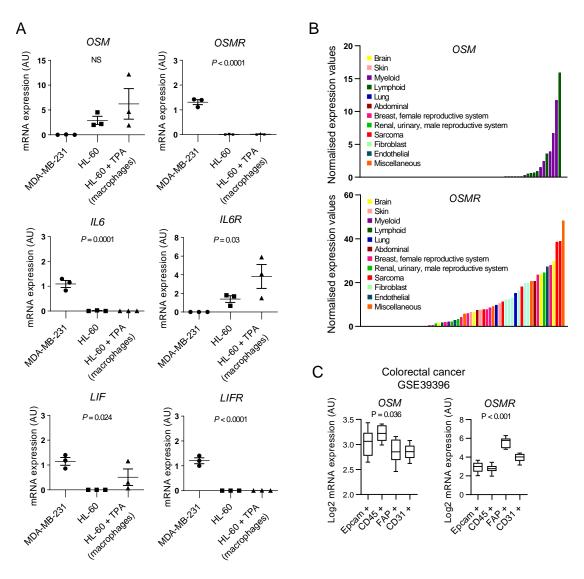
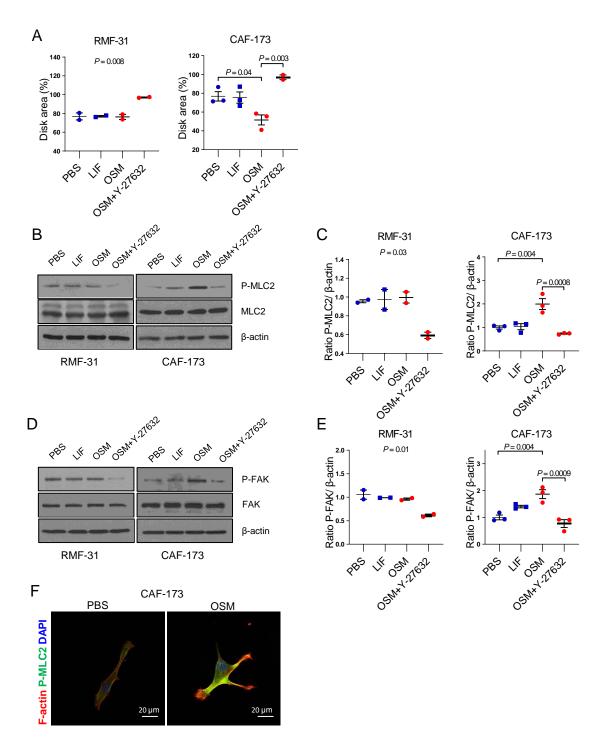
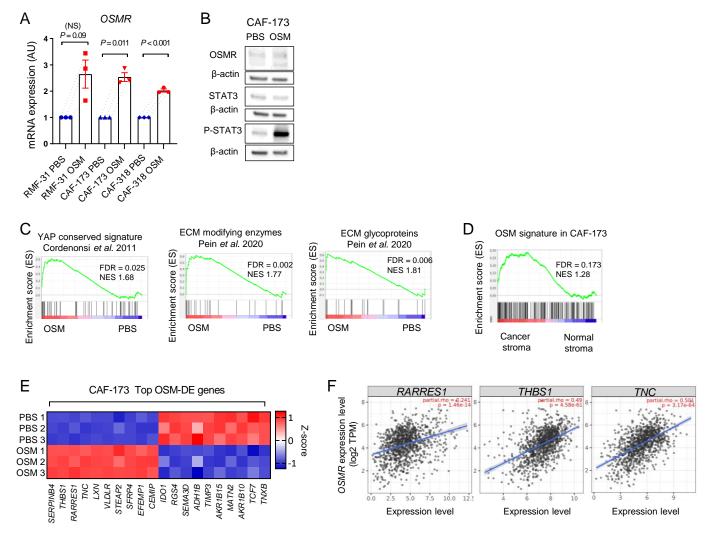
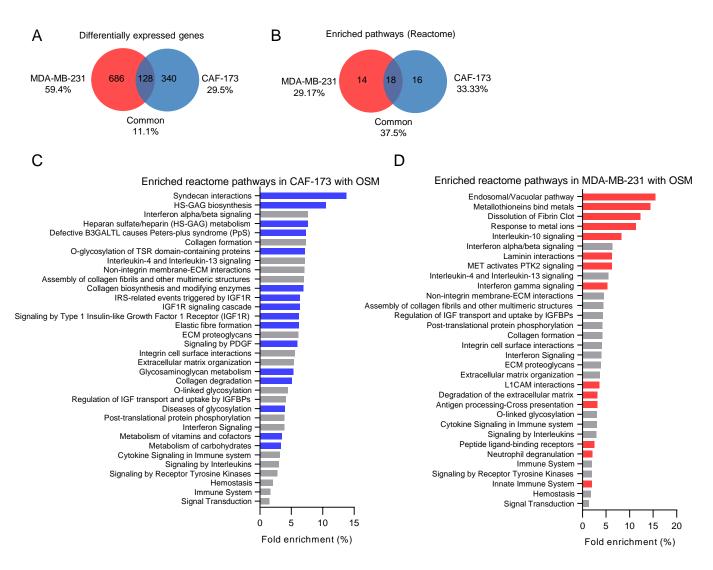
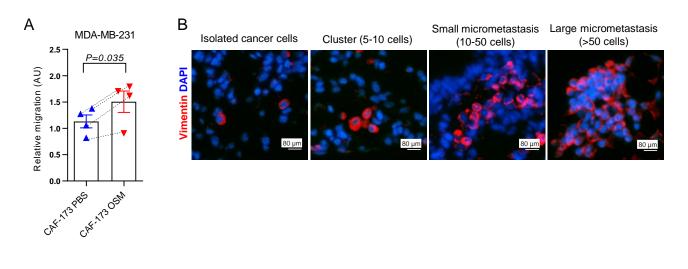

