Supporting Information

Excited-State Palladium-Catalyzed Radical Migratory Mizoroki-Heck Reaction Enables C2-Alkenylation of Carbohydrates

Wang Yao,^{‡1} Gaoyuan Zhao,^{‡1} Yue Wu,³ Lin Zhou,³ Upasana Mukherjee,¹ Peng Liu,^{*,3,4} and Ming-Yu Ngai^{*,1,2}

pengliu@pitt.edu ming-yu.ngai@stonybrook.edu

¹Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States; ²Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States; ³Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States; ⁴Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

Table of Contents

General Information7			
Photoredox reaction setup7			
E	Experimental Data		
	Preparation of Substrates:		
	General Procedure A (for synthesizing 1-bromosugar):		
	(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1a)		
	(2R,3R,4S,5R,6R)-2-bromo-6-(((tert-butyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (1b)		
	(2R,3R,4S,5R)-2-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1c)		
	(2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1d)9		
	(2R,3R,4S,5S,6S)-2-bromo-6-(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (1e)10		
	(2S,3S,4R,5R,6S)-2-bromo-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate (1f)10		
	(2R,4aR,6R,7R,8S,8aR)-6-bromo-2-(4-methoxyphenyl)hexahydropyrano[3,2-d][1,3]dioxine-7,8-diyl diacetate (1g)		
	(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((thiophene-2-carbonyl)oxy)tetrahydro-2H- pyran-3,4-diyl dibenzoate (1h)		
	(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((4-methoxybenzoyl)oxy)tetrahydro-2H- pyran-3,4-diyl dibenzoate(1i)		
	(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl tribenzoate (1j). 12		
	(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((4-cyanobenzoyl)oxy)tetrahydro-2H-pyran- 3,4-diyl dibenzoate(1k)		
	(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy) methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5a)		
	(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(4-isopropylphenyl)propanoyl)oxy)methyl)tetrahydro-2H-pyran- 3,4,5-triyl triacetate(5b)		
	(2R,3R,4S,5R,6R)-2-bromo-6-(((4-(<i>N</i> , <i>N</i> -dipropylsulfamoyl)benzoyl)oxy)methyl)tetrahydro-2H- pyran-3,4,5-triyl triacetate(5c)		
	(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)oxy) methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5d)		
	(2R,3R,4S,5R,6R)-2-(((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)- 6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (5e)		

2R,3R,4S,5S,6S)-2-bromo-6-((((1S,2R,5S)-2-isopropyl-5-
nethylcyclohexyl)oxy)carbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5f)
Alkene Substrates Synthesis:
1,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (2h)
2,2-difluoro-5-vinylbenzo[d][1,3]dioxole (2l)19
2-(4-vinylbenzyl)isoindoline-1,3-dione (2p)
Methyl (4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-2,2,6a,6b,9,9,12a-heptamethyl-10-((4-vinylbenzoyl)oxy)-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylate (6a) 20
3aR,5S,6S)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6- yl 4-vinylbenzoate (6b)
General Procedure B (for migratory alkenylation reaction):
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3a)22
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(trifluoromethyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3b)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-cyanostyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3c)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(tert-butyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3d)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-methoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3e)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-chlorostyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3f)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-phenoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3g)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3h)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-3-methoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3i)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-3-(trifluoromethyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl riacetate (3j)
2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3k)

(2R, 3S, 4R, 5S, 6R) - 6 - (acetoxymethyl) - 3 - ((E) - 2 - (2, 2 - difluorobenzo[d][1, 3]dioxol - 5 - (2, 2
yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (31)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2,4,6-trimethylstyryl)tetrahydro-2H-pyran-2,4,5-triyl
triacetate (3m)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(perfluorophenyl)vinyl)tetrahydro-2H-pyran-2,4,5- triyl triacetate (3n)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(naphthalen-2-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (30)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-((1,3-dioxoisoindolin-2-yl)methyl)styryl)tetrahydro- 2H-pyran-2,4,5-triyl triacetate (3p)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-vinylferrocene))tetrahydro-2H-pyran-2,4,5-triyl triacetate (3q)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(pyridin-4-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3r)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(pyridin-2-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3s)
(2R,3S,4R,5S,6R)-3-((E)-2-(9H-carbazol-9-yl)vinyl)-6-(acetoxymethyl)tetrahydro-2H-pyran-2,4,5- triyl triacetate (3t)
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(benzo[b]thiophen-2-yl)vinyl)tetrahydro-2H-pyran- 2,4,5-triyl triacetate (3u)
(2R,3S,4R,5S,6R)-6-((2,2-dimethyl-1,1-diphenylpropoxy)methyl)-3-((E)-2-methylstyryl)tetrahydro- 2H-pyran-2,4,5-triyl triacetate (4b)
(2R,3S,4R,5R)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4c)
(2R,3S,4R,5R,6R)-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4d)
(2R,3S,4R,5S,6S)-6-(methoxycarbonyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4e)
(2S,3S,4S,5R,6S)-6-methyl-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4f)40
(2R,4aR,6R,7S,8R,8aS)-2-(4-methoxyphenyl)-7-((E)-2-methylstyryl)hexahydropyrano[3,2- d][1,3]dioxine-6,8-diyl diacetate (4g)41
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-5-((E)-2-methylstyryl)-6-((thiophene-2- carbonyl)oxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4h)
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-methoxybenzoyl)oxy)-5-((E)-2- methylstyryl)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4i)

(2R,3S,4R,5S,6R)-6-((benzoyloxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl tribenzoate (4j)	-3
(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-cyanobenzoyl)oxy)-5-((E)-2- methylstyryl)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4k)4	4
(2R,3R,4S,5S,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5S,6R)-3,4,6-triacetoxy-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (41)4	.5
(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((2R,3S,4R,5S,6R)-4,6-diacetoxy-2-(acetoxymethyl)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4m)4	-6
(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,5S,6R)-4,6-diacetoxy-2-(acetoxymethyl)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4n)	-6
(2R,3S,4R,5S,6R)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy)methyl)-3- ((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7a)	.7
(2R,3S,4R,5S,6R)-6-(((2-(4-isobutylphenyl)propanoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro- 2H-pyran-2,4,5-triyl triacetate (7b)	-8
(2R,3S,4R,5S,6R)-6-(((4-(N,N-dipropylsulfamoyl)benzoyl)oxy)methyl)-3-((E)-2- methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7c)4	-8
(2R,3S,4R,5S,6R)-3-((E)-2-methylstyryl)-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2- yl)propanoyl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7d)	.9
(2R,3S,4R,5S,6R)-6-(((6-(3-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7e)	0
(2R,3S,4R,5S,6S)-6-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)-3-((E)-2- methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7f)	1
(2R,3S,4R,6R)-6-(acetoxymethyl)-3-((E)-4-((((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a- (methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl 1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3- yl)oxy)carbonyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7g)5	52
(2R,4R,6R)-6-(acetoxymethyl)-3-((E)-4-((((3aR,5S,6S)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)carbonyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7h)	3
Post-Functionalization	4
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(2-methylphenethyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8a)	; 4
(2R,3S,4R,5S,6R)-6-(((6-(3-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8b)	4

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(o-tolyl)oxiran-2-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8c)
(2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-azido-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8d)
$(2R,3R,4S,5R,6S)-2-((((2S,3S,4R,5S,6R)-4,5-diacetoxy-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triyl tribenzoate (8e-\alpha)& (2R,3R,4S,5R,6S)-2-((((2R,3S,4R,5S,6R)-4,5-diacetoxy-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triyl tribenzoate(8e-\beta)$
$(2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-((4-(tert-butyl)phenyl)thio)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8f-\alpha) & (2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-((4-(tert-butyl)phenyl)thio)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8f-\beta)$
(2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(furan-2-yl)-5-((E)-styryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8g-α)& (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(furan-2-yl)-5-((E)-styryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8g-β)
Mechanistic Studies
Radical Trapping Experiments60
Stern–Volmer Luminescence Quenching Experiments
Quantum Yield Experiment
Light On-Off Experiment
Studies of Stereochemical Outcome Using 2-Iodo Sugar
Kinetic Isotope Effect Measurements
DFT Calculations74
Computational Details74
Spectroscopic Data
Cartesian Coordinates (Å) and Energies of the Optimized Structures
References

General Information

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere, magnetically stirred, and monitored by thin layer chromatography (TLC) using Agela Technologies TLC plates precoated with 250 µm thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. Flash chromatography was performed on SiliaFlash[®] Silica Gel 40-63µm 60Å particle size using a forced flow of eluent at 0.3–0.5 bar pressure.¹ Preparative TLC was performed on Uniplate[®] UV254 (20 x 20 cm) with 1000 µm thickness and visualized fluorescence quenching under UV light.

All air and moisture-sensitive manipulations were performed using oven-dried glassware, including standard Schlenk and glovebox techniques under an atmosphere of nitrogen. All reaction vials were capped using green caps with F-217 PTFE liners. Isopropyl acetate was distilled from calcium chloride CaCl₂. Diethyl ether and THF were distilled from deep purple sodium benzophenone ketyl. Acetonitrile were dried over CaH₂ and distilled. Isopropyl acetate and acetonitrile were degassed *via* three freeze-pump-thaw cycles. All other chemicals were used as received.

All deuterated solvents were purchased from Cambridge Isotope Laboratories. NMR spectra were recorded on either a Bruker Ascend 700 spectrometer operating at 700 MHz for ¹H acquisitions and 175 MHz for ¹³C acquisitions, a Bruker 500 Advance spectrometer operating at 500 MHz for ¹H acquisitions and 125 MHz for ¹³C acquisitions. Chemical shifts were referenced to the residual proton solvent peaks (¹H: CDCl₃, δ 7.26; CD₃CN, δ 1.94), solvent ¹³C signals (CDCl₃, δ 77.16; CD₃CN, δ 118.26),² Signals are listed in ppm, and multiplicity identified as s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration.

High-resolution mass spectra were performed at Mass Spectrometry Services at Stony Brook University and were obtained using Agilent LC-UV-TOF mass spectrometer. Concentration under reduced pressure was performed by rotary evaporation at 25–30 °C at the appropriate pressure. Purified compounds were further dried under high vacuum (0.01–0.05 Torr).

Photoredox reaction setup

Reaction set up: A 20 mL capped vial was placed in oil bath at 90°C. The blue LED lamp (Kessil KSH150B LED Grow Light, 34W) was placed nearly perpendicular to the vial. The distance between blue LED lamps and the vial was 5.00 cm.

Reaction set up

Experimental Data

Preparation of Substrates:

General Procedure A (for synthesizing 1-bromosugar):

PO
$$\xrightarrow{0}_{2}$$
 OAc $\xrightarrow{\text{HBr}(33\% \text{ in AcOH})}{\text{DCM},0^{\circ}\text{C} - \text{rt}, 3\text{h}}$ PO $\xrightarrow{0}_{\text{Br}}$ Br

The C-1 acetyl protected sugar (1.00 equiv) was dissolved in dry CH_2Cl_2 (0.500 M) and cooled to 0 °C. HBr (33% in AcOH, 2.00 M) was added and the reaction mixture was slowly warmed to room temp and stirred for 3 h. The reaction mixture was then poured into an ice/water mixture. The aqueous phase was extracted with CH_2Cl_2 (3 times) and the combined organic layers were washed sequentially with satd. NaHCO₃, brine, dried over MgSO₄ and filtered to remove MgSO₄. The filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford the desired compound.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1a)

The reaction was performed according to the **General Procedure A** using **S1** (2.00 g, 5.13 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (1.85 g, 4.50 mmol, 88% yield) as white solid. **R**_f = 0.65 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.58 (d, *J* = 4.0 Hz, 1H), 5.52 (t, *J* = 9.7 Hz, 1H), 5.13 (t, *J* = 9.8 Hz, 1H), 4.81 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.33 – 4.21 (m, 2H), 4.13 – 4.06 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.52, 169.87, 169.82, 169.50, 86.66, 72.20, 70.64, 70.21, 67.21, 61.00, 20.72, 20.70, 20.67, 20.60. These spectroscopic data correspond to previously reported data.³

(2R,3R,4S,5R,6R)-2-bromo-6-(((tert-butyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (1b)

To a solution of S2 (571 mg, 1.05 mmol, 1.00 equiv) in dry CH_2Cl_2 (2.00 mL) was added triphenylphosphine (303 mg, 1.15 mmol, 1.09 equiv) and tetrabromomethane (383 mg, 1.15 mmol, 1.09 equiv). The reaction mixture was stirred at rt under nitrogen atmosphere for 16 h. Saturated NaHCO₃ was

added until the pH of the solution became neutral. The organic layer was collected, and the aqueous phase was extracted with DCM twice (2×20 ml). The combined organic layers were washed with brine, dried with anhydrous MgSO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel, eluting with Hexanes: EtOAc [8:1 (v/v)] to afford the title compound **1b** (171 mg, 0.28 mmol, 27% yield) as white foam. **R**_{*f*} = 0.70 [Hexanes: EtOAc 4:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.63 (dd, *J* = 16.1, 7.0 Hz, 4H), 7.34-7.46 (m, 6H), 6.67 (d, *J* = 3.5 Hz, 1H), 5.54 (t, *J* = 9.8 Hz, 1H), 5.35 (t, *J* = 9.8 Hz, 1H), 4.82 (dd, *J* = 10.5, 4.2 Hz, 1H), 4.13 (d, *J* = 10.5 Hz, 1H), 3.76 (dd, *J* = 11.9, 1.4 Hz, 1H), 3.72 (dd, *J* = 11.9, 4.2 Hz, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 1.93 (s, 3H), 1.05 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.28, 170.04, 169.39, 135.81, 135.81, 135.79, 135.79, 133.00, 132.92, 129.69, 129.93, 127.88, 127.88, 127.88, 127.88 87.68, 74.85, 70.97, 70.82, 67.40, 61.54, 26.85, 26.85, 20.86, 20.86, 20.67, 19.35. These spectroscopic data correspond to previously reported data.⁴

(2R,3R,4S,5R)-2-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1c)

$$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ AcO \\ \hline \end{array} OAc \\ \begin{array}{c} HBr(33\% \text{ in } AcOH) \\ DCM, 0^{\circ}C - rt, 3h \\ \end{array} \xrightarrow{AcO} \\ \begin{array}{c} AcO \\ AcO \\ AcO \\ Br \\ \end{array} \xrightarrow{O} \\ \begin{array}{c} Br \\ 1c \end{array}$$

