/11	IIIIAS	DEOA	11/14
				DEL C 1	
				PFHxS, and	
				EtFOSAA (>75),	
				Others (<50)	
Alderete	Yes (Go et al.,	0.02-0.1	N/A	PFOA and PFOS	N/A
2019	2015.)			(97.5).	
				PEHxS(100)	
Maitra 2018	N/A	N/A		$\frac{1111XS(100)}{DEH_{\rm W}S(55)}$	Sat to the min value of
Malue 2018	IN/A	IN/A	4 FFA5	$\frac{\Gamma\Gamma\Pi XS}{\Gamma} (\sim 33),$	Set to the min value of
				PFNA, PFOA,	the exposure divided
-				PFOS	by 2
Salihovic	Yes	0.01-0.17	12 PFAS	PFHxS, PFOS	N/A
2019	(Salihovic et			PFHpA, PFOA,	
	al., 2014)			PFNA, PFUdA,	
				PFOSA and	
				PEDA (>75)	
				Others (<75)	
Wene 2017		0.0(0.14			
Wang 2017	N/A	0.06-0.14	11 PFAS	PFOA, PFOS,	N/A
				PFDA, and PFNA	
				(100), PFUdA	
				(95),	
				PFHxS (58.6).	
				Others (0)	
L 11 2010	Ves (Cao et al	0.008.0.10	21 DE A S	DEOS and DEOA	N/A
Lu 2019	2016	0.000-0.19	ZITTAS		11//71
	2010)			(100), PFBA,	
				PFBS, PFHxS,	
				6:2 Cl-PFESA,	
				Others (0)	

Supplementary Figure 1. Scoring procedure for the reporting of exposure and metabolomics data.

Supplementary Figure 2. Venn diagrams of the commonly detected metabolic pathways associated with PFAS exposure by (A) sample type for metabolomics analysis, (B) study population, and (C) pathway analysis algorithm. A total of 29 metabolic pathways associated with PFAS reported in at least three studies reviewed are included in the Venn diagrams. Each circle represents metabolic pathways associated with PFAS exposure in a specified group. The numbers listed in the circles represent the numbers of overlapping or non-overlapping pathways by study characteristics.