Supplemental Figure 1. Effects of OSM:OSMR signalling in cancer progression in the MMTV-PyMT preclinical model of breast cancer. (A and B) Western blot (A) and densitometric analysis (B) of OSMR protein levels in tumours at culling point from the different experimental groups of Figure 1A: MMTV-PyMT:Osmr wild-type (WT), MMTV-PyMT:Osmr heterozygous (HET), and MMTV-PyMT:Osmr knockout (KO) mice. (C-E) Tumour onset (C), representative pictures of whole mount staining of mammary glands at week 9 (D) and histopathological analysis of tumours at culling point (E) in the different experimental groups of Figure 1A. n= 12 WT, 6 HET, 5 KO in (D) and 21 WT, 20 HET, 15 KO in (E). (F and G) Representative pictures (F) and quantification (G) of Ki67 and active cleaved caspase 3 (cCaspase3) IHC staining in tumours at culling point of the different experimental groups of Figure 1A. Quantification was performed by manual counting of the percentage of positive tumour cells in a total of 8 pictures per tumour and 5 tumours per group. Scale bar is 20 mm (E) and 50 mm (F). P values were calculated using one-way ANOVA test (B, C and G).

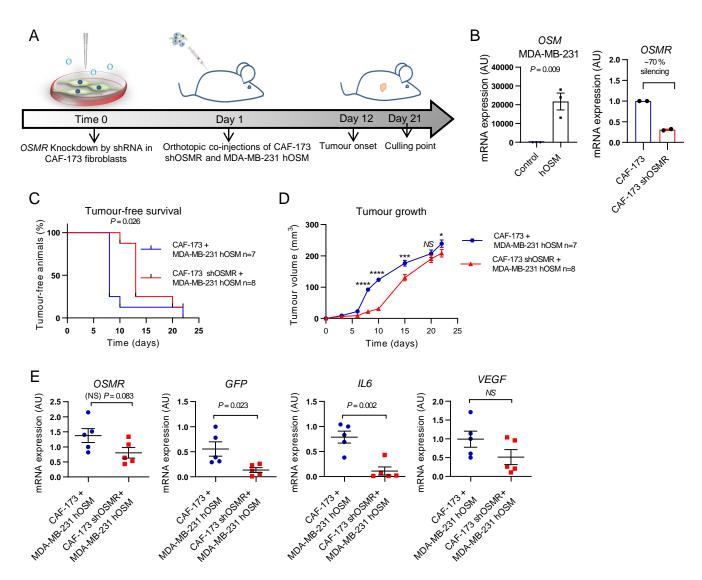

Supplemental Figure 2. Effects of stromal OSMR deletion in syngeneic models of breast cancer. (A) Western blot of OSMR, STAT3 and P-STAT3 protein levels in TS1 cells treated with 10 and 100 ng/mL of recombinant murine OSM for 24h. (B and C) Western blot (B) and densitometric analysis (C) of OSMR protein levels in TS1 derived-tumours from animals *Osmr* wild-type (WT, n=8) or knockout (KO, n=6) injected orthotopically with TS1 cells (experiment 2, Figure 2, A-E). OSMR expression in tumours from *Osmr* KO animals derives from the TS1 cancer cell compartment. (D) Experimental set-up of the in vivo experiment designed to assess the importance of OSMR signalling in cancer cells and in the tumour microenvironment, in which control and *Osmr* KO TS1 cells were orthotopically injected into the mammary fat pad of *Osmr* WT and KO mice. n=3 Osmr WT mice injected with control cells, n=7 Osmr WT mice injected with Osmr KO cells, n=5 Osmr KO mice injected with control cells, and n=7 Osmr KO mice injected with Osmr KO cells. (E) Western Blot of OSMR protein levels in TS1 parental, control and *Osmr* KO cells. (F and G) Kaplan-Meier curves for tumour-free survival (F) and final tumour volume (G) after dissection of orthotopic tumours described in (D). In A and E, one representative experiment of 2 performed is shown. *P* values were calculated using unpaired two-tailed t test (C), the Mantel-Cox test (F) or one-way ANOVA test (G).


Supplemental Figure 3. Expression of OSM and OSMR in clinical samples from multiple cancer types. (A) OSM and OSMR mRNA expression in normal stroma versus cancer stroma samples of colorectal and ovarian cancer. Data were downloaded from GEO DataSets (GSE35602 and GSE40595). *P* values were calculated using unpaired two-tailed t test. (B) Kaplan-Meier curves showing disease-free survival (DFS) for breast cancer patients with high and low OSM expression, included in the METABRIC and Wang datasets. (C) Kaplan-Meier curves showing overall survival for cancer patients of the indicated tumour type with high and low OSM expression. Data were obtained using KM plotter website. In **B** and **C**, *P* values were determined using the Mantel-Cox test, and high and low OSM levels were stratified by median values.


Supplemental Figure 4. *Osm* and *Osmr* expression in murine tumours. (A and B) Experimental set-up (A) and gating strategy (B) for FACS sorting experiments of TS1 orthotopic tumours. (C and D) *Osm* and *Osmr* mRNA expression levels analyzed by RT-qPCR of FACS sorted populations of TS1 orthotopic tumours (C) or MMTV-*PyMT* FACS sorted tumours described in Ferrari et al. (2019) (D). In D, *P* values were determined using one-way ANOVA test. In A and C, the two different experiments were performed independently, each one in a pool of 4 tumours from individual animals. Graphs represent mean of 2 technical replicates (C) or of 6 different tumours (D).