The reaction was performed according to the **General Procedure A** using **S3** (2.20 g, 6.90 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **1c** (1.30 g, 3.85 mmol, 57% yield) as white solid. **R**_{*f*} = 0.50 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ) 6.57 (d, *J* = 4.2 Hz, 1H), 5.55 (t, *J* = 9.8 Hz, 1H), 5.03 (td, *J* = 9.8, 6.3 Hz, 1H), 4.76 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.04 (dd, *J* = 11.2, 6.3 Hz, 1H), 3.87 (t, *J* = 11.2 Hz, 1H), 2.09 (s, 3H), 2.05 (s, 3H), 2.05 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 169.98, 169.98, 169.89, 87.70, 70.98, 69.61, 68.20, 62.64, 20.81, 20.80, 20.77. These spectroscopic data correspond to previously reported data.⁵

(2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (1d)

The reaction was performed according to the **General Procedure A** using **S4** (2.00 g, 5.13 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **1d** (1.73 g, 4.21 mmol, 82% yield) as white solid. **R**_f = 0.65 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.69 (d, *J* = 3.9 Hz, 1H), 5.57 – 5.48 (m, 1H), 5.40 (dd, *J* = 10.6, 3.3 Hz, 1H), 5.04 (dd, *J* = 10.6, 4.0 Hz, 1H), 4.48 (t, *J* = 6.6 Hz, 1H), 4.18 (dd, *J* = 11.4, 6.4 Hz, 1H), 4.11 (dd, *J* = 11.4, 6.8 Hz, 1H), 2.15 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.45, 170.20, 170.02,

169.89, 88.25, 71.19, 68.12, 67.90, 67.11, 60.96, 20.88, 20.77, 20.72, 20.69. These spectroscopic data correspond to previously reported data.³

(2R,3R,4S,5S,6S)-2-bromo-6-(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (1e)

The title compound was prepared according to the literature procedure.⁶ ¹**H** NMR (500 MHz, CDCl₃, 25 °C, δ): 6.63 (d, *J* = 4.0 Hz, 1H), 5.60 (t, *J* = 9.7 Hz, 1H), 5.23 (t, *J* = 9.9 Hz, 1H), 4.84 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.57 (d, *J* = 10.3 Hz, 1H), 3.75 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 169.78, 169.75, 169.57, 166.78, 85.48, 72.15, 70.43, 69.40, 68.60, 53.25, 20.72, 20.57. The spectroscopic data corresponds to previously reported data.⁶

(2S,3S,4R,5R,6S)-2-bromo-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate (1f)

The reaction was performed according to the **General Procedure A** using **S5** (2.02 g, 6.00 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [5:1 (v/v)] to afford the title compound **1f** (1.66 g, 4.70 mmol, 78% yield) as white solid. **R**_f = 0.25 [Hexanes: EtOAc 5:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.68 (d, *J* = 3.5 Hz, 1H), 5.39 (dd, *J* = 10.5, 3.5 Hz, 1H), 5.34 (d, *J* = 3.5 Hz, 1H), 5.01 (dd, *J* = 10.5, 3.5 Hz, 1H), 4.39 (q, *J* = 7.0 Hz, 1H), 2.16 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H), 1.20 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.37, 170.24, 169.91, 89.40, 70.08, 69.91, 68.51, 67.95, 20.89, 20.73, 20.67, 15.56. These spectroscopic data correspond to previously reported data.⁷

(2R,4aR,6R,7R,8S,8aR)-6-bromo-2-(4-methoxyphenyl)hexahydropyrano[3,2-d][1,3]dioxine-7,8-diyl diacetate (1g)

The title compound was prepared according to the literature procedure.⁸ ¹**H** NMR (400 MHz, CDCl₃, 25 °C, δ): 7.37 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.60 (d, *J* = 4.1 Hz, 1H), 5.65 (t, *J* = 9.8 Hz, 1H), 5.47 (s, 1H), 4.84 (dd, *J* = 9.7, 4.1 Hz, 1H), 4.32 (dd, *J* = 10.2, 4.9 Hz, 1H), 4.23 (td, *J* = 9.8, 5.0 Hz, 1H), 3.86-3.63 (m, 5H), 2.11 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, δ): 170.15, 169.61, 160.35, 129.12, 127.63, 113.75, 101.87, 87.11, 78.15, 71.52, 68.91, 67.94, 67.09, 55.41, 20.88, 20.81. These spectroscopic data correspond to previously reported data.⁸

(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((thiophene-2-carbonyl)oxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (1h)

To a solution of **S6** (278 mg, 0.500 mmol, 1.00 equiv) in dry DCM (5.00 mL) was added Et₃N (101 mg, 1.00 mmol, 2.00 equiv), thiophene-2-carbonyl chloride (110 mg, 0.75 mmol, 1.50 equiv) and DMAP (3.05 mg, 0.025 mmol, 0.0500 equiv) at 0 °C. After the reaction mixture was stirred at 0 °C for 3 h, it was quenched with saturated NaHCO₃ solution (6.00 mL) and extracted with DCM (2×50 mL). The combined organic layers were washed with brine, dried with anhydrous MgSO₄ and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **1h** (219 mg, 0.33 mmol, 66% yield) as white solid. **R**_f = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.06 (d, J = 7.2 Hz, 2H), 7.97 – 7.92 (m, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.80 (dd, J = 3.8, 1.2 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 14.4, 6.3 Hz, 3H), 7.37 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.10 – 7.00 (m, 1H), 6.85 (d, J = 4.0 Hz, 1H), 6.22 (t, J = 9.8 Hz, 1H), 5.80 (t, J = 10.0 Hz, 1H), 5.26 (dd, J = 9.9, 4.1 Hz, 1H), 4.75 – 4.68 (m, 1H), 4.66 (dd, J = 12.5, 2.5 Hz, 1H), 4.50 (dd, J = 12.5, 4.5 Hz, 1H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 166.17, 165.60, 165.22, 160.95, 135.13, 134.24, 133.80, 133.49, 133.42, 131.81, 130.09, 129.98, 129.91, 129.58, 128.97, 128.65, 128.61, 128.53, 128.21, 86.83, 72.83, 71.70, 70.66, 68.10, 62.06. **HRMS** (ESI-TOF) *m*/z calcd for C₃₂H₂₆BrO₉S [(M + H)⁺], 665.0475, found, 665.0477.

(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((4-methoxybenzoyl)oxy)tetrahydro-2Hpyran-3,4-diyl dibenzoate(1i)

The reaction was performed according to the same procedure as synthesizing **1h** using 4-methoxybenzoyl chloride (128 mg, 0.75 mmol, 1.50 equiv). After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **1i** (189 mg, 0.28 mmol, 55% yield) as white solid. **R**_f = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.07 (d, J = 7.9 Hz, 2H), 7.95 (d, J = 8.6 Hz, 4H), 7.87 (d, J = 7.9 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 3H), 7.38 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 6.88 (d, J = 7.9 Hz, 2H), 6.85 (d, J = 3.8 Hz, 1H), 6.24 (t, J = 9.7 Hz, 1H), 5.81 (t, J = 9.9 Hz, 1H), 5.29 (dd, J = 9.8, 3.4 Hz, 1H), 4.72 (d, J = 10.2 Hz, 1H), 4.66 (d, J = 12.5 Hz, 1H), 4.51 (dd, J = 12.4, 4.2)

Hz, 1H), 3.83 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 166.18, 165.73, 165.24, 165.11, 164.19, 133.78, 133.47, 133.40, 132.39, 130.08, 129.97, 129.89, 129.59, 128.99, 128.68, 128.63, 128.61, 128.51, 120.82, 114.00, 87.32, 72.83, 71.35, 70.80, 68.13, 62.10, 55.61. **HRMS** (ESI-TOF) m/z calcd for C₃₅H₃₃BrNO₁₀ [(M + NH₄)⁺], 706.1282, found, 706.1289.

(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl tribenzoate (1j)

The reaction was performed according to the **General Procedure A** using **S7** (2.00 g, 2.86 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound **1j** (1.51 g, 2.29 mmol, 80% yield) as white solid. **R**_{*f*} = 0.68 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.07 (d, *J* = 7.3 Hz, 2H), 8.01 (d, *J* = 7.3 Hz, 2H), 7.96 (d, *J* = 7.3 Hz, 2H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.50 (m, 3H), 7.47 – 7.35 (m, 7H), 7.31 (t, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 4.0 Hz, 1H), 6.27 (t, *J* = 9.8 Hz, 1H), 5.83 (t, *J* = 10.0 Hz, 1H), 5.34 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.80 – 4.71 (m, 1H), 4.68 (dd, *J* = 12.5, 2.6 Hz, 1H), 4.52 (dd, *J* = 12.5, 4.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 166.16, 165.70, 165.44, 165.23, 133.94, 133.78, 133.49, 133.40, 130.22, 130.07, 129.97, 129.88, 129.59, 128.94, 128.70, 128.66, 128.63, 128.60, 128.50, 87.01, 72.85, 71.61, 70.76, 68.13, 62.08. These spectroscopic data correspond to previously reported data.⁹

(2R,3R,4S,5R,6R)-2-((benzoyloxy)methyl)-6-bromo-5-((4-cyanobenzoyl)oxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate(1k)

The reaction was performed according to the same procedure as synthesizing **1h** using 4-cyanobenzoyl chloride (124 mg, 0.75 mmol, 1.50 equiv). After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (256 mg, 0.38 mmol, 75% yield) as white solid. **R**_f = 0.60 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.10 (d, *J* = 8.4 Hz, 2H), 8.07 (d, *J* = 7.2 Hz, 2H), 7.95 (d, *J* = 7.2 Hz, 2H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.46 (q, *J* = 7.3 Hz, 3H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 2H), 6.85 (d, *J* = 4.0 Hz, 1H), 6.25 (t, *J* = 9.8 Hz, 1H), 5.84 (t, *J* = 10.0 Hz, 1H), 5.32 (dd, *J* = 9.9, 4.1 Hz, 1H), 4.78 – 4.71 (m, 1H), 4.68 (dd, *J* = 12.5, 2.6 Hz, 1H), 4.52 (dd, *J* = 12.5, 4.5 Hz, 1H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.13, 165.71, 165.18, 163.86, 133.89, 133.72, 133.46, 132.54, 132.30, 130.68, 130.07, 129.97, 129.89, 129.53, 128.68, 128.63, 128.61,

128.53, 117.87, 117.37, 86.42, 72.93, 72.27, 70.72, 67.85, 61.96. **HRMS** (ESI-TOF) m/z calcd for $C_{35}H_{27}BrNO_9$ [(M + H)⁺], 684.0864, found, 684.0869.

(2R,3S,4S,5S,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-bromotetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (1l)

The reaction was performed according to the **General Procedure A** using **S9** (1.22 g, 1.80 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [1.5:1 (v/v)] to afford the title compound (320 mg, 0.46 mmol, 25% yield) as white solid. $\mathbf{R}_f = 0.70$ Hexanes: EtOAc [1:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.58 (d, J = 4.2 Hz, 1H), 5.55 (t, J = 9.8 Hz, 1H), 5.46 (d, J = 3.5 Hz, 1H), 5.32 (dd, J = 10.5, 3.5 Hz, 1H), 5.15-5.18 (m, 2H), 5.08 (dd, J = 10.5, 3.5 Hz, 1H), 4.78 (dd, J = 9.8, 4.2 Hz, 1H), 4.23 (ddd, J = 10.5, 4.2, 2.1 Hz, 1H), 4.16 (t, J = 7.0 Hz, 1H), 4.06 (qd, J = 11.2, 7.0 Hz, 1H), 3.76 (dd, J = 11.9, 4.2 Hz, 1H), 3.62 (dd, J = 11.9, 2.1 Hz, 1H), 2.13 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.67, 170.50, 170.30, 170.02, 169.98, 169.93, 169.48, 96.37, 86.64, 73.02, 70.72, 70.33, 68.16, 68.06, 67.73, 67.55, 66.56, 65.51, 61.72, 20.93, 20.85, 20.79, 20.76, 20.76, 20.72. These spectroscopic data correspond to previously reported data.⁹

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-maltose bromide (1m)

The reaction was performed according to the **General Procedure A** using **S10** (750 mg, 1.10 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [2.5:1 (v/v)] to afford the title compound (420 mg, 0.600 mmol, 55% yield) as a white solid. $\mathbf{R}_f = 0.50$ [Hexanes: EtOAc 3:1 (v/v)]. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 6.45 (d, J = 4.0 Hz, 1H), 5.55 (t, J = 9.4 Hz, 1H), 5.36 (d, J = 4.0 Hz, 1H), 5.31 (t, J = 10.0 Hz, 1H), 5.01 (t, J = 9.9 Hz, 1H), 4.81 (dd, J = 10.5, 4.0 Hz, 1H), 4.66 (dd, J = 9.9, 4.0 Hz, 1H), 4.46 (dd, J = 13.7, 3.4

Hz, 1H), 4.28 – 4.13 (m, 3H), 4.03 – 3.96 (m, 2H), 3.92 – 3.84 (m, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃, 25 °C, δ): 171.07, 170.66, 170.45, 170.25, 169.83, 169.50, 169.41, 95.79, 86.14, 72.57, 72.34, 71.60, 71.01, 70.02, 69.24, 68.65, 67.92, 61.86, 61.35, 60.35, 21.03, 20.86, 20.76, 20.67, 20.63, 20.59. The spectroscopic data corresponds to previously reported data.¹⁰

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-cellobiose bromide (1n)

The reaction was performed according to the **General Procedure A** using **S11** (3.49 g, 5.14 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [2.5:1 (v/v)] to afford the title compound (2.00 g, 2.86 mmol, 56% yield) as a white solid. **R**_{*f*} = 0.50 [Hexanes: EtOAc 3:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.53 (d, *J* = 4.0 Hz, 1H), 5.53 (t, *J* = 9.7 Hz, 1H), 5.15 (t, *J* = 9.3 Hz, 1H), 5.08 (t, *J* = 9.7 Hz, 1H), 4.98 – 4.87 (m, 1H), 4.77 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.54 (t, *J* = 8.6 Hz, 2H), 4.37 (dd, *J* = 12.5, 4.4 Hz, 1H), 4.23 – 4.14 (m, 2H), 4.05 (dd, *J* = 12.5, 2.0 Hz, 1H), 3.84 (t, *J* = 9.7 Hz, 1H), 3.67 (ddd, *J* = 9.9, 4.2, 2.2 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 6H), 2.04 (s, 6H), 2.01 (s, 3H), 1.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.64, 170.40, 170.24, 170.13, 169.43, 169.12, 100.72, 86.55, 75.38, 73.16, 73.09, 72.20, 71.75, 70.92, 69.57, 67.90, 61.74, 61.07, 20.97, 20.83, 20.74, 20.69. The spectroscopic data corresponds to previously reported data.¹⁰

(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy) methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5a)

A suspension of febuxostat **S13** (190 mg, 0.60 mmol, 1.20 equiv) and DMAP (3.00 mg, 0.025 mmol, 0.05 equiv) in DCM (3.00 mL) was added a solution of DCC (124 mg, 0.60 mmol, 1.20 equiv) in DCM (1.00 mL) at 0 °C. After stirring for 10 min at 0 °C, **S12** (185 mg, 0.50 mmol, 1.00 equiv) was added. The reaction mixture stirred at rt overnight, quenched with saturated NaHCO₃ solution (6.00 mL), extracted with DCM (3×20 ml). The organic layer was collected, washed with brine, dried with anhydrous MgSO₄, and filtered.

The filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel, eluting with Hexanes: EtOAc [2:1 (v/v)] to afford the title compound (214 mg, 0.32 mmol, 64% yield) as white solid. **R**_f = 0.30 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.20 (d, *J* = 2.2 Hz, 1H), 8.11 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.63 (d, *J* = 4.0 Hz, 1H), 5.59 (t, *J* = 9.7 Hz, 1H), 5.20 (t, *J* = 9.8 Hz, 1H), 4.85 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.44 (d, *J* = 4.0 Hz, 2H), 4.40 (dd, *J* = 10.3, 2.7 Hz, 1H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.75 (s, 3H), 2.26 – 2.13 (m, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.08 (d, *J* = 6.7 Hz, 6H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 169.96, 169.94, 169.54, 168.01, 162.71, 162.32, 161.45, 132.83, 132.33, 126.00, 120.80, 115.48, 112.71, 103.13, 86.57, 75.81, 72.23, 70.75, 70.23, 67.46, 61.72, 28.28, 20.77, 20.75, 20.70, 19.17, 17.71. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₃₂BrN₂O₁₀S [(M + H)⁺], 667.0956, found, 667.0966.

(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(4-isopropylphenyl)propanoyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5b)

The reaction was performed according to the same procedure as synthesizing **5a**. Ibuprofen **S14** (115 mg, 0.60 mmol, 1.50 equiv). After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (196 mg, 0.36 mmol, 72% yield) as white solid. **R**_{*f*} = 0.60 [Hexanes: EtOAc 2:1 (v/v)].¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.20 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.52 (d, *J* = 4.0 Hz, 1H), 5.50 (td, *J* = 9.7, 2.2 Hz, 1H), 5.06 – 4.99 (m, 1H), 4.67 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.23 (ddd, *J* = 11.9, 10.7, 5.6 Hz, 3H), 3.73 (q, *J* = 7.1 Hz, 1H), 2.43 (d, *J* = 7.2 Hz, 2H), 2.08 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.86 (dt, *J* = 13.5, 6.8 Hz, 1H), 0.89 (d, *J* = 6.6 Hz, 6H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 174.29, 169.95, 169.82, 169.50, 140.78, 137.37, 129.49, 127.37, 86.63, 72.43, 70.68, 70.26, 67.26, 60.98, 45.10, 30.25, 30.23, 22.50, 20.73, 20.71, 20.65, 18.43. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₅H₃₄BrO₉ [(M + H)⁺], 557.1381, found, 557.1388.

(2R,3R,4S,5R,6R)-2-bromo-6-(((4-(*N*,*N*-dipropylsulfamoyl)benzoyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5c)

To a solution of compound S15 (294 mg, 0.80 mmol, 1.00 equiv) in dry CH_2Cl_2 (4.00 mL, 0.20 M) were added Probenecid S16 (274 mg, 0.96 mmol, 1.20 equiv), DMAP (29.3 mg, 0.24 mmol, 0.30 equiv), EDCI (186 mg, 0.42 mmol, 1.50 equiv) and DIPEA (0.25 ml, 1.44 mmol, 1.80 equiv). After stirring at rt for overnight, the reaction mixture was diluted with CH₂Cl₂ and washed with saturated NaHCO₃ and brine successively. The organic phase was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatograph Hexanes: EtOAc [3:1 (v/v)] to give S17 (209 mg, 0.34 mml, 46.4% vield) as colorless oil. 5c was synthesized according to the General Procedure A using S17 (209 mg, 0.34 mml, 46% yield) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [4:1 (v/v)] to afford the title compound (90.0 mg, 0.14 mmol, 40%) as white foam. $\mathbf{R}_f = 0.50$ Hexanes: EtOAc [2:1 (v/v)]. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.16 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 4.2 Hz, 1H), 5.60 (t, J = 9.8 Hz, 1H), 5.26 (t, J = 9.8 Hz, 1H), 4.85 (dd, J = 9.8, 4.2 Hz, 1H), 4.55 (d, J = 12.6, 2.1 Hz, 1H), 4.42-4.49 (m, 2H), 3.05-3.14 (m, 4H), 2.11 (s, 2H), 2.07 (s, 1H), 2.04 (s, 2H), 1.50-1.58 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 169.98, 169.96, 169.62, 164.85, 144.72, 132.78, 130.58, 130.58, 127.29, 127.29, 86.54, 72.22, 70.72, 70.25, 67.45, 62.07, 50.22, 50.22, 22.19, 22.19, 20.80, 20.76, 20.73, 11.31, 11.31. **HRMS** (ESI-TOF) m/z calcd for C₂₅H₃₅BrNO₁₁S [(M + H)⁺], 636.1109, found, 636.1113.

(2R,3R,4S,5R,6R)-2-bromo-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)oxy) methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(5d)

To a solution of compound **S15** (452 mg, 1.30 mmol, 1.00 equiv) in dry CH_2Cl_2 (6.5 mL, 0.20 M) were added Zaltoprofen **S18** (237 mg, 1.43 mmol, 1.10 equiv), DMAP (47.6 mg, 0.39 mmol, 0.30 equiv), EDCI (448 mg, 2.34 mmol, 1.80 equiv) and DIPEA (0.48 ml, 2.34 mmol, 1.80 equiv). After stirring at rt for overnight, the reaction mixture was diluted with CH_2Cl_2 and washed with saturated NaHCO₃ and brine successively. The organic phase was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified

by silica gel column chromatograph Hexanes: EtOAc [2:1 (v/v)] to give **S19** (700 mg, 1.11 mml, 86% yield) as colorless oil. 5d was synthesized according to the General Procedure A using S19 (440 mg, 0.70 mml, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the title compound (289 mg, 0.45 mmol, 64% yield) as white foam. $\mathbf{R}_f = 0.25$ Hexanes: EtOAc [3:1 (v/v)]. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.20 (dd, *J* = 3.5, 1.4 Hz, 1H), 8.19 (dd, J = 3.5, 1.4 Hz, 1.15H), 7.58-7.63 (m, 4.12H), 7.39-7.44 (m, 4.30H), 7.29-7.33 (m, 2.15H), 7.16 (t, J = 2.1 Hz, 1.15H), 7.15 (dt, J = 2.1 Hz, 1H), 6.55 (d, J = 4.2 Hz, 1H), 6.52 (d, J = 4.2 Hz, 1.15H), 5.49 (t, J = 9.8 Hz, 2.15H), 5.02 (t, J = 9.8 Hz, 1.15H), 4.97 (t, J = 9.8 Hz, 1H), 4.70 (dd, J = 9.8, 4.2 Hz, 1H), 4.65 (dd, J = 9.8, 4.2 Hz, 1.15H), 4.38 (s, 4.30H), 4.164.30 (m, 6.45H), 3.77 (qd, J = 7.0, 2.1 Hz, 2.15H), 2.10 (s, 3H), 2.09 (s, 3.45H), 2.04 (s, 3.45H), 2.03 (s, 3.45H), 2.03 (s, 3H), 1.99 (s, 3H), 1.51 (d, J = 7.0 Hz, 3H), 1.49 (d, J = 7.0 Hz, 3.45H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.50, 191.48, 173.48, 173.41, 169.99, 169.96, 169.87, 169.85, 169.54, 169.37, 142.30, 142.08, 140.31, 140.29, 138.15, 138.10, 136.33, 136.30, 133.58, 133.55, 132.63, 132.60, 131.70, 131.67, 131.65, 131.62, 131.00, 131.00, 128.98, 128.66, 126.97, 126.96, 126.73, 126.52, 86.55, 86.51, 72.32, 72.27, 70.68, 70.67, 70.23, 70.22, 67.42, 67.19, 61.54, 61.27, 51.20, 51.19, 45.16, 45.03, 20.79, 20.79, 20.79, 20.79, 20.70, 20.61, 18.26, 18.15. **HRMS** (ESI-TOF) *m/z* calcd for C₂₉H₃₀BrO₁₀S [(M + H)⁺], 649.0738, found, 649.0738.

(2R,3R,4S,5R,6R)-2-(((6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate (5e)

To a solution of compound **S15** (522 mg, 1.50 mmol, 1.00 equiv) in dry DCM (7.50 mL, 0.20 M) were added Adapalene **S20** (743 mg, 1.80 mmol, 1.20 equiv), DMAP (55.0 mg, 0.450 mmol, 0.300 equiv), EDCI·HCl (518 mg, 2.70 mmol, 1.80 equiv) and DIPEA (0.470 mL, 2.70 mmol, 1.80 equiv). After stirring at room temperature for overnight, the reaction mixture was diluted with DCM and washed with saturated NaHCO₃ and brine successively. The organic phase was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatograph Hexanes: EtOAc [4:1 (v/v)] to give **S21** (790 mg, 1.06 mmol, 71% yield) as white solid.

5e was synthesized according to the **General Procedure A** using **S21** (790 mg, 1.06 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [6:1 (v/v)] to afford the title compound (340 mg, 0.445 mmol, 42% yield) as a white foam. **R**_f = 0.42 [Hexanes: EtOAc 2:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.62 (s,

1H), 8.07-8.02 (m, 3H), 7.94 (d, J = 9.0 Hz, 1H), 7.81 (dd, J = 8.5, 1.5 Hz, 1H), 7.61 (d, J = 3.0 Hz, 1H), 7.55 (dd, J = 8.8, 2.0 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 6.68 (d, J = 4.5 Hz, 1H), 5.63 (t, J = 9.5 Hz, 1H), 5.33 (t, J = 10 Hz, 1H), 4.89 (dd, J = 10, 4.0 Hz, 1H), 4.60-4.48 (m, 3H), 3.91 (s, 3H), 2.19 (s, 6H), 2.12-2.08 (m, 9H), 2.05 (s, 3H), 1.81 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.05, 169.97, 169.58, 166.38, 159.11, 141.75, 139.17, 136.31, 132.66, 131.40, 131.36, 130.02, 128.54, 126.68, 126.24, 126.13, 125.91, 125.69, 124.87, 112.26, 86.78, 72.48, 70.84, 70.42, 67.75, 61.84, 55.32, 40.75, 37.36, 37.28, 29.26, 20.82, 20.80, 20.76. **HRMS** (ESI-TOF) *m/z* calcd for C₄₀H₄₃BrO₁₀ [(M + H)⁺], 763.2112, found, 763.2105.

(2R,3R,4S,5S,6S)-2-bromo-6-((((1S,2R,5S)-2-isopropyl-5methylcyclohexyl)oxy)carbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5f)

To a solution of **S22** (681 mg, 1.88 mmol, 1.00 equiv) in DCM (18.8 ml, 0.100 M) was added DMF (0.190 ml) and the solution was cooled to 0 °C. To that solution, oxalyl chloride (0.193 ml, 2.26 mmol, 1.20 equiv) was added dropwise. The reaction was allowed to run at room temperature for 3-4 h. Then the excess oxalyl chloride was removed under reduced pressure. In another round bottom flask, L-menthol (294 mg, 1.88 mmol, 1.00 equiv) was dissolved in DCM (16.0 ml) and to it pyridine (0.150 ml, 1.88 mmol, 1.00 equiv) was added. It was cooled to 0 °C and the solution of the formed acid chloride in DCM (2.80 ml) was added dropwise to it. The reaction was allowed to run overnight after which it was quenched with satd. NaHCO₃. The organic layers were collected and washed with brine. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography Hexanes: EtOAc [4:1 (v/v)] to give **S23** (470 mg, 0.94 mmol, 50% yield) as a colorless solid.

5f was synthesized according to the **General Procedure A** using **S23** (440 mg, 0.700 mmol, 1.00 equiv) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [4:1 (v/v)] to afford the title compound (55.0 mg, 0.106 mmol, 15 % yield) as a white foam. **R**_f = 0.42 [Hexanes: EtOAc 4:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 6.64 (d, *J* = 4.0 Hz, 1H), 5.57 (t, *J* = 9.7 Hz, 1H), 5.29 (dd, *J* = 10.3, 9.5 Hz, 1H), 4.87 (dd, *J* = 10.0, 4.0 Hz, 1H), 4.77 (td, *J* = 10.9, 4.4 Hz, 1H), 4.58 (d, *J* = 10.4 Hz, 1H), 2.10 (s, 3H), 2.06 – 2.03 (m, 6H), 1.98 – 1.92 (m, 1H), 1.81 (dtd, *J* = 13.9, 7.0, 2.7 Hz, 1H), 1.69 (dd, *J* = 14.2, 2.5 Hz, 2H), 1.53 – 1.34 (m, 2H), 1.10 – 0.98 (m, 1H), 0.96 – 0.80 (m, 8H), 0.74 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, δ): 169.95, 169.84, 169.18, 165.96, 85.75, 76.73, 72.52, 70.40, 70.03, 68.59, 47.03, 40.55, 34.18, 31.50, 26.17, 23.35, 22.07, 20.90, 20.76, 20.70, 16.22. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₂H₃₄BrO₉ [(M + H)⁺], 521.1381, found, 521.1382.

Alkene Substrates Synthesis:

4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (2h)

Pinacol (1.20 g, 10.2 mmol) was added in one portion to a suspension of 4-vinylphenylboronic acid **S24** (1.48 g, 10.0 mmol) and MgSO₄ (cat.) in THF (30.0 mL). The resulting mixture was stirred for 2h at ambient temperature before filtration and concentration under vacuum. The crude product was then purified by column chromatography on silica gel, eluting with Hexanes: EtOAc [50 : 1 (v/v)], the title compound was obtained as a colorless oil (1.51 g, 6.60 mmol, 97%). $\mathbf{R}_f = 0.63$ [Hexanes: EtOAc 20:1 (v/v)]. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.75-7.80 (m, 2H), 7.39-7.44 (m, 2H), 6.73 (dd, J = 11.2, 17.5 Hz, 1H), 5.82 (d, J = 17.5 Hz, 1H), 5.30 (d, J = 11.2 Hz, 1H), 1.35 (s, 12H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 140.33, 137.00, 135.14, 135.14, 125.65, 125.65, 115.00, 83.90, 83.90, 24.99, 24.99, 24.99, 24.99. HRMS (ESI-TOF) *m/z* calcd for C₁₄H₂₀BO₂ [(M + H)⁺], 231.1551, found, 231.1555.

2,2-difluoro-5-vinylbenzo[d][1,3]dioxole (2l)

CH₃PPh₃Br (4.29 g, 12.0 mmol) was added to a 100 mL flamed dried round bottom flask charged with a stirring bar. The flask was evacuated and filled with nitrogen. Anhydrous tetrahydrofuran (40.0 mL) was added, and then *n*-BuLi (2.50 M, 4.80 mL, 12.0 mmol) was added dropwise to the solution at 0 °C. The mixture was stirred at 0 °C for 15 min, then the THF solution of **S25** (10.0 mmol, 1.00 equiv) was added at 0 °C. The reaction mixture was stirred at room temperature for overnight. The resulting solution was quenched with aqueous solution of NH₄Cl and the mixture was extracted with ethyl acetate (3×40 mL). The combined organic phases were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc [100 : 1 (v/v)], to afford the title compound as colorless oil (1.47 g, 7.70 mmol, 77% yield). **R**_f = 0.83 [Hexanes: EtOAc 20:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.15 (d, *J* = 1.6 Hz, 1H), 7.07 (dd, *J* = 1.6, 8.0 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.66 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.66 (dd, J = 0.4, 17.6 Hz, 1H), 5.25 (dd, *J* = 0.4, 10.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, δ): 144.38, 143.43, 135.73, 134.33, 131.79 (t, *J*¹_{C-F} = 254.0 Hz), 122.47, 114.31, 109.41, 106.64. ¹⁹**F NMR** (376 MHz, CDCl₃, 25 °C, δ): -50.23. These spectroscopic data correspond to previously reported data.¹¹

2-(4-vinylbenzyl)isoindoline-1,3-dione (2p)

Phthalimide **S27** (2.94 g, 20.0 mmol, 1.00 equiv), K₂CO₃ (3.32g, 24.0 mmol, 1.20 equiv) and DMF (100 ml, 0.200 M) were added to a 200 mL round flask, after that, injecting **S26** (1.41 ml, 20.0 mmol, 1.00 equiv). After the reaction mixture was stirred at room temperature for overnight, the suspension was diluted with Et₂O and then washed with water, saturated NaHCO₃, and brine. The combined organic phases were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc (20 : 1 (v/v)), to afford the title compound as white solid (3.94 g, 15.0 mmol, 75% yield). **R**_{*f*} = 0.14 [Hexanes: EtOAc 20:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.80-7.86 (m, 2H), 7.66-7.72 (m, 2H), 7.32-7.41 (m, 4H), 6.67 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.71 (dd, *J* = 0.8, 17.6 Hz, 1H), 5.22 (dd, *J* = 0.8, 10.8 Hz, 1H), 4.83 (s, 2H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 168.14, 168.14, 137.31, 136.42, 135.96, 134.11, 134.11, 132.22, 128.98, 128.98, 126.60, 123.46, 123.46, 114.27, 114.27, 41.44. **HRMS** (ESI-TOF) *m/z* calcd for C₁₇H₁₄NO₂ [(M + H)⁺], 264.1019, found, 264.1020.

Methyl (4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-2,2,6a,6b,9,9,12a-heptamethyl-10-((4-vinylbenzoyl)oxy)-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylate (6a)

Under nitrogen atmosphere, a 50 mL flame-dried round bottom flask was charged with **S28** (325 mg, 2.20 mmol, 1.00 equiv), *N,N'*-dicyclohexylcarbodiimide (DCC) (545 mg, 2.64 mmol, 1.20 equiv), DMAP (322 mg, 2.64 mmol, 1.20 equiv), **S29** (1.03 g, 2.20 mmol, 1.00 equiv), and DCM (22.0 mL). After the reaction mixture was stirred at room temperature for overnight, it was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes:EtOAc [50 : 1 (v/v)], to afford the title compound as a white solid (1.09 g, 1.86 mmol, 83% yield). **R**_f = 0.46 [Hexanes: EtOAc 20:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.99 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 6.75 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.85 (d, *J* = 17.6 Hz, 1H), 5.37 (d, *J* = 10.8 Hz, 1H), 5.29 (t, *J* = 3.6 Hz, 1H), 4.73 (dd, *J* = 5.6, 10.4 Hz, 1H), 3.63 (s, 3H), 2.87 (dd, *J* = 4.4, 14.0 Hz, 1H), 0.95-2.05 (m, 22H), 1.15 (s, 3H), 1.01 (s,

3H), 0.98 (s, 3H), 0.93 (s, 3H), 0.93 (s, 3H), 0.90 (s, 3H), 0.74 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 178.43, 166.17, 143.94, 141.87, 136.19, 130.21, 129.96, 126.19, 122.40, 116.46, 81.63, 55.48, 51.66, 47.68, 46.84, 45.97, 41.77, 41.41, 39.42, 38.23, 38.21, 37.10, 35.04, 33.98, 33.24, 32.72, 32.50, 30.82, 28.33, 27.81, 26.05, 25.57, 23.77, 23.72, 23.55, 23.19, 18.36, 17.11, 16.97, 15.50. **HRMS** (ESI-TOF) *m*/*z* calcd for C₄₀H₅₇O₄ [(M + H)⁺], 601.4251, found, 601.4245.

(3aR,5S,6S)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-vinylbenzoate (6b)

Under nitrogen atmosphere, a 200 mL flame-dried round bottom flask was charged with **S28** (740 mg, 5.00 mmol, 1.00 equiv), *N,N'*-dicyclohexylcarbodiimide (DCC) (1.24 g, 6.00 mmol, 1.20 equiv), DMAP (733 mg, 6.00 mmol, 1.20 equiv), **S30** (1.30 g, 5.00 mmol, 1.00 equiv), and DCM (50.0 mL). After the reaction mixture was stirred at room temperature for overnight, it was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, eluting with Hexanes: EtOAc (20 : 1 (v/v)), to afford the title compound as a white solid (1.65 g, 4.25 mmol, 85 % yield). **R**_{*f*} = 0.11 [Hexanes: EtOAc 20:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.98 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 6.75 (dd, *J* = 10.8, 17.6 Hz, 1H), 5.95 (d, *J* = 3.6 Hz, 1H), 5.87 (dd, *J* = 0.4, 17.6 Hz, 1H), 5.49 (d, *J* = 2.4 Hz, 1H), 5.40 (dd, *J* = 0.4, 10.8 Hz, 1H), 4.63 (d, *J* = 3.6 Hz, 1H), 4.30-4.40 (m, 2H), 4.04-4.14 (m, 2H), 1.55 (s, 3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.26 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, δ): 165.09, 142.64, 135.99, 130.17, 130.17, 128.72, 126.39, 126.39, 117.08, 112.50, 109.52, 105.28, 83.53, 80.12, 76.73, 72.73, 67.39, 26.96, 26.88, 26.35, 25.34. **HRMS** (ESI-TOF) *m/z* calcd for C₂₁H₂₆O₇Na [(M + H)⁺], 413.1571, found, 413.1570.

General Procedure B (for migratory alkenylation reaction):

In a glovebox, to an oven-dried 20 mL screw cap vial was added $Pd(PPh_3)_4$ (23.1 mg, 0.0200 mmol, 10 mol%), Xantphos (23.1 mg, 0.0400 mmol, 20 mol%), bromosugar (0.200 mmol, 1.00 equiv), alkene substrate (0.300 mmol, 1.50 equiv), K₃PO₄ (84.9 mg, 0.400 mmol, 2.00 equiv), benzene (8.00 mL, 0.025 M) and a stir bar. Next, the vial was capped, taken out of the glovebox, and sealed with a black tape. The reaction mixture was heated to 90 °C and stirred for 5 min, then it was irradiated with 34W Blue LEDs for 14h. After that, the reaction mixture was concentrated *in vacuo*. The residue was purified by flash

chromatography on silica gel or use preparative TLC to separate the desired compound. If the diastereomers could not be separated by the flash column chromatography, they were purified by HPLC [Lux[®] 5 μ m i-Amylose-1 column eluting with isopropanol:hexane (v/v) at the flow rate of 1.0 ml/min] to obtain a pure NMR spectra.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3a)

According to the **General Procedure B**, the title compound was obtained as a white foam (65.0 mg, 0.150 mmol, 75% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.20$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3a**-*ax*): $t_R = 7.83 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min (Lux[®] 5µm i-cellouse 5). ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.31-7.40 (m, 4H), 7.26-7.30 (m, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.16 (dd, *J* = 9.0, 16.0 Hz, 1H), 6.17 (d, *J* = 1.5 Hz, 1H, H-1), 5.30-5.37 (m, 2H), 4.25 (dd, *J* = 5.0, 12.5 Hz, 1H), 4.15 (dd, *J* = 2.0, 12.5 Hz, 1H), 4.09-4.13 (m, 1H), 3.22 (dd, *J* = 5.0, 9.0 Hz, 1H, H-2), 2.18 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.84, 170.46, 169.72, 168.97, 136.50, 135.93, 128.79, 128.79, 128.23, 126.65, 126.65, 122.26, 94.27, 70.90, 70.84, 66.15, 62.47, 46.16, 21.22, 21.02, 20.90, 20.86. HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₆O₉Na [(M + Na)⁺], 457.1469, found, 457.1473.

Data for equatorial product (**3a**-*eq*): $t_R = 9.30$ min, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.24-7.33 (m, 5H), 6.54 (d, *J* = 16.1 Hz, 1H), 6.17(d, *J* = 3.5 Hz, 1H), 5.80 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.45 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.15 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.10 (ddd, *J* = 2.1, 4.2, 10.5 Hz, 1H), 4.07 (dd, *J* = 2.1, 12.6 Hz, 1H), 2.88-2.92 (m, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.88, 170.57, 169.84, 169.04, 136.40, 135.96, 128.78, 128.78, 128.24, 126.63, 126.63, 122.56, 92.87, 70.75, 70.09, 68.66, 62.05, 49.01, 21.08, 20.89, 20.89, 20.84. HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₆O₉Na [(M + Na)⁺], 457.1469, found, 457.1473.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(trifluoromethyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3b)

According to the **General Procedure B**, the title compound was obtained as a white foam (69.2 mg, 0.138 mmol, 69% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.20$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3b**-*ax*): $t_R = 16.8 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.62 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 9.0, 16.0 Hz, 1H), 6.20 (d, J = 1.5 Hz, 1H, H-1), 5.28-5.40 (m, 2H), 4.26 (dd, J = 5.0, 12.5 Hz, 1H), 4.10-4.17 (m, 2H), 3.22-3.26 (m, 1H, H-2), 2.21 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.78, 170.35, 169.74, 168.93, 139.82, 134.63, 130.09 (q, $J^2_{C-F} = 32.12 \text{ Hz}$), 126.84, 126.84, 125.79 (q, $J^3_{C-F} = 3.75 \text{ Hz}$), 125.79 (q, $J^3_{C-F} = 3.75 \text{ Hz}$), 125.15, 124.23 (q, $J^1_{C-F} = 271.63 \text{ Hz}$), 93.99, 70.87, 70.75, 66.07, 62.41, 46.20, 21.21, 20.99, 20.89, 20.85. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ -62.59 (s, 3F). HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₂₅F₃O₉Na [(M + Na)⁺], 525.1343, found, 525.1344.

Data for equatorial product (**3b**-*eq*): $t_R = 6.8 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.56 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 16.1 Hz, 1H), 6.18 (d, J = 3.5 Hz, 1H), 5.90 (dd, J = 9.1, 16.1 Hz, 1H), 5.46 (dd, J = 9.8, 11.2 Hz, 1H), 5.16 (t, J = 9.8 Hz, 1H), 4.34 (dd, J = 4.2, 12.6 Hz, 1H), 4.11 (ddd, J = 2.1, 3.5, 9.8 Hz, 1H), 4.07 (dd, J = 2.1, 11.9 Hz, 1H), 2.93 (ddd, J = 3.5, 9.8, 11.9 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.94 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.53, 169.80, 168.96, 139.72, 134.52, 130.10 (q, $J^2_{C-F} = 31.85 \text{ Hz}$), 126.81, 126.81, 125.78 (q, $J^3_{C-F} = 3.75 \text{ Hz}$), 125.78 (q, $J^3_{C-F} = 3.75 \text{ Hz}$), 125.46, 124.18 (q, $J^1_{C-F} = 269.67 \text{ Hz}$), 92.61, 70.64, 70.14, 68.50, 61.98, 49.07, 21.08, 20.98, 20.86, 20.83. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ -62.63 (s, 3F). HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₂₅F₃O₉Na [(M + Na)⁺], 525.1343, found, 525.1335.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-cyanostyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3c)

According to the **General Procedure B**, the title compound was obtained as a white foam (51.4 mg, 0.112 mmol, 56% yield, axial: equatorial = 5.6:1). $\mathbf{R}_f = 0.11$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***c-ax*): $t_R = 27.5 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 0.8 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.63 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 9.0, 16.0 Hz, 1H), 6.17 (d, J = 1.0 Hz, 1H, H-1), 5.38 (dd, J = 5.5, 10.0 Hz, 1H), 5.29 (t, J = 10.0 Hz, 1H), 4.26 (dd, J = 5.0, 12.5 Hz, 1H), 4.10-4.19 (m, 2H), 3.21-3.35 (m, 1H), 2.18 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.72, 170.28, 169.75, 168.89, 140.73, 134.32, 132.66, 132.66, 127.16, 127.16, 126.52, 118.89, 111.61, 93.83, 70.87, 70.67, 66.04, 62.39, 46.22, 21.19, 20.97, 20.88, 20.84. **HRMS** (ESI-TOF) m/z calcd for C₂₃H₂₆NO₉ [(M + H)⁺], 460.1602, found, 460.1592.