Supplemental Figure 5. OSM and OSMR expression in human cell lines and tumours. (A) mRNA expression levels of the indicated IL6 family members and associated receptors analyzed by RT-qPCR in MDA-MB-231 breast cancer cells, and undifferentiated and TPA-differentiated HL-60 cells. n=3 independent experiments. (B) OSM and OSMR mRNA relative values in a panel of 69 human cell lines from multiple anatomical sites. Data were downloaded from Human Protein Atlas. (C) OSM and OSMR mRNA expression in epithelial cell (Epcam⁺), immune cell (CD45⁺), fibroblast (FAP⁺) and endothelial cell (CD31⁺) FACS-sorted populations from colorectal cancer samples (n=6). Boxplot with Tukey whiskers is shown, bounds of the boxes represent the 25th and 75th percentiles, and lines within the boxes indicate the median. Data were downloaded from GSE39396 GEO DataSets. *P* values were determined using one-way ANOVA test.

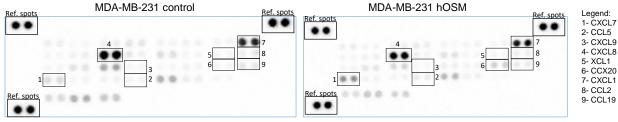

Supplemental Figure 6. Effects of OSM and LIF in the contractility and the cytoskeleton of Cancer Associated Fibroblasts (CAFs). (A) Quantification of disk areas from collagen contraction assays of RMF-31 and CAF-173 fibroblasts pre-treated with OSM, LIF or OSM + Y-27632. (B-E) Western blots (B and D) and densitometric analyses (C and E) of P-MLC2 (B and C) and P-FAK (D and E) protein levels in RMF-31 and CAF-173 treated with OSM, LIF or OSM + Y-27632. Total MLC2 and FAK blots were obtained in gels run in parallel. In A-E, 2 (for RMF-31) or 3 (for CAF-173) independent experiments were performed, and P values were calculated using one-way ANOVA with post Tukey's multiple comparison test. (F) Representative picture of F-actin and P-MLC2 immunofluorescence staining of CAF-173 treated with OSM. Scale bar is 20 mm.


Supplemental Figure 7. Effects of OSM in the gene expression profile of Cancer Associated Fibroblasts (CAFs). (A) OSMR mRNA expression levels analyzed by RT-qPCR in 3D fibroblast spheres treated with OSM for 4 days. n=3 independent experiments. *P* values were calculated using paired two-tailed t test. (B) Western blot of OSMR, STAT3 and P-STAT3 protein levels in CAF-173 treated with OSM. One representative experiment of 4 performed is shown. (C) Gene set enrichment analysis (GSEA) showing enrichment of the indicated signatures in microarray data of CAF-173 CAFs treated with OSM. (D) GSEA showing enrichment of the signature composed of the 233 upregulated genes in CAF-173 cells treated with OSM, in microarray data of cancer and normal breast stroma from Finak et al. (2008) (GSE9014). (E) Top 10 up- and down-regulated genes in microarray data of CAF-173 treated with OSM for 4 days. DE: differentially expressed. (F) Correlation of OSMR mRNA levels with *RARRES1*, *THBS1* and *TNC* expression in breast cancer clinical samples, n=1100. Data were downloaded from TIMER web platform and Spearman correlation coefficients and *P* values are shown.

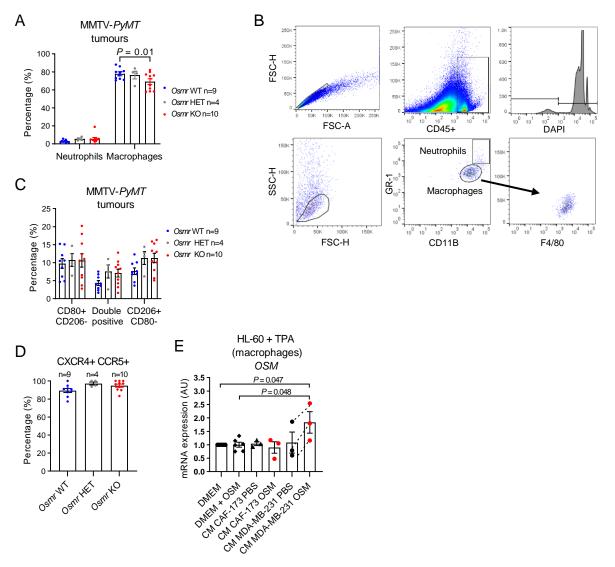
Supplemental Figure 8. Comparison of OSM-induced transcriptomic changes in MDA-MB-231 and CAF-173. (A and B) Venn diagrams showing differentially expressed genes (A) and enriched pathways (B) in CAF-173, MDA-MB-231 or both cell types activated by OSM (n=3 independent experiments). (C and D) Enriched pathways in transcriptomic data of CAF-173 (C) and MDA-MB-231 (D) cells activated by OSM. Blue, red and grey bars indicate pathways enriched by OSM only in CAF-173, only in MDA-MB-231 or in both cell types respectively.

Supplemental Figure 9. Effect of OSM-activated CAF-173 on cancer cell migration and metastasis. (A) Effect of conditioned media from CAF-173 treated with PBS (Control) or OSM 10ng/mL for 72 hours on MDA-MB-231 migration, n=4 independent experiments. *P* value was determined using paired two tailed t test. (B) Representative pictures of vimentin immunofluorescence staining in lungs of mice (n=5) injected orthotopically with CAF-173 OSM + MDA-MB-231 described in Figure 6A and E. Scale bar is 80 mm.