Data for equatorial product (**3c**-*eq*): $t_R = 23.08 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 0.8 ml/min. ¹H NMR (700 MHz, C8l₃, 25 °C, δ): 7.60 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 16.1 Hz, 1H), 6.18 (d, J = 3.5 Hz, 1H, H-1), 5.94 (dd, J = 9.1, 14.7 Hz, 1H), 5.45 (dd, J = 9.8, 10.5 Hz, 1H), 5.16 (t, J = 9.8 Hz, 1H), 4.33 (dd, J = 4.2, 12.6 Hz, 1H), 4.11 (ddd, J = 2.1, 4.2, 10.5 Hz, 1H), 4.07 (dd, J = 2.1, 12.6 Hz, 1H), 2.93 (ddd, J = 3.5, 9.8, 12.1 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.94 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.82, 170.53, 169.79, 168.94, 140.65, 134.18, 132.66, 132.66, 127.14, 127.14, 126.82, 118.86, 111.63, 92.50, 70.60, 70.17, 68.43, 61.95, 49.11, 21.09, 20.88, 20.86, 20.82. HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₂₅NO₉Na [(M + Na)⁺], 482.1422, found, 482.1421.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(tert-butyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3d)

According to the **General Procedure B**, the title compound was obtained as a white foam (68.4 mg, 0.140 mmol, 70% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.28$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3d**-*ax*): $t_R = 9.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.30-7.38 (m, 4H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.15 (d, *J* = 1.5 Hz, 1H, H-1), 6.12 (dd, *J* = 9.5, 16.0 Hz, 1H), 5.29-5.36 (m, 2H), 4.24 (dd, *J* = 4.5, 12.0, Hz, 1H), 4.15 (dd, *J* = 2.5, 12.0 Hz, 1H), 4.08-4.12 (m, 1H), 3.20 (dd, *J* = 4.5, 9.5Hz, 1H, H-2), 2.17 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.86, 170.48, 169.67, 168.98, 151.42, 135.67, 133.78, 126.39, 126.39, 125.71, 125.71, 121.45, 94.34, 70.95, 70.82, 66.14, 62.48, 46.18, 34.78, 31.41, 31.41, 21.23, 21.02, 20.92, 20.86. **HRMS** (ESI-TOF) *m/z* calcd for C₂₆H₃₄O₉Na [(M + Na)⁺], 513.2095, found, 513.2083.

Data for equatorial product (**3d**-*eq*): $t_R = 4.9$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.32-7.34 (m, 2H), 7.23-7.25 (m, 2H), 6.51 (d, *J* = 16.1 Hz, 1H), 6.15 (d, *J* = 3.5 Hz, 1H), 5.76 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.45 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.14 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.09 (ddd, *J* = 2.1, 4.2, 9.8 Hz, 1H), 4.06 (dd, *J* = 2.1, 12.6 Hz, 1H), 2.86-2.91 (m, 1H), 2.17 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H), 1.30 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.89, 170.58, 169.86, 169.03, 151.42, 135.69, 133.67, 126.38, 126.38, 125.69, 125.69, 121.76, 92.96, 70.80, 70.06, 68.71, 62.06, 48.97, 34.75, 31.39, 31.39, 31.39, 21.07, 20.91,

20.89, 20.84. **HRMS** (ESI-TOF) m/z calcd for C₂₆H₃₄O₉Na [(M + Na)⁺], 513.2095, found, 513.2096.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-methoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3e)

According to the **General Procedure B**, the title compound was obtained as a white foam (71.0 mg, 0.154 mmol, 77% yield, axial: equatorial = 4.5:1). $\mathbf{R}_f = 0.17$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3e**-*ax*): $t_R = 16.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.30-7.33 (m, 2H), 6.85-6.88 (m, 2H), 6.48 (d, *J* = 15.4 Hz, 1H), 6.15 (d, *J* = 1.4 Hz, 1H, H-1), 6.01 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.30-5.35 (m, 2H), 4.24 (dd, *J* = 4.9, 12.6 Hz, 1H), 4.15 (dd, *J* = 2.1, 12.6 Hz, 1H), 4.10 (ddd, *J* = 2.1, 4.9, 9.8 Hz, 1H), 3.82 (s, 3H), 3.16-3.20 (m, 1H), 2.17 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.48, 169.74, 169.00, 159.69, 135.30, 129.29, 127.86, 127.86, 119.84, 114.16, 114.16, 94.42, 70.96, 70.81, 66.18, 62.50, 55.48, 46.18, 21.23, 21.03, 20.92, 20.88. HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1575.

Data for equatorial product (**3e**-*eq*): $t_R = 11.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.22-7.24 (m, 2H), 6.82-6.85 (m, 2H), 6.47 (d, *J* = 15.4 Hz, 1H), 6.15 (d, *J* = 3.5 Hz, 1H), 5.64 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.43 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.14 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 3.5, 12.6 Hz, 1H), 4.07-4.11 (m, 1H), 4.06 (dd, *J* = 2.1, 11.9 Hz, 1H), 3.80 (s, 3H), 2.87 (ddd, *J* = 3.5, 9.1, 12.0 Hz, 1H), 2.17 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.89, 170.59, 169.85, 169.07, 159.71, 135.34, 129.20, 127.85, 127.85, 120.20, 114.16, 114.16, 93.00, 70.83, 70.08, 68.70, 62.07, 55.47, 49.04, 21.09, 20.90, 20.90, 20.85. HRMS (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1576.

$(2R,\!3S,\!4R,\!5S,\!6R)\mbox{-}6\mbox{-}(acetoxymethyl)\mbox{-}3\mbox{-}(E)\mbox{-}4\mbox{-}chlorostyryl)\mbox{tetrahydro-}2H\mbox{-}pyran\mbox{-}2,\!4,\!5\mbox{-}triyl\mbox{triacetate}\ (3f)$

According to the **General Procedure B**, the title compound was obtained as a white foam (74.0 mg, 0.158 mmol, 79% yield, axial: equatorial = 4.5:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***f-ax*): $t_R = 25.0 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.33 (s, 4H), 6.53 (dd, J = 0.5, 16.0 Hz, 1H), 6.15 (d, J = 1.5 Hz, 1H, H-1), 6.14 (dd, J = 9.0, 16.0 Hz, 1H), 5.28-5.38 (m, 2H), 4.28 (dd, J = 5.0, 12.0 Hz, 1H), 4.09-4.17 (m, 2H), 3.23 (dd, J = 5.0, 9.0 Hz, 1H, H-2), 2.20 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.03 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.80, 170.39, 169.75, 168.95, 134.93, 134.71, 133.96, 128.98, 127.87, 127.87, 122.98, 94.14, 70.85, 70.82, 66.12, 62.45, 46.17, 21.21, 21.00, 20.90, 20.86. **HRMS** (ESI-TOF) *m/z* calcd for C₂₂H₂₅ClO₉Na [(M + Na)⁺], 491.1079, found, 491.1079.

Data for equatorial product (**3f**-*eq*): $t_R = 22.8 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.19-7.31 (m, 4H), 6.51 (d, *J* = 16.0 Hz, 1H), 6.19 (d, *J* = 3.5 Hz, 1H, H-1), 5.80 (dd, *J* = 9.0, 16.0 Hz, 1H), 5.46 (dd, J = 9.0, 11.0 Hz, 1H), 5.17 (t, *J* = 10.0 Hz, 1H), 4.35 (dd, *J* = 4.0, 12.5 Hz, 1H), 4.04-4.13 (m, 2H), 2.85-2.92 (m, 1H, H-2), 2.20 (s, 3H), 2.12 (s, 4H), 2.07 (s, 3H), 1.96 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.85, 170.55, 169.82, 169.00, 134.84, 134.67, 134.00, 128.98, 128.98, 127.84, 127.84, 123.32, 92.74, 70.70, 70.13, 68.59, 62.03, 49.05, 21.08, 20.87, 20.89, 20.83. HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₅ClO₉Na [(M + Na)⁺], 491.1079, found, 491.1078.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-phenoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3g)

According to the **General Procedure B**, the title compound was obtained as a white foam (84.1 mg, 0.160 mmol, 80% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***g*-*ax*): $t_R = 11.3$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.31-7.38 (m, 4H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.52 (d, *J* = 16.0 Hz, 1H), 6.16 (d, *J* = 1.5 Hz, 1H, H-1), 6.07 (dd, *J* = 9.0, 16.0 Hz, 1H), 5.29-5.38 (m, 2H), 4.25 (dd, *J* = 4.5, 12.5 Hz, 1H), 4.07-4.18 (m, 2H), 3.20 (dd, *J* = 4.5, 9.0 Hz, 1H, H-2), 2.18 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.82, 170.43, 169.73, 168.97, 157.40, 157.12, 135.08, 131.67, 129.94, 129.94, 128.03, 128.03, 123.61, 121.22, 119.15, 119.03, 119.03, 94.30, 70.92, 70.84, 66.15, 62.47, 46.16, 21.22, 21.03, 20.90, 20.86. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₃₀O₁₀Na [(M + Na)⁺], 549.1731, found, 549.1729. Data for equatorial product (**3***g*-*q*): $t_R = 7.41$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.36 (dd, *J* = 7.0, 8.4 Hz, 2H), 7.24-7.28 (m, 2H), 7.12 (dd, *J* = 7.0, 7.7 Hz, 2H), 7.00 (d, *J* = 7.7 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.52 (d, *J* = 16.1 Hz, 1H), 6.19 (d, *J* = 3.5 Hz, 1H, H-1), 5.73 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 2H), 7.90 (t, *J* = 9.8, 12.0 Hz, 2H), 7.12 (t, *J* = 9.8 Hz, 2H), 7.10 (t, *J* = 9.8, 12.0 Hz, 2H), 5.17 (t, *J* = 9.8 Hz, 2H), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 2H), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 2H), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 2H), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 2Hz), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz), 5.46 (dd, *J* = 9.8, 11.0 Hz, 1H), 5.17 (t, *J* = 9.8 Hz), 5.45 (dd), *J* = 9.8 Hz, 5.45 (dd), *J* = 9.8 Hz], 5.45 (dd), *J* = 9.8 Hz], 5.45 (dd), *J* = 9.8 Hz], 5.45 (dd), *J*

1H), 4.33 (d, J = 4.2, 12.6 Hz, 1H), 4.08-4.11 (m, 1H), 4.06 (dd, J = 2.1, 12.6 Hz, 1H), 2.91 (ddd, J = 3.5, 9.1, 11.9 Hz, 1H), 2.20 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.88, 170.58, 169.06, 157.44, 135.10, 129.94, 129.94, 128.01, 128.01, 123.66, 121.51, 119.19, 119.19, 118.93, 118.93, 92.91, 77.34, 77.16, 76.97, 70.79, 70.09, 68.65, 62.05, 49.02, 21.09, 20.91, 20.89, 20.84. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₃₀O₁₀Na [(M + Na)⁺], 549.1731, found, 549.1732.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3h)

According to the **General Procedure B**, the title compound was obtained as a white foam (73.5 mg, 0.132 mmol, 66% yield, axial: equatorial = 4.1:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3h**-*ax*): $t_R = 15.1 \text{ min}$, 6% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.78 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.56 (d, *J* = 16.0 Hz, 1H), 6.23 (dd, *J* = 9.5, 16.0 Hz, 1H), 6.17 (d, *J* = 1.0 Hz, 1H, H-1), 5.30-5.38 (m, 2H), 4.25 (dd, *J* = 4.5, 12.5 Hz, 1H), 4.15 (dd, *J* = 2.5, 12.5 Hz, 1H), 4.08-4.13 (m, 1H), 3.22 (dd, *J* = 4.5, 9.0 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.35 (s, 12H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.84, 170.45, 169.72, 168.93, 139.07, 135.96, 135.27, 135.27, 135.27, 125.94, 125.94, 123.31, 94.20, 83.99, 70.84, 66.14, 62.42, 46.22, 29.85, 29.85, 25.01, 25.01, 25.01, 25.01, 21.21, 21.01, 20.88, 20.86. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₃₇BO₁₁Na [(M + Na)⁺], 583.2321, found, 583.2321.

Data for equatorial product (**3h**-*eq*): $t_R = 8.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.74 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 7.7 Hz, 3H), 6.54 (d, *J* = 16.1 Hz, 1H), 6.16 (d, *J* = 2.8 Hz, 1H, H-1), 5.86 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.45 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.15 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.03-4.11 (m, 2H), 2.89-2.93 (m, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.93 (s, 3H), 1.34 (s,12H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.85, 170.50, 169.81, 169.02, 138.92, 135.96, 135.21, 135.21, 128.77, 125.88, 125.88, 123.49, 92.76, 83.95, 83.95, 70.65, 70.06, 68.62, 62.01, 49.03, 24.96, 24.96, 24.96, 21.06, 20.87, 20.81, 20.81. HRMS (ESI-TOF) *m/z* calcd for C₂₈H₃₇BO₁₁Na [(M + Na)⁺], 583.2321, found, 583.2329.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-3-methoxystyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3i)

According to the **General Procedure B**, the title compound was obtained as a white foam (66.5 mg, 0.144 mmol, 72% yield, axial: equatorial = 4.1:1). $\mathbf{R}_f = 0.18$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3i**-*ax*): $t_R = 9.6 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.23-7.28 (m, 1H), 6.95-7.00 (m, 1H), 6.90-6.91 (m, 1H), 6.83 (ddd, J = 0.7, 2.1, 7.7 Hz, 1H), 6.52 (d, J = 15.4 Hz, 1H), 6.16 (dd, J = 9.1, 15.4 Hz, 1H), 6.16 (s, 1H, H-1), 5.29-5.36 (m, 2H), 4.25 (dd, J = 4.9, 12.6 Hz, 1H), 4.15 (dd, J = 2.1, 12.6 Hz, 1H), 4.11 (ddd, J = 2.8, 4.9, 9.8Hz, 1H), 3.83 (s, 3H), 3.21 (ddt, J = 0.7, 4.9, 9.1 Hz, 1 H, H-2), 2.18 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.46, 169.71, 168.97, 159.97, 137.90, 135.84, 129.77, 122.56, 119.27, 113.75, 112.10, 94.21, 70.86, 70.81, 66.14, 62.47, 55.43, 46.14, 21.22, 21.02, 20.90, 20.86. HRMS (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1575. Data for equatorial product (**3i**-*eq*): $t_R = 7.6 \text{ min}, 10\%$ (v/v) isopropanol in hexane at the flow rate of 1.0

blue for equatorial product (ef eq): $q_{z} = 7.6$ min, 10.6 ((, v) isopropanor in nexate at the flow rate of 1.6 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.22 (t, J = 7.7 Hz, 1H), 6.87-6.91 (m, 1H), 6.78-6.84 (m, 2H), 6.50 (d, J = 15.4 Hz, 1H), 6.16 (d, J = 3.5 Hz, 1H), 5.79 (dd, J = 9.1, 16.1Hz, 1H), 5.44 (dd, J = 9.8, 10.5 Hz, 1H), 5.15 (t, J = 9.8 Hz, 1H), 4.33 (dd, J = 4.2, 12.6 Hz, 1H), 4.09 (ddd, J = 2.1, 3.5, 9.8 Hz, 1H), 4.06 (dd, J = 2.1, 12.6 Hz, 1H), 3.81 (s, 3H), 2.89 (ddd, J = 3.5, 9.8, 11.9 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.87, 170.54, 169.84, 169.02, 159.93, 137.84, 135.84, 129.78, 122.90, 119.20, 113.51, 112.32, 92.83, 70.71, 70.08, 68.67, 62.04, 55.41, 48.96, 21.08, 20.89, 20.89, 20.79. HRMS (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1572.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-3-(trifluoromethyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3j)

According to the **General Procedure B**, the title compound was obtained as a white foam (78.0 mg, 0.150 mmol, 75% yield, axial: equatorial = 4.7:1). $\mathbf{R}_f = 0.18$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3j**-*ax*): $t_R = 6.60 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.62 (s, 1H), 7.54 (t, J = 8.0 Hz, 2H), 7.44-7.49 (m, 1H), 6.60 (d, J = 15.5 Hz, 1H), 6.25 (dd, J = 9.5, 15.5 Hz, 1H), 6.17 (d, J = 1.5 Hz, 1H, H-1), 5.30-5.40 (m, 2H), 4.26 (dd, J = 4.5, 12.5 Hz, 1H), 4.16 (dd, J = 2.5, 12.5 Hz, 1H), 4.12 (ddd, J = 2.0, 4.0, 9.5 Hz, 1H), 3.23 (dd, J = 5.5, 9.5 Hz, 1H, H-2), 2.19 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.81, 170.39, 169.74, 168.92, 137.14, 134.57, 131.28 (q, $J^2_{C-F} = 30.45$ Hz), 129.82, 129.30, 124.82 (q, $J^3_{C-F} = 3.79$ Hz), 124.41, 124.14 (q, $J^1_{C-F} = 271.25$ Hz), 123.26 (q, $J^3_{C-F} = 3.79$ Hz), 94.01, 70.88, 70.71, 66.02, 62.34, 46.15, 21.22, 21.02, 20.86, 20.83. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ -62.80 (s, 3F). **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₂₅F₃O₉Na [(M + Na)⁺], 525.1343, found, 525.1343.

Data for equatorial product (**3***j*-*eq*): $t_R = 21.2 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.40-7.52 (m, 4H), 6.56 (d, *J* = 16.1 Hz, 1H), 6.18 (d, *J* = 3.5 Hz, 1H, H-1), 5.88 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.46 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.16 (t, *J* = 9.8 Hz, 1H), 4.34 (dd, *J* = 3.5, 12.6 Hz, 1H), 4.11 (ddd, *J* = 2.1, 4..2, 10.5 Hz, 1H), 4.07 (dd, *J* = 2.1, 12.6 Hz, 1H), 2.93 (ddd, *J* = 3.5, 9.1, 11.9 Hz, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.95 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.53, 169.82, 169.01, 137.05, 134.55, 131.25 (q, *J*²_{C-F} = 33.25 Hz), 129.63 (q, *J*¹_{C-F} = 260.75 Hz), 129.30, 128.80, 124.85 (q, *J*³_{C-F} = 3.50 Hz), 124.69, 123.39 (q, *J*³_{C-F} = 3.50 Hz), 92.66, 70.63, 70.11, 68.56, 61.99, 49.01, 21.10, 20.89, 20.86, 20.83. ¹⁹**F NMR** (376 MHz, CDCl3, 25 °C) δ -62.79 (s, 3F). **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₂₅F₃O₉Na [(M + Na)⁺], 525.1343, found, 525.1344.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3k)

According to the **General Procedure B**, the title compound was obtained as a white foam (71.4 mg, 0.160 mmol, 80% yield, axial: equatorial = 3.6:1). $\mathbf{R}_f = 0.24$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***k*-*ax*): $t_R = 5.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.440-7.44 (m, 1H), 7.13-7.22 (m, 3H), 6.76 (d, *J* = 16.0 Hz, 1H), 6.19 (d, *J* = 1.5 Hz, 1H), 6.02 (dd, *J* = 9.5, 16.0 Hz, 1H), 5.30-5.39 (m, 2H), 4.25 (dd, *J* = 4.5, 12.0 Hz, 1H), 4.09-4.16 (m, 2H), 3.24 (dd, *J* = 4.5, 9.5Hz, 1H, H-2), 2.33 (s, 2H), 2.18 (s, 2H), 2.09 (s, 2H), 2.06 (s, 2H), 2.02 (s, 2H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.86, 170.40, 169.69, 168.99, 135.97, 135.51, 134.11, 130.42, 128.12, 126.36, 126.22, 123.98, 94.26, 70.93, 70.86, 66.11, 62.45, 46.36, 21.22, 21.03, 20.89, 20.86, 19.95. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₂₈O₉Na [(M + Na)⁺], 471.1626, found, 471.1621. Data for equatorial product (**3***k*-*eq*): $t_R = 6.7 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.22-7.30 (m, 1H), 7.09-7.19 (m, 3H), 6.74 (d, *J* = 16.1 Hz, 1H), 6.20 (d, *J* = 2.8 Hz, 1H, H-1), 5.67 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.47 (t, *J* = 10.5 Hz, 1H), 5.16 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 3.5, 11.9 Hz, 1H), 4.11 (d, *J* = 9.1 Hz, 1H), 4.07 (d, *J* = 11.9 Hz, 1H), 2.94 (t, *J* = 9.8 Hz, 1H, H-2), 2.29 (s, 3H), 2.17 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.97 (s, 3H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 170.88, 170.54, 169.87, 169.07, 135.76, 135.50, 134.00, 130.37, 128.15, 126.38, 126.17, 124.05, 92.87, 70.71, 70.12, 68.68, 62.05, 49.18, 21.09, 20.92, 20.90, 20.85, 19.85. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₂₈O₉Na [(M + Na)⁺], 471.1626, found, 471.1622.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3l)

According to the **General Procedure B**, the title compound was obtained as a yellow oil (81.6 mg, 0.159 mmol, 80% yield, axial: equatorial = 5.2:1). $\mathbf{R}_f = 0.15$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***l*-*ax*): t_R = 9.4 min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 7.13 (d, J = 1.4 Hz, 1H), 7.05 (dd, J = 1.4, 8.4 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 16.1 Hz, 1H), 6.15 (d, J = 1.4 Hz, 1H, H-1), 6.08 (dd, J = 9.1, 16.1 Hz, 1H), 5.35 (dd, J = 5.6, 9.8 Hz, 1H), 5.30 (t, J = 9.8 Hz, 1H), 4.26 (dd, J = 4.2, 12.6 Hz, 1H), 4.14 (dd, J = 2.1, 12.6 Hz, 1H), 4.11 (ddd, J = 2.1, 4.2, 9.8 Hz, 1H), 3.18-3.21 (m, 1H), 2.18 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.80, 170.36, 169.74, 168.96, 144.41, 143.62, 134.59, 132.96, 131.77 (t, $J^{I}_{C-F} = 252$ Hz), 122.74, 122.74, 109.59, 107.03, 94.08, 70.84, 70.79, 66.05, 62.42, 46.07, 21.21, 21.00, 20.91, 20.86. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ -50.18 (s, 2F). HRMS (ESI-TOF) m/z calcd for C₂₃H₂₄F₂O₁₁Na [(M + Na)⁺], 537.1179, found, 537.1180.

Data for equatorial product (**3***l*-*eq*): t_R = 7.6 min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.04 (d, J = 1.4 Hz, 1H), 6.94-7.00 (m, 2H), 6.47 (d, J = 15.4 Hz, 1H), 6.16 (d, J = 3.5 Hz, 1H, H-1), 5.71 (dd, J = 9.1, 15.4 Hz, 1H), 5.43 (dd, J = 9.8, 11.2 Hz, 1H), 5.15 (t, J = 9.8 Hz, 1H), 4.33 (dd, J = 4.2, 11.9 Hz, 1H), 4.10 (ddd, J = 2.1, 4.2, 10.5 Hz, 1H), 4.06 (dd, J = 2.1, 11.9 Hz, 1H), 2.85-2.91 (m, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.54, 169.81, 169.01, 144.38, 143.64, 134.49, 132.85, 131.75 (t, $J^{1}_{C-F} = 252$ Hz), 123.14, 122.76, 109.57, 106.96, 92.69, 70.69, 70.13, 68.50, 62.00, 48.99, 21.10, 20.89, 20.87, 20.83. ¹⁹**F NMR** (376 MHz, CDCl₃, 25 °C) δ -50.18 (s, 2F). **HRMS** (ESI-TOF) m/z calcd for C₂₃H₂₄F₂O₁₁Na [(M + Na)⁺], 537.1179, found, 537.1175.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2,4,6-trimethylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3m)

According to the **General Procedure B**, the title compound was obtained as a white foam (52.4 mg, 0.108 mmol, 55% yield, axial: equatorial = 3.5:1). $\mathbf{R}_f = 0.24$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3m**-*ax*): $t_R = 4.4 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H** NMR (500 MHz, CDCl₃, 25 °C, δ): 6.88 (s, 2H), 6.51 (d, *J* = 16.0 Hz, 1H), 6.20 (s, 1H, H-1), 5.70 (dd, *J* = 9.0, 16.0 Hz, 1H), 5.39 (dd, *J* = 5.0, 10.0 Hz, 1H), 5.33 (t, *J* = 10.0 Hz, 1H), 4.22 (dd, *J* = 4.5, 12.5 Hz, 1H), 4.07-4.14 (m, 2H), 3.22 (dd, *J* = 5.0, 9.0 Hz, 1H, H-2), 2.28 (s, 9H), 2.19 (s, 3H), 2.05 (s, 6H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.86, 170.35, 169.63, 169.04, 136.81, 135.93, 135.93, 133.80, 133.64, 128.72, 128.72, 127.63, 94.35, 70.88, 70.85, 65.96, 62.29, 46.56, 21.24, 21.08, 21.05, 21.00, 21.00, 20.87, 20.82. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₅H₃₂O₉Na [(M + Na)⁺], 499.1939, found, 499.1937.

Data for equatorial product (**3m**-*eq*): $t_R = 3.1 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 6.84 (s, 1H), 6.51 (d, *J* = 16.1 Hz, 1H), 6.24 (d, *J* = 3.7 Hz, 1H), 5.47 (dd, *J* = 9.4, 11.2 Hz, 1H), 5.31 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.15 (dd, *J* = 9.8 Hz, 1H), 4.34 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.08-4.12 (m, 1H), 4.07 (dd, *J* = 2.1, 11.9 Hz, 1H), 2.98 (ddd, *J* = 3.5, 9.1, 11.9 Hz, 1H), 2.25 (s, 3H), 2.16 (s, 6H), 2.13 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.88, 170.40, 169.93, 169.02, 136.87, 135.74, 135.74, 134.13, 133.28, 128.71, 128.71, 127.77, 93.14, 70.79, 70.08, 68.95, 62.02, 48.93, 21.05, 21.01, 20.96, 20.89, 20.83, 20.78, 20.78. HRMS (ESI-TOF) *m/z* calcd for C₂₅H₃₂O₉Na [(M + Na)⁺], 499.1939, found, 499.1936.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(perfluorophenyl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3n)

According to the **General Procedure B**, the title compound was obtained as a white foam (61.5 mg, 0.117 mmol, 60% yield, axial: equatorial = 4.8:1). $\mathbf{R}_f = 0.21$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3n**-*ax*): $t_R = 10.3 \text{ min}$, 3% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.53 (dd, J = 9.1, 16.8 Hz, 1H), 6.45 (d, J = 16.8 Hz, 1H), 6.18 (d, J = 1.4 Hz, 1H, H-1), 5.39 (dd, J = 5.6, 10.5 Hz, 1H), 5.30 (t, J = 10.5 Hz, 1H), 4.23 (dd, J = 4.2, 12.6 Hz, 1H), 4.16 (dd, J = 2.1, 12.6 Hz, 1H), 4.09-4.13 (m, 1H), 3.21 (dd, J = 5.6, 9.1 Hz, 1H), 2.19 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ):13C NMR (176 MHz, CDCl₃) δ 170.86, 170.32, 169.65, 168.88, 144.87 (m), 144.87 (m), 140.42 (m), 137.91 (m), 137.91 (m), 132.29 (m), 120.23, 111.31 (m), 93.44, 70.88, 70.46, 65.74, 62.04, 47.12, 21.18, 20.92, 20.83, 20.75. ¹⁹F **NMR** (376 MHz, CDCl₃, 25 °C) δ (-142.86)-(-142.74) (m), -155.08 (t, $J_{C-F} = 22.0$ Hz), (-162.55)-(-162.38) (m). **HRMS** (ESI-TOF) m/z calcd for C₂₂H₂₁F₅O₉Na [(M + Na)⁺], 547.0998, found, 547.0996.