Supplemental Figure 10. Effect of OSMR knockdown in CAF-173 on tumour progression. (A) Experimental set-up of the in vivo experiment designed to assess the contribution to breast cancer progression of OSMR knockdown in fibroblasts. Control and shOSMR CAF-173 were co-injected with MDA-MB-231-hOSM (500,000 cells each cell line) in matrigel (1:1 ratio) in the mammary gland fat pad of nude mice. n=7 for control CAF-173 + MDA-MB-231 hOSM and n=8 for CAF-173 shOSMR +MDA-MB-231 hOSM. (B) OSM and OSMR mRNA expression levels analyzed by RT-qPCR in MDA-MB-231 and CAF-173 after hOSM and shOSMR plasmid transfection, respectively. (n=3 for OSM and n=2 for OSMR). (C and D) Kaplan-Meier curves for tumour-free survival (C) and tumour growth (D) of orthotopic tumours described in (A). (E) OSMR, GFP, IL6 and VEGF mRNA expression levels analyzed by RT-qPCR in 5 tumours per experimental group, as described in (A). P value was calculated using paired (B) or unpaired (E) two tailed t test, the Mantel-Cox test (C) or two-way ANOVA with post Sidak's multiple comparison test (D). * P < 0.05; *** P < 0.001; **** P < 0.001.



Supplemental Figure 11. OSM induces expression of chemokines in cancer cells. (A) Heatmap showing normalized mRNA expression of genes induced by OSM in MDA-MB-231 cancer cells and included in the indicated gene ontology (GO) pathways. (B) Gene set enrichment analysis (GSEA) showing enrichment of inflammatory hallmark signature in microarray expression data of MDA-MB-231 hOSM. ES: enrichment score; NES: normalized enrichment score. (C and D) Chemokine array analysis (C) and VEGF levels (D) in conditioned media from MDA-MB-231 h-OSM and control cells, 72h after seeding. n=6 (C) or n=4 (D) independent experiments. *P* values were determined using paired two-tailed t tests. * P < 0.05. (E) Effect of conditioned media from MDA-MB-231 treated with PBS (Control) or OSM 10ng/mL for 72 hours on HL-60 derived monocytes migration, n=4 independent experiments.


A

В

Chemokine array for Figure 7, panel C Legend: 1- CCL21 CAF-173 PBS CAF-173 OSM 2- CXCL16 Ref. spots Ref. spot 3- RARRES2 4- CXCL8 Ref. spots 1 7 11 5- IL16 15 . 6- CCL5 16 12 15 7- CXCL5 12 17 13 16 9 8- CXCL10 9- CCL3/CCL4 13 17 6 6 10- CXCL12 14 10 . Ref. spots 10 14 11- CCL26 12- CXCL11 Ref. spots 13- CCL15 14- CCL17 15- CXCL1 16- CCL2 17- CCL19 Chemokine array for Supplemental Figure 11, panel C

Supplemental Figure 12. Chemokine array experiments. (A and B) Representative images of chemokine array membranes of conditioned media experiments from CAF-173 (A) and MDA-MB-231 (B) shown in Figure 7C and Supplemental Figure 11C respectively. Ref. spots: Reference spots.

Supplemental Figure 13. Effect of OSM signalling on tumour infiltrating myeloid cells. (A-D) Percentages (A), gating strategy (B) and phenotypic characterization of macrophages (C) and neutrophils (D) infiltrating tumours from MMTV-*PyMT*: *Osmr* wild-type (WT), heterozygous (HET), and KO mice at 14 weeks of age by flow cytometry. (E) OSM mRNA levels in HL-60 + TPA (macrophages) treated with conditioned media (CM) from MDA-MB-231 and CAF-173 pre-treated with OSM 10 ng/mL for 72h. n=3 independent experiments, except for DMEM +OSM condition (n=6). *P* values were calculated using two-way ANOVA with post Dunnett's multiple comparison test (A) or one-way ANOVA with post Tukey's multiple comparison test (E).

Supplemental Figure 14. Characterization of infiltrating immune cells in human breast cancer samples. Representative pictures of CD3, CD68 and CD15 staining in samples from breast cancer patients included in Figure 9. n=50, 38 and 52 cases stained for CD3, CD68 and CD15 respectively.

Supplemental Figure Legends

Supplemental Figure 1. Effects of OSM:OSMR signalling in cancer progression in the MMTV-*PyMT* preclinical model of breast cancer. (A and B) Western blot (A) and densitometric analysis (B) of OSMR protein levels in tumours at culling point from the different experimental groups of Figure 1A: MMTV-*PyMT:Osmr* wild-type (WT), MMTV-*PyMT:Osmr* heterozygous (HET), and MMTV-*PyMT:Osmr* knockout (KO) mice. (C-E) Tumour onset (C), representative pictures of whole mount staining of mammary glands at week 9 (D) and histopathological analysis of tumours at culling point (E) in the different experimental groups of Figure 1A. n= 12 WT, 6 HET, 5 KO in (D) and 21 WT, 20 HET, 15 KO in (E). (F and G) Representative pictures (F) and quantification (G) of Ki67 and active cleaved caspase 3 (cCaspase3) IHC staining in tumours at culling point of the different experimental groups of Figure 1A. Quantification was performed by manual counting of the percentage of positive tumour cells in a total of 8 pictures per tumour and 5 tumours per group. Scale bar is 20 μm (E) and 50 μm (F). *P* values were calculated using one-way ANOVA test (B, C and G).

Supplemental Figure 2. Effects of stromal OSMR deletion in syngeneic models of breast

cancer. (**A**) Western blot of OSMR, STAT3 and P-STAT3 protein levels in TS1 cells treated with 10 and 100 ng/mL of recombinant murine OSM for 24h. (**B** and **C**) Western blot (**B**) and densitometric analysis (**C**) of OSMR protein levels in TS1 derived-tumours from animals *Osmr* wild-type (WT, n=8) or knockout (KO, n=6) injected orthotopically with TS1 cells (experiment 2, Figure 2, A-E). OSMR expression in tumours from *Osmr* KO animals derives from the TS1 cancer cell compartment. (**D**) Experimental set-up of the in vivo experiment designed to assess the importance of OSMR signalling in cancer cells and in the tumour microenvironment, in which control and *Osmr* KO TS1 cells were orthotopically injected into the mammary fat pad of *Osmr* WT and KO mice. n=3 Osmr WT mice injected with control cells, n=7 Osmr WT mice injected with Osmr KO cells, n=5 Osmr KO mice injected with control cells, and n=7 Osmr KO mice

injected with Osmr KO cells. (**E**) Western Blot of OSMR protein levels in TS1 parental, control and *Osmr* KO cells. (**F** and **G**) Kaplan-Meier curves for tumour-free survival (**F**) and final tumour volume (**G**) after dissection of orthotopic tumours described in (**D**). In **A** and **E**, one representative experiment of 2 performed is shown. *P* values were calculated using unpaired two-tailed t test (**C**), the Mantel-Cox test (**F**) or one-way ANOVA test (**G**).

Supplemental Figure 3. Expression of OSM and OSMR in clinical samples from multiple cancer types. (A) *OSM* and *OSMR* mRNA expression in normal stroma versus cancer stroma samples of colorectal and ovarian cancer. Data were downloaded from GEO DataSets (GSE35602 and GSE40595). *P* values were calculated using unpaired two-tailed t test. (B) Kaplan-Meier curves showing disease-free survival (DFS) for breast cancer patients with high and low *OSM* expression, included in the METABRIC and Wang datasets. (C) Kaplan-Meier curves showing overall survival for cancer patients of the indicated tumour type with high and low *OSM* expression. Data were obtained using KM plotter website. In **B** and **C**, *P* values were determined using the Mantel-Cox test, and high and low *OSM* levels were stratified by median values.

Supplemental Figure 4. *Osm* and *Osmr* expression in murine tumours. (A and B) Experimental set-up (A) and gating strategy (B) for FACS sorting experiments of TS1 orthotopic tumours. (C and D) *Osm* and *Osmr* mRNA expression levels analyzed by RT-qPCR of FACS sorted populations of TS1 orthotopic tumours (C) or MMTV-*PyMT* FACS sorted tumours described in Ferrari et al. (2019) (D). In D, *P* values were determined using one-way ANOVA test. In A and C, the two different experiments were performed independently, each one in a pool of 4 tumours from individual animals. Graphs represent mean of 2 technical replicates (C) or of 6 different tumours (D).

Supplemental Figure 5. OSM and OSMR expression in human cell lines and tumours. (A) mRNA expression levels of the indicated IL6 family members and associated receptors

analyzed by RT-qPCR in MDA-MB-231 breast cancer cells, and undifferentiated and TPAdifferentiated HL-60 cells. n=3 independent experiments. (**B**) *OSM* and *OSMR* mRNA relative values in a panel of 69 human cell lines from multiple anatomical sites. Data were downloaded from Human Protein Atlas. (**C**) *OSM* and *OSMR* mRNA expression in epithelial cell (Epcam⁺), immune cell (CD45⁺), fibroblast (FAP⁺) and endothelial cell (CD31⁺) FACS-sorted populations from colorectal cancer samples (n=6). Boxplot with Tukey whiskers is shown, bounds of the boxes represent the 25th and 75th percentiles, and lines within the boxes indicate the median. Data were downloaded from GSE39396 GEO DataSets. *P* values were determined using oneway ANOVA test.

Supplemental Figure 6. Effects of OSM and LIF in the contractility and the cytoskeleton of Cancer Associated Fibroblasts (CAFs). (A) Quantification of disk areas from collagen contraction assays of RMF-31 and CAF-173 fibroblasts pre-treated with OSM, LIF or OSM + Y-27632. (B-E) Western blots (B and D) and densitometric analyses (C and E) of P-MLC2 (B and C) and P-FAK (D and E) protein levels in RMF-31 and CAF-173 treated with OSM, LIF or OSM + Y-27632. Total MLC2 and FAK blots were obtained in gels run in parallel. In A-E, 2 (for RMF-31) or 3 (for CAF-173) independent experiments were performed, and *P* values were calculated using one-way ANOVA with post Tukey's multiple comparison test. (F) Representative picture of Factin and P-MLC2 immunofluorescence staining of CAF-173 treated with OSM. Scale bar is 20 μm.

Supplemental Figure 7. Effects of OSM in the gene expression profile of Cancer Associated Fibroblasts (CAFs). (A) *OSMR* mRNA expression levels analyzed by RT-qPCR in 3D fibroblast spheres treated with OSM for 4 days. n=3 independent experiments. *P* values were calculated using paired two-tailed t test. (B) Western blot of OSMR, STAT3 and P-STAT3 protein levels in CAF-173 treated with OSM. One representative experiment of 4 performed is shown. (C) Gene set enrichment analysis (GSEA) showing enrichment of the indicated signatures in microarray

data of CAF-173 CAFs treated with OSM. (**D**) GSEA showing enrichment of the signature composed of the 233 upregulated genes in CAF-173 cells treated with OSM, in microarray data of cancer and normal breast stroma from Finak et al. (2008) (GSE9014). (**E**) Top 10 up- and down-regulated genes in microarray data of CAF-173 treated with OSM for 4 days. DE: differentially expressed. (**F**) Correlation of *OSMR* mRNA levels with *RARRES1, THBS1* and *TNC* expression in breast cancer clinical samples, n=1100. Data were downloaded from TIMER web platform and Spearman correlation coefficients and *P* values are shown.

Supplemental Figure 8. Comparison of OSM-induced transcriptomic changes in MDA-MB-231 and CAF-173. (A and B) Venn diagrams showing differentially expressed genes (A) and enriched pathways (B) in CAF-173, MDA-MB-231 or both cell types activated by OSM (n=3 independent experiments). (C and D) Enriched pathways in transcriptomic data of CAF-173 (C) and MDA-MB-231 (D) cells activated by OSM. Blue, red and grey bars indicate pathways enriched by OSM only in CAF-173, only in MDA-MB-231 or in both cell types respectively.