Data for equatorial product (**3n**-*eq*): $t_R = 11.3 \text{ min}$, 3% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 6.43 (d, *J* = 16.1 Hz, 1H), 6.21 (d, *J* = 3.5 Hz, 1H, H-1), 6.13 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.45 (t, *J* = 10.5 Hz, 1H), 5.15 (t, *J* = 9.8 Hz, 1H), 4.33 (dd, *J* = 3.5, 12.6 Hz, 1H), 4.05-4.13 (m, 2H), 2.94 (dt, *J* = 3.5, 9.1 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.70, 170.26, 169.67, 168.82, 132.51 (m)0, 119.87, 92.16, 70.31, 70.04, 68.32, 61.77, 49.65, 20.80, 20.74, 20.67, 20.65. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) δ (-162.94)-(-142.82) (m), -154.96 (t, *J*_{C-F} = 22.0 Hz), (-162.42)-(-162.25) (m). HRMS (ESI-TOF) *m/z* calcd for C₂₂H₂₁F₅O₉Na [(M + Na)⁺], 547.0998, found, 547.0993.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(naphthalen-2-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (30)

According to the **General Procedure B**, the title compound was obtained as a white foam (46.0 mg, 0.095 mmol, 48% yield, axial: equatorial = 4.2:1). $\mathbf{R}_f = 0.15$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**30**-*ax*): $t_R = 25.5 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.80-7.83 (m, 3H), 7.73 (s, 1H), 7.60 (dd, *J* = 1.4, 8.4 Hz, 1H), 7.44-7.50 (m, 2H), 6.71 (d, *J* = 15.4 Hz, 1H), 6.29 (dd, *J* = 9.1, 15.4 Hz, 1H), 6.21 (d, *J* = 1.4 Hz, 1H, H-1), 5.34-5.41 (m, 2H), 4.27 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.18 (dd, J = 2.1, 12.6 Hz, 1H), 4.12-4.15 (m, 1H), 3.28 (dd, *J* = 4.9, 9.8 Hz, 1H, H-2), 2.19 (s, 3H), 2.13 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.49, 169.77, 168.99, 136.04, 133.88, 133.62, 133.33, 128.47, 128.17, 127.86, 126.81, 126.57, 126.30, 123.57, 122.51, 94.30, 70.93, 70.86, 66.21, 62.51, 46.32, 21.25, 21.05, 20.93, 20.89. HRMS (ESI-TOF) *m/z* calcd for C₂₆H₂₈O₉Na [(M + Na)⁺], 507.1626, found, 507.1621.

Data for equatorial product (**30**-*eq*): $t_R = 14.9 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.74-7.83 (m, 3H), 7.67 (s, 1H), 7.42-7.51 (m, 3H), 6.70 (d, *J* = 16.1 Hz, 1H), 6.21 (s, 1H, H-1), 5.92 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.49 (t, *J* = 9.8 Hz, 1H), 5.18 (t, *J*

= 9.8 Hz, 1H), 4.32-4.38 (m, 1H), 4.05-4.16 (m, 2H), 2.96 (t, J = 10.5 Hz, 1H), 2.20 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 1.94 (s, 3H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 170.89, 170.60, 169.86, 169.07, 136.05, 133.77, 133.56, 133.30, 128.48, 128.17, 127.83, 126.71, 126.58, 126.33, 123.55, 122.78, 92.88, 70.78, 70.12, 68.69, 62.06, 49.14, 21.12, 20.90, 20.89, 20.85. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₆H₂₈O₉Na [(M + Na)⁺], 507.1626, found, 507.1622.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-4-((1,3-dioxoisoindolin-2-yl)methyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3p)

According to the **General Procedure B**, the title compound was obtained as a white foam (90.2 mg, 0.152 mmol, 77% yield, axial: equatorial = 4.1:1). $\mathbf{R}_f = 0.06$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***p*-*ax*): $t_R = 32.3 \text{ min}$, 30% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.83-7.86 (m, 2H), 7.69-7.22 (m, 2H), 7.40-7.42 (m, 2H), 7.31-7.34 (m, 2H), 6.51 (d, *J* = 15.4 Hz, 1H), 6.09-6.15 (m, 2H), 5.33 (dd, *J* = 5.6, 10.5 Hz, 1H), 5.28 (t, *J* = 10.5 Hz, 1H), 4.84 (s, 2H), 4.23 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.13 (dd, *J* = 2.1, 12.6 Hz, 1H), 4.09 (ddd, J = 2.1, 4.2, 9.8 Hz, 1H), 3.16-3.20 (m, 1H), 2.16 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.43, 169.65, 168.95, 168.17, 168.17, 136.34, 136.12, 135.38, 135.38, 134.17, 134.17, 132.24, 129.17, 129.17, 126.93, 126.93, 123.53, 123.53, 122.62, 94.16, 70.85, 70.79, 66.04, 62.37, 46.14, 41.46, 21.21, 20.99, 20.92, 20.84. **HRMS** (ESI-TOF) *m/z* calcd for C₃₁H₃₁NO₁₁Na [(M + Na)⁺], 616.1789, found, 616.1789.

Data for equatorial product (**3p**-*eq*): $t_R = 18.8 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.81 (d, J = 9.1 Hz, 2H), 7.73 (s, 1H), 7.60 (dd, J = 1.4, 8.4 Hz, 1H), 7.44-7.50 (m, 2H), 6.71 (d, J = 15.4 Hz, 1H), 6.29 (dd, J = 9.1, 15.4 Hz, 1H), 6.21 (d, J = 1.4 Hz, 1H, H-1), 5.34-5.40 (m, 2H), 4.27 (dd, J = 4.2, 12.6 Hz, 1H), 4.18 (dd, J = 2.8, 12.6 Hz, 1H), 4.12-4.15 (m, 1H), 3.28 (dd, J = 4.9, 9.8 Hz, 1H), 2.19 (s, 3H), 2.13 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.49, 169.77, 168.99, 136.04, 136.04, 133.88, 133.62, 133.32, 128.47, 128.17, 127.86, 127.86, 126.81, 126.57, 126.30, 123.57, 123.57, 122.51, 122.51, 94.30, 70.93, 70.86, 66.21, 62.51, 46.32, 21.25, 21.05, 20.93, 20.89. **HRMS** (ESI-TOF) *m/z* calcd for C₃₁H₃₁NO₁₁Na [(M + Na)⁺], 616.1789, found, 616.1787.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-vinylferrocene))tetrahydro-2H-pyran-2,4,5-triyl triacetate (3q)

According to the **General Procedure B**, the title compound was obtained as a yellow foam. (91.1 mg, 0.168 mmol, 84% yield, axial: equatorial = 5.2:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***q*-*ax*): $t_R = 11.2 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 6.29 (d, *J* = 15.4 Hz, 1H), 6.11 (d, *J* = 1.4 Hz, 1H, H-1), 5.75 (dd, *J* = 9.8, 15.4 Hz, 1H), 5.28-5.35 (m, 2H), 4.32-4.36 (m, 2H), 4.25 (dd, *J* = 4.9, 12.6 Hz, 1H), 4.22-4.24 (m, 2H), 4.15 (dd, *J* = 2.1, 12.6 Hz, 1H), 4.10-4.13 (m, 5H), 4.09 (ddd, *J* = 2.1, 4.2, 9.1 Hz, 1H), 3.08 (ddq, *J* = 1.4, 5.6, 9.8 Hz, 1H, H-2), 2.18 (s, 3H), 2.13 (s, 3H), 2.06 (s, 3H), 2.06 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.40, 169.71, 169.05, 133.71, 118.94, 94.32, 82.14, 70.87, 70.79, 69.39, 69.39, 69.39, 69.39, 69.39, 69.11, 69.08, 67.15, 66.89, 66.13, 62.50, 46.07, 21.24, 21.12, 20.96, 20.86. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₆H₃₁FeO₉ [(M + H)⁺], 543.1312, found, 543.1274.

Data for equatorial product (**3q**-*eq*): $t_R = 8.5$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (400 MHz, CDCl₃, 25 °C, δ): 1H NMR (400 MHz, Chloroform-d) δ 6.27 (d, *J* = 16.0 Hz, 1H), 6.11 (d, *J* = 3.6 Hz, 1H, H-1), 5.33-5.45 (m, 2H), 5.11 (t, *J* = 10.0 Hz, 1H4.18-4.35 (m, 5H), 4.02-4.10 (m, 7H), 2.80 (ddd, *J* = 3.6, 9.2, 12.0 Hz, 1H), 2.17 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 13C NMR (176 MHz, CDCl₃) δ 170.87, 170.52, 169.88, 169.01, 133.74, 119.52, 93.07, 70.88, 70.01, 69.42, 69.19, 68.85, 67.47, 66.76, 62.05, 48.69, 21.04. HRMS (ESI-TOF) *m/z* calcd for C₂₆H₃₁FeO₉ [(M + H)⁺], 543.1312, found, 543.1290.

(2R, 3S, 4R, 5S, 6R) - 6 - (acetoxymethyl) - 3 - ((E) - 2 - (pyridin - 4 - yl)vinyl) tetrahydro - 2H - pyran - 2, 4, 5 - triyl triacetate (3r)

According to the **General Procedure B**, the title compound was obtained as a white foam (66.9 mg, 0.155 mmol, 78% yield, axial: equatorial = 4.3:1). $\mathbf{R}_f = 0.11$ Hexanes: EtOAc [1:1 (v/v)].

Data for axial product (**3r**-*ax*): $t_R = 7.6 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.50-8.69 (m, 2H), 7.20-7.35 (m, 2H), 6.53 (d, *J* = 16.1 Hz, 1H), 6.41 (dd, J = 9.1, 16.1 Hz, 1H), 6.17 (d, J = 1.1 Hz, 1H, H-1), 5.38 (dd, J = 5.6, 9.8 Hz, 1H), 5.30 (t, J = 9.8 Hz, 1H), 4.26 (dd, J = 4.2, 11.9 Hz, 1H), 4.11- 4.16 (m, 2H), 3.25 (dd, J = 6.3, 8.4 Hz, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.76, 170.31, 169.73, 168.90, 150.33, 143.67, 133.70, 133.70, 127.54, 127.54, 121.15, 93.73, 70.87, 70.61, 65.99, 62.34, 46.12, 21.19, 20.98, 20.89, 20.84. **HRMS** (ESI-TOF) m/z calcd for C₂₁H₂₆NO₉ [(M + Na)⁺], 436.1602, found, 436.1598.

Data for equatorial product (**3r**-*eq*): $t_R = 15.4 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.49-8.61 (m, 2H), 7.14-7.20 (m, 2H), 6.48 (d, *J* = 16.1 Hz, 1H), 6.18 (d, *J* = 3.5 Hz, 1H, H-1), 6.04 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.46 (dd, *J* = 9.1, 10.5 Hz, 1H), 5.16 (t, *J* = 9.8 Hz, 1H), 4.34 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.11 (ddd, *J* = 2.1, 3.5, 9.8 Hz, 1H), 4.07 (dd, *J* = 2.1, 12.6 Hz, 1H), 2.94 (ddd, *J* = 3.5, 9.1, 11.8 Hz, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.95 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.52, 169.80, 168.93, 150.31, 143.60 133.58, 133.58, 127.82, 127.82, 121.13, 92.44, 70.53, 70.15, 68.43, 61.95, 49.02, 21.08, 20.88, 20.84, 20.81. HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₂₆NO₉ [(M + Na)⁺], 436.1602, found, 436.1595.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(pyridin-2-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3s)

According to the **General Procedure B**, the title compound was obtained as a white foam (39.0 mg, 0.090 mmol, 45% yield, axial: equatorial = 4.6:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [1:1 (v/v)].

Data for axial product (**3***s-ax*): $t_R = 10.6 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.57 (dd, *J* = 4.0 Hz, 1H), 7.65 (dt, *J* = 2.0, 6.0 Hz, 1H), 7.29 (d, *J* = 6.0 Hz, 1H), 7.17 (ddd, *J* = 0.5, 4.5, 7.5 Hz, 1H), 6.63-6.75 (m, 2H), 6.21 (d, *J* = 1.0 Hz, 1H, H-1), 5.40 (dd, *J* = 5.5, 10.0 Hz, 1H), 5.34 (t, *J* = 10.0 Hz, 1H), 4.24 (dd, *J* = 5.0, 12.0 Hz, 1H), 4.17 (dd, *J* = 2.5, 12.0 Hz, 1H), 4.11 (ddd, *J* = 2.5, 4.5, 9.5 Hz, 1H), 3.25 (ddd, *J* = 1.5, 5.5, 8.5 Hz, 1H), 2.18 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.88, 170.46, 169.70, 168.92, 154.65, 149.78, 136.68, 135.63, 126.91, 122.77, 121.92, 93.97, 70.97, 70.72, 66.33, 62.52, 45.84, 21.22, 21.04, 20.90, 20.86. **HRMS** (ESI-TOF) *m/z* calcd for C₂₁H₂₆NO₉ [(M + Na)⁺], 436.1602, found, 436.1597.

Data for equatorial product (**3***seq*): $t_R = 6.10$ min, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 8.50-8.58 (m, 1H), 7.62 (dt, J = 2.0, 7.6 Hz, 1H), 7.22-7.26 (m, 1H), 7.15 (ddd, J = 0.8, 5.2, 7.6 Hz, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.31 (dd, J = 8.8, 15.6 Hz, 1H), 6.19 (d, J = 3.6 Hz, 1H, H-1), 5.48 (dd, J = 9.6, 10.8 Hz, 1H), 5.16 (t, J = 9.6 Hz, 1H), 4.33 (dd, J = 4.0, 12.0 Hz, 1H), 4.03-4.14 (m, 2H), 2.93-3.01 (m, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.95 (s, 3H).

¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.85, 170.48, 169.83, 169.03, 154.57, 149.71, 136.68, 135.86, 126.82, 122.75, 121.62, 92.60, 70.61, 69.98, 68.72, 61.98, 48.59, 21.10, 20.86, 20.86, 20.80. HRMS (ESI-TOF) *m/z* calcd for C₂₁H₂₆NO₉ [(M + Na)⁺], 436.1602, found, 436.1596.