Supplemental Figure 9. Effect of OSM-activated CAF-173 on cancer cell migration and

metastasis. (**A**) Effect of conditioned media from CAF-173 treated with PBS (Control) or OSM 10ng/mL for 72 hours on MDA-MB-231 migration, n=4 independent experiments. *P* value was determined using paired two tailed t test. (**B**) Representative pictures of vimentin immunofluorescence staining in lungs of mice (n=5) injected orthotopically with CAF-173 OSM + MDA-MB-231 described in Figure 6A and E. Scale bar is 80 μm.

Supplemental Figure 10. Effect of OSMR knockdown in CAF-173 on tumour progression. (A) Experimental set-up of the in vivo experiment designed to assess the contribution to breast cancer progression of OSMR knockdown in fibroblasts. Control and shOSMR CAF-173 were coinjected with MDA-MB-231-hOSM (500,000 cells each cell line) in matrigel (1:1 ratio) in the mammary gland fat pad of nude mice. n=7 for control CAF-173 + MDA-MB-231 hOSM and n=8 for CAF-173 shOSMR +MDA-MB-231 hOSM. (**B**) *OSM* and *OSMR* mRNA expression levels

analyzed by RT-qPCR in MDA-MB-231 and CAF-173 after hOSM and shOSMR plasmid transfection, respectively. (n=3 for *OSM* and n=2 for *OSMR*). (**C** and **D**) Kaplan-Meier curves for tumour-free survival (**C**) and tumour growth (**D**) of orthotopic tumours described in (**A**). (**E**) *OSMR*, *GFP*, *IL6* and *VEGF* mRNA expression levels analyzed by RT-qPCR in 5 tumours per experimental group, as described in (**A**). *P* value was calculated using paired (**B**) or unpaired (**E**) two tailed t test, the Mantel-Cox test (**C**) or two-way ANOVA with post Sidak's multiple comparison test (**D**). * *P* < 0,05; *** *P* < 0.001; **** *P* < 0.0001.

Supplemental Figure 11. OSM induces expression of chemokines in cancer cells. (A) Heatmap showing normalized mRNA expression of genes induced by OSM in MDA-MB-231 cancer cells and included in the indicated gene ontology (GO) pathways. (B) Gene set enrichment analysis (GSEA) showing enrichment of inflammatory hallmark signature in microarray expression data of MDA-MB-231 hOSM. ES: enrichment score; NES: normalized enrichment score. (C and D) Chemokine array analysis (C) and VEGF levels (D) in conditioned media from MDA-MB-231 h-OSM and control cells, 72h after seeding. n=6 (C) or n=4 (D) independent experiments. *P* values were determined using paired two-tailed t tests. * *P* < 0,05. (E) Effect of conditioned media from MDA-MB-231 treated with PBS (Control) or OSM 10ng/mL for 72 hours on HL-60 derived monocytes migration, n=4 independent experiments.

Supplemental Figure 12. Chemokine array experiments. (A and B) Representative images of chemokine array membranes of conditioned media experiments from CAF-173 (A) and MDA-MB-231 (B) shown in Figure 7C and Supplemental Figure 11C respectively. Ref. spots: Reference spots.

Supplemental Figure 13. Effect of OSM signalling on tumour infiltrating myeloid cells. (A-D) Percentages (**A**), gating strategy (**B**) and phenotypic characterization of macrophages (**C**) and neutrophils (**D**) infiltrating tumours from MMTV-*PyMT*:*Osmr* wild-type (WT), heterozygous (HET), and KO mice at 14 weeks of age by flow cytometry. (**E**) *OSM* mRNA levels in HL-60 + TPA

(macrophages) treated with conditioned media (CM) from MDA-MB-231 and CAF-173 pretreated with OSM 10 ng/mL for 72h. n=3 independent experiments, except for DMEM +OSM condition (n=6). *P* values were calculated using two-way ANOVA with post Dunnett's multiple comparison test (**A**) or one-way ANOVA with post Tukey's multiple comparison test (**E**).

Supplemental Figure 14. Characterization of infiltrating immune cells in human breast cancer samples. Representative pictures of CD3, CD68 and CD15 staining in samples from breast cancer patients included in Figure 9. n=50, 38 and 52 cases stained for CD3, CD68 and CD15 respectively.

Supplemental Table 2: Antibodies used in this study. IF: immunofluorescence, RTU: ready

to use

Application	Antibody	Company	Reference	Dilution
Western blot	beta-actin	Sigma	A5441	1/2000
Western blot	FN	Abcam	AB2413	1/1000
Western blot	OSMR (mouse)	R&D Systems	AF662	1/500
Western blot	OSMR (human)	Santa Cruz	30010	1/500
Western blot	P-STAT3 (Y705)	Cell Signaling	9145	1/2000
Western blot	STAT3	Cell Signaling	9139	1/1000
Western blot and IF	P-MLC2 (S19)	Cell Signaling	3671	1/1000
				- 1/200
Western blot	MLC2	Cell Signaling	3672	1/1000
Western blot	P-FAK (Y397)	Cell Signaling	8556	1/1000
Western blot	FAK	Cell Signaling	3285	1/1000
Western blot	Rabbit IgG HRP	GE Healthcare	NA934	1/2000
	linked whole Ab	(Thermo Fisher)		
Western blot	Mouse IgG HRP	GE Healthcare	NA931	1/2000
	linked whole Ab	(Thermo Fisher)		
Western blot	Rabbit Anti-Goat	Abcam	ab97100	1/2000
	IgG H&L (HRP)			
FACS	CD11b-FITC	BD Biosciences	561688	1/50
FACS	CD3-PE	Thermo Fisher	12-0031-82	1/40
FACS	CD31-FITC	MACS	130-097-	1/10
			418	
FACS	CD45-PerCP/Cy5.5	BioLegend	10313	1/80
FACS	EPCAM-APC	Biolegend	118214	1/80
FACS	CD45-BV480	BD Biosciences	566077	1/200
FACS	GR1-BV711	Biolegend	108443	1/200
FACS	CD11B-BUV805	BD Biosciences	612977	1/200
FACS	F4/80-BUV661	BD Biosciences	750643	1/200
FACS	CD206-	BD Biosciences	565250	1/200
	AlexaFluor647			
FACS	CD80-PE	BD Biosciences	553769	1/200
FACS	CXCR4-PE	Biolegend	146505	1/200
FACS	CCR5-APC	Biolegend	107011	1/200
Immunofluorescence	Vimentin	Cell Signaling	5741	1/100
Immunofluorescence	Goat anti-rabbit	Invitrogen	A32732	1/500
	IgG(H+L) Alexa fluor			
	Plus 555			
Immunofluorescence	Goat anti-rabbit	Invitrogen	A11008	1/500
	IgG(H+L) Alexa fluor			
	488			
Immunohistochemistry	Cleaved Caspase 3	R&D Systems	AF835	1/1000
Immunohistochemistry	F4/80	Bio-Rad	MCA497GA	1/10
Immunohistochemistry	Ki67	Novocastra	ACK02	1/800
		BD Biosciences	551459	1/70

Immunohistochemistry	Goat Anti-Rabbit	Vector	BA-1000	1/400
	IgG biotinyated	Laboratories		
Immunohistochemistry	Goat Anti-Rat IgG	Vector	BA-94001	1/400
	biotinyated	Laboratories		
Immunohistochemistry	Goat Anti-Mouse	Vector	BA-920	1/400
	IgG biotinyated	Laboratories		
Immunohistochemistry	OSM	Sigma-Aldrich	HPA029814	1/50
Immunohistochemistry	CD3	Ventana	790-4341	RTU
Immunohistochemistry	CD15	Ventana	760-2504	RTU
Immunohistochemistry	CD68	Dako	IR613	RTU

Supplemental Table 3: qPCR primers used in this study.

Gene	Species	Forward primer	Reverse primer
Alu	Human	ACGCCTGTAATCCCAGCACTT	TCGCCCAGGCTGGAGTGCA
FAP	Human	CAAAGGCTGGAGCTAAGAATCC	ACTGCAAACATACTCGTTCATCA
IL6ST	Human	AGGACCAAAGATGCCTCAAC	GAATGAAGATCGGGTGGATG
HMBS	Human	GGCAATGCGGCTGCAA	GGGTACCCACGCGAATCAC
IL6	Human	CCAGGAGCCCAGCTATGAAC	CCCAGGGAGAAGGCAACTG
IL6R	Human	CCCCTCAGCAATGTTGTTTGT	CTCCGGGACTGCTAACTGG
LIF	Human	CCAACGTGACGGACTTCCC	TACACGACTATGCGGTACAGC
LIFR	Human	TGGAACGACAGGGGTTCAGT	GAGTTGTGTGTGGGGTCACTAA
OSM	Human	CTCGAAAGAGTACCGCGTG	TCAGTTTAGGAACATCCAGGC
OSMR	Human	AATGTCAGTGAAGGCATGAAAGG	GAAGGTTGTTTAGACCACCCC
POSTN	Human	CTCATAGTCGTATCAGGGGTCG	ACACAGTCGTTTTCTGTCCAC
VEGF	Human	AGGGCAGAATCATCACGAAGT	AGGGTCTCGATTGGATGGCA
185	Human and mouse	CGCGGTTCTATTTTGTTGGT	CGGTCCAAGAATTTCACCTC
HPRT	Human and mouse	TGACACTGGCAAAACAATGCA	GGTCCTTTTCACCAGCAAGCT
Actb	Mouse	GCTACAGCTTCACCACCACA	TCTCCAGGGAGGAAGAGGAT
Osm	Mouse	ATGCAGACACGGCTTCTAAGA	TTGGAGCAGCCACGATTGG
Osmr	Mouse	CATCCCGAAGCGAAGTCTTGG	GGCTGGGACAGTCCATTCTAAA
GFP		CTAGGCCACAGAATTGAAAGATCT	GTAGGTGGAAATTCTAGCATCATC C

Supplemental Table 4: Gene list for the fibroblast activation markers signature, manually curated from Sahai et al. 2020, used in Figure 5F.

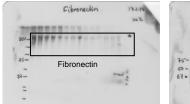
TNC	COL5A1	IL6	VEGFA	CCN2
HGF	CCN1	POSTN	ACTA2	CXCL12
CXCL9	PDGFRA	FAP	IL1B	FGF5
GAS6	COL1A2	LIF	РТК2	GDF15
PDGFA	HSF1	INHBA	TGFB1	GRN
VIM	ILIA	S100A4		

Supplemental Table 5: Gene list for the OSM-induced signature in CAF-173 used in

SERPINB4	PPAP2B	CRISPLD2	SUSD6	POSTN
THBS1	STEAP1B	CXCL12	PFKFB4	EFCAB13
LXN	CHI3L1	SERPINB2	MOSPD1	B4GALT5
RARRES1	OSMR	FGF2	C10orf10	ABHD17C
TNC	SLC2A5	RHOBTB3	CTSL	MME
VLDLR	GPC6	ENG	NDST2	SERPINH1
SFRP4	TGFBI	FLNB	NPTX2	TSHZ3
CEMIP	SULF1	MARCH3	PRG4	RGS16
ITGB3	STEAP1	GALNT12	BICC1	ZDHHC9
МҮВ	JAK2	GPC6	WARS	HOXA4
F2RL1	IL13RA1	PUM3	PCED1A	LAMA4
EFEMP1	SLC2A14	LTBP2	NAMPT	NPC1
KIF26B	ACVR1B	P4HA1	DUSP1	VWA5A
BRINP1	CCDC71L	CPD	RUNX2	POLR2H
SERPINE1	SPRY1	NAV1	POLM	SMG6
STEAP2	MASP1	TRIB2	PREB	HEG1
GJA1	PDK1	ADAM19	PTGS2	GLT8D2
DHRS3	NREP	WISP1	SLC16A3	РТХЗ
SEL1L3	PDP1	ARRDC4	CYR61	C1R
МҮС	SLC2A3	PTPN2	RNF144A	SYTL2
IL1R1	GYS1	ZPLD1	NXF3	SNAI1
RDH10	TMTC2	XYLT1	ADAMTS4	CDKN1A
SERPINB7	NRP2	KCTD10	ADAM12	TGFBR1
COL5A1	РСВРЗ	GPAM	CLCA2	ERO1A
PLOD2	BCL6	RP11-351M8.2	PGM3	DLC1

			Τ	
FGF7	ADM	C1QTNF6	LCE2A	JAK2
SERPINB3	IL6	CTGF	SLC22A23	DENND1B
LRRC15	MGP	SNX10	IGF1R	FHL2
WWC1	SDC1	BGN	BNIP3	ALDH1L2
NID2	FAM20C	FCHSD2	TMEM45A	CFAP54
ITGB8	MTHFD2	DAB2	JUNB	DNMT3B
NNMT	OSR1	TXNIP	FNIP2	SLC16A7
HMOX1	RAI14	GABRE	MICAL2	OPN3
VEGFA	RCAN2	RCL1	SMYD3	SRPX
C2orf83	AK4	FAM60A	HAS2	DMGDH
SOCS3	PFKFB3	IL4R	HS3ST3A1	BHLHE40
PRDM1	SBNO2	ELL2	TNS3	GK
ARHGAP20	NABP1	F3	CCL2	CAMK2N1
DDIT4	PLPP3	LOX	GALNT2	RASD1
COLEC12	GLIS3	COL5A2	SMIM3	NTNG1
TMOD1	TUBB3	AGTRAP	SOS1	ADAMTS3
HS3ST3B1	PLPP4	FAM20A	РАРРА	HLA-DQB1
ARL4C	PVR	AGFG1	GFPT2	KLF9
IL33	PGK1	PDGFRA	NRXN3	EPB42
FNDC1	THSD4	THBS2	СТВР2	STX19
TAGLN	HIF1A	COL8A1	C1orf158	
TNFRSF10D	NCAM2	PLAT	TMEM2	

Supplemental Table 6: Histopathological information of breast cancer cases included in the

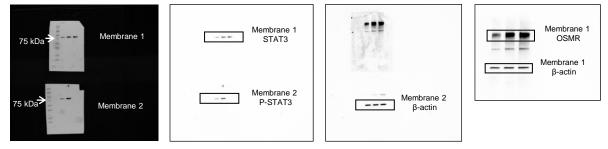

TMAs. pT, pN and pM stand for pathological (p) tumour size (T), nodal status (N) and

metastatic status (M) according to AJCC - TNM classification (8th Edition).

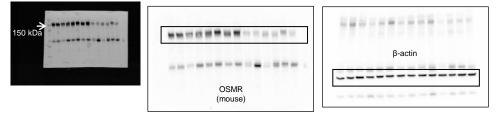
Clinicopathological feature	Category	Frequency N (%)
Age	Mean (range)	62 (27-92)
pT stage	pT1	58 (41 %)
	pT2	69 (49 %)
	pT3	5 (4 %)
	pT4	9 (6 %)
pN stage	pN0	77 (55 %)
	pN1	37 (26 %)
	pN2	13 (9 %)
	pN3	8 (6 %)
	pNx	6 (4 %)
pM stage	0	141 (100 %)
Tumour grade	G1	15 (11 %)
	G2	61 (43 %)
	G3	65 (46 %)
Molecular subtype	Triple negative	27 (19 %)
	HER2 positive	32 (23 %)
	ER positive (luminal A,B)	82 (58 %)
Survival time (months)	Mean (range)	71 (1-233)
5-year survival rate (95%CI)	Survival rate in %	77% (71%-85%)

Full unedited gels for western blots

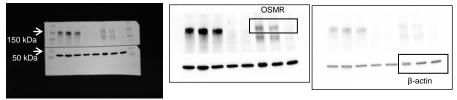
Full unedited gels for Figure 1, panel F



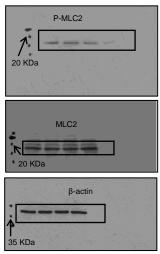
	18.1.19
	actin membrane z
	HHTHTTHTHT
25-	
50 -	
57 -	
	β-actin


Full unedited gels for Supplemental Figure 1, panel A

Corre - Part	94.4.19	A act31.11.1 dence nimes Sau 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2
		504 - 374
r		ta 1
*		0.4I-


Full unedited gels for Supplemental Figure 2, panel A

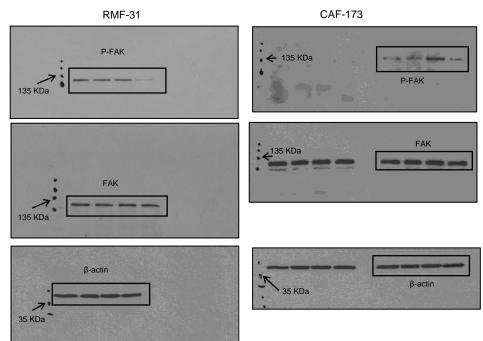
Full unedited gels for Supplemental Figure 2, panel B



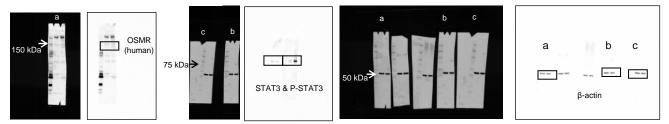
Full unedited gels for Supplemental Figure 2, panel E

Full unedited gels for Supplemental Figure 6, panel B

RMF-31



CAF-173


•	-	-	

Full unedited gels for western blots

Full unedited gels for Supplemental Figure 6, panel D

Full unedited gels for Supplemental Figure 7, panel B