(2R,3S,4R,5S,6R)-3-((E)-2-(9H-carbazol-9-yl)vinyl)-6-(acetoxymethyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3t)

According to the **General Procedure B**, the title compound was obtained as a white solid (67.0 mg, 0.128 mmol, 64% yield, axial: equatorial = 3.0:1). $\mathbf{R}_f = 0.14$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3***t*-*ax*): $t_R = 15.1 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.09 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.49 (dt, *J* = 1.5, 7.5 Hz, 2H), 7.31 (dt, *J* = 1.0, 8.0 Hz, 2H), 7.17 (d, *J* = 14.0 Hz, 1H), 6.30 (d, *J* = 1.5 Hz, 1H, H-1), 6.11 (dd, *J* = 10.0, 14.5 Hz, 1H), 5.42-5.48 (m, 2H), 4.30 (dd, *J* = 4.5, 12.5 Hz, 1H), 4.15-4.20 (m, 2H), 3.37 (dd, J = 2.5, 10.0 Hz, 1H, H-2), 2.23 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃, 25 °C, δ): 170.85, 170.47, 169.65, 169.00, 139.48, 139.48, 128.19, 126.54, 126.54, 124.16, 124.16, 121.00, 121.00, 120.55, 120.55, 112.87, 110.29, 110.29, 94.47, 70.91, 70.82, 65.80, 62.18, 44.70, 21.24, 21.12, 20.87, 20.85. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₂₉NO₉Na [(M + Na)⁺], 546.1735, found, 546.1729.

Data for equatorial product (**3t**-*eq*): $t_R = 17.9 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.06 (d, J = 8.0 Hz, 2H), 7.45-7.53 (m, 4H), 7.30 (dt, J = 1.5, 7.0 Hz, 2H), 7.18 (d, J = 14.0 Hz, 1H), 6.30 (d, J = 3.5 Hz, 1H, H-1), 5.72 (dd, J = 9.5, 14.5 Hz, 1H), 5.56 (dd, J = 9.5, 11.0 Hz, 1H), 5.23 (t, J = 9.5 Hz, 1H), 4.37 (dd, J = 4.5, 12.5 Hz, 1H), 4.16 (ddd, J = 2.0, 3.5, 10.0 Hz, 1H), 4.11 (dd, J = 2.0, 12.5 Hz, 1H), 3.03 (ddd, J = 3.5, 9.5, 11.0 Hz, 1H, H-2), 2.20 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.86, 170.70, 169.85, 169.08, 139.35, 139.35, 128.30, 126.58, 126.58, 124.14, 124.14, 121.05, 121.05, 120.52, 120.52, 112.20, 110.21, 110.21, 93.11, 70.82, 70.22, 68.69, 62.04, 47.36, 21.07, 20.94, 20.90, 20.84. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₈H₂₉NO₉Na [(M + Na)⁺], 546.1735, found, 546.1730.
(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-((E)-2-(benzo[b]thiophen-2-yl)vinyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (3u)

According to the **General Procedure B**, the title compound was obtained as a white foam (76.1 mg, 0.156 mmol, 78% yield, axial: equatorial = 3.7:1). **R**_f = 0.14 Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**3u**-*ax*): $t_R = 13.80$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.74-7.79 (m, 1H), 7.66-7.72 (m, 1H), 7.28 -7.34 (m, 2H), 7.16 (s, 1H), 6.79 (d, J = 15.5 Hz, 1H), 6.19 (d, J = 1.0 Hz, 1H, H-1), 6.08 (dd, J = 9.0, 15.5 Hz, 1H), 5.29-5.40 (m, 2H), 4.24 (dd, J = 4.5, 12.5 Hz, 1H), 4.18 (dd, J = 2.5, 12.5 Hz, 1H), 4.11 (ddd, J = 2.5, 4.0, 9.5 Hz, 1H), 3.22 (dd, J = 5.0, 9.0 Hz, 1H, H-2), 2.18 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.88, 170.48, 169.66, 168.94, 141.44, 139.97, 139.10, 129.59, 125.15, 124.71, 124.38, 123.78, 123.65, 122.42, 93.93, 70.90, 70.73, 66.06, 62.31, 46.03, 21.21, 21.04, 20.93, 20.86. HRMS (ESI-TOF) *m/z* calcd for C₂₄H₂₆O₉SNa [(M + Na)⁺], 513.1190, found, 513.1187.

Data for equatorial product (**3u**-*eq*): $t_R = 9.87 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): δ 7.71-7.74 (m, 1H), 7.66-7.69 (m, 1H), 7.28-7.32 (m, 2H), 7.13 (s, 1H), 6.74 (d, *J* = 16.1 Hz, 1H), 6.19 (d, *J* = 3.5 Hz, 1H, H-1), 5.73 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.45 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.15 (t, *J* = 9.8 Hz, 1H), 4.34 (dd, *J* = 3.5, 11.9 Hz, 1H), 4.09-4.11 (m, 1H), 4.07 (dd, *J* = 2.8, 12.6 Hz, 1H), 2.92 (ddd, *J* = 4.2, 9.1, 11.9 Hz, 1H), 2.20 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.96 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 25 °C, δ): 170.87, 170.47, 169.86, 169.05, 141.19, 139.94, 139.11, 129.49, 125.17, 124.72, 124.55, 123.77, 123.56, 122.37, 92.57, 70.62, 70.11, 68.62, 62.01, 48.85, 21.06, 20.89, 20.85, 20.84. **HRMS** (ESI-TOF) *m/z* calcd for C₂₄H₂₆O₉SNa [(M + Na)⁺], 513.1190, found, 513.1188.

(2R,3S,4R,5S,6R)-6-((2,2-dimethyl-1,1-diphenylpropoxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4b)

According to the **General Procedure B**, the title compound was obtained as a white foam (97.7 mg, 0.152 mmol, 76% yield, axial: equatorial = 4.7:1). $\mathbf{R}_f = 0.55$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4b**-*ax*): $t_R = 3.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 7.70 (d, *J* = 6.3 Hz, 1H), 7.65 (d, *J* = 6.3 Hz, 1H), 7.33-7.46 (m, 7H), 7.11-7.20 (m, 3H), 6.74 (d, *J* = 15.4 Hz, 1H), 6.22 (d, *J* = 1.4 Hz, 1H, H-1), 6.12 (dd, *J* = 9.8, 15.4 Hz, 1H), 5.57 (t, *J* = 9.8 Hz, 1H), 5.35 (dd, *J* = 5.6, 9.8 Hz, 1H), 3.93 (dt, *J* = 2.8, 9.8 Hz, 1H), 3.76 (dd, *J* = 1.4, 11.9 Hz, 1H), 3.70 (dd, *J* = 3.5, 11.9 Hz, 1H), 3.20 (dd, *J* = 5.6, 9.8 Hz, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H), 1.06 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.66, 169.42, 169.12, 135.87, 135.87, 135.86, 135.41, 133.66, 133.26, 133.16, 130.33, 129.84, 129.80, 127.96, 127.83, 127.83, 127.80, 127.80, 126.31, 126.21, 124.36, 94.51, 73.47, 71.42, 66.00, 62.25, 46.81, 26.85, 26.85, 26.85, 21.27, 21.12, 20.83, 19.93, 19.36. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₇H₄₄O₈SiNa [(M + Na)⁺], 667.2698, found, 667.2697.

Data for equatorial product (**4b**-*eq*): $t_R = 3.1 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.63-7.69 (m, 4H), 7.36-7.45 (m, 6H), 7.27-7.29 (m, 1H), 7.11-7.18 (m, 3H), 6.75 (d, *J* = 15.4 Hz, 1H), 6.25 (d, *J* = 3.5 Hz, 1H), 5.68 (dd, *J* = 9.1, 154 Hz, 1H), 5.44 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.27 (t, *J* = 9.8 Hz, 1H), 3.92-3.97 (m, 1H), 3.70-3.76 (m, 2H), 2.91 (ddd, *J* = 3.5, 9.8, 10.8 Hz, 1H), 2.31 (s, 3H), 2.12 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H), 1.06 (s, 9H).¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.75, 169.68, 169.13, 135.94, 135.86, 135.86, 135.84, 135.84, 135.50, 133.71, 133.30, 133.28, 130.34, 129.86, 129.82, 128.03, 127.82, 127.82, 127.82, 126.35, 126.17, 124.53, 92.93, 72.85, 71.26, 68.97, 62.52, 49.18, 26.88, 26.88, 26.88, 21.11, 20.99, 20.83, 19.89, 19.38. HRMS (ESI-TOF) *m/z* calcd for C₃₇H₄₄O₈SiNa [(M + Na)⁺], 667.2698, found, 667.2691.

(2R,3S,4R,5R)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4c)

According to the **General Procedure B**, the title compound was obtained as a colorless oil (49.5 mg, 0.132 mmol, 66% yield, axial: equatorial = 3.7:1). **R**_f = 0.36 Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4c**-*ax*): $t_R = 6.18 \text{ min}$, 3% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.35-7.39 (m, 1H), 7.16-7.20 (m, 2H), 7.13-7.15 (m, 1H), 6.75 (d, J = 15.4 Hz, 1H), 6.05 (d, J = 5.6 Hz, 1H, H-1), 5.93 (dd, J = 9.1, 15.4 Hz, 1H), 5.31 (dd, J = 4.9, 7.0 Hz, 1H), 5.00-5.04 (m, 1H), 4.05 (dd, J = 4.2, 12.6 Hz, 1H), 3.87 (dd, J = 6.3, 12.6 Hz, 1H), 3.12-3.17 (m, 1H), 2.32 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.06, 169.99, 169.42, 135.95, 135.45, 133.62, 130.39, 128.05, 126.36, 126.07, 124.13, 93.42, 70.64, 66.67, 63.01, 45.31, 21.15, 21.08, 21.05, 19.92. HRMS (ESI-TOF) *m*/*z* calcd for C₂₀H₂₄O₇Na [(M + Na)⁺], 399.1414, found, 399.1411.

Data for equatorial product (**4c**-*eq*): $t_R = 11.22 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min (using Lux® 5µm i-Cellulose-5 column). ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.27-7.30 (m, 1H), 7.11-7.21 (m, 3H), 6.73 (d, *J* = 16.1 Hz, 1H), 6.11 (d, *J* = 3.5 Hz, 1H), 5.71 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.46

(dd, J = 9.8, 11.2 Hz, 1H), 5.02-5.08 (m, 1H), 3.96 (dd, J = 5.6, 10.5 Hz, 1H), 3.71 (t, J = 10.5 Hz, 1H), 2.85 (dddd, J = 0.8, 3.5, 9.8, 11.2 Hz, 1H), 2.30 (s, 3H), 2.16 (s, 3H), 2.06 (s, 3H), 1.98 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.52, 170.20, 169.41, 135.85, 135.48, 133.74, 130.35, 128.09, 126.38, 126.20, 124.47, 93.13, 70.20, 69.41, 61.16, 49.24, 21.08, 21.00, 20.96, 19.87. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₀H₂₄O₇Na [(M + Na)⁺], 399.1414, found, 399.1410.

(2R,3S,4R,5R,6R)-6-(acetoxymethyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4d)

According to the **General Procedure B**, the title compound was obtained as a white foam (49.0 mg, 0.110 mmol, 55% yield, axial: equatorial = 2.3:1). $\mathbf{R}_f = 0.27$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4d**-*ax*): $t_R = 7.67 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.43-7.47 (m, 1H), 7.11 -7.20 (m, 3H), 6.65 (d, *J* = 16.1 Hz, 1H), 6.32 (dd, *J* = 9.8, 16.1 Hz, 1H), 6.23 (s, 1H, H-1), 5.40-5.43 (m, 1H), 5.38 (dd, *J* = 3.5, 5.6 Hz, 1H), 4.36-4.40 (m, 1H), 4.20 (dd, *J* = 7.0, 11.2 Hz, 1H), 4.12-4.17 (m, 1H), 2.95 (dd, *J* = 6.3, 9.8 Hz, 1H), 2.33 (s, 3H), 2.17 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.67, 170.22, 170.10, 169.03, 136.09, 135.37, 132.06, 130.52, 127.77, 126.30, 125.99, 125.47, 95.05, 68.97, 67.32, 66.35, 61.88, 44.78, 21.25, 20.97, 20.92, 20.86, 19.94. **HRMS** (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₉Na [(M + Na)⁺], 471.1626, found, 471.1620.

Data for equatorial product (**4d**-*eq*): $t_R = 7.98 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.28 (dd, J = 3.1, 7.7 Hz, 1H), 7.11-7.19 (m, 3H), 6.75 (d, J = 15.4 Hz, 1H), 6.25 (d, J = 3.5 Hz, 1H, H-1), 5.67 (dd, J = 8.4, 15.4 Hz, 1H), 5.42-5.45 (m, 1H), 5.38 (dd, J = 2.8, 11.9 Hz, 1H), 4.29-4.33 (m, 1H), 4.14 (dd, J = 7.0, 11.2 Hz, 1H), 4.09 (dd, J = 6.3, 11.2 Hz, 1H), 3.15 (ddd, J = 3.5, 8.4, 12.1 Hz, 1H), 2.31 (s, 3H), 2.19 (s, 3H), 2.14 (s, 3H), 2.05 (s, 3H), 1.96 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.64, 170.44, 170.39, 169.22, 135.94, 135.46, 133.74, 130.40, 128.04, 126.34, 126.04, 124.82, 93.57, 68.87, 68.29, 66.25, 61.78, 43.13, 21.09, 20.94, 20.86, 20.86, 19.92. **HRMS** (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₉Na [(M + Na)⁺], 471.1626, found, 471.1622.

(2R,3S,4R,5S,6S)-6-(methoxycarbonyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4e)

According to the **General Procedure B**, the title compound was obtained as a white solid (27.5 mg, 0.064 mmol, 32% yield, axial: equatorial = 3.6:1). $\mathbf{R}_f = 0.30$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4e**-*ax*): $t_R = 7.90 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.38-7.42 (m, 1H), 7.16-7.20 (m, 2H), 7.13-7.16 (m, 1H), 6.78 (d, J = 16.1 Hz, 1H), 6.34 (d, J = 3.5 Hz, 1H, H-1), .98 (dd, J = 9.1, 16.1 Hz, 1H), 5.39 (t, J = 7.7 Hz, 1H), 5.34 (dd, J = 4.2, 8.4 Hz, 1H), 4.51 (d, J = 7.7 Hz, 1H), 3.79 (s, 3H), 3.19 (dt, J = 4.2, 9.1 Hz, 1H), 2.32 (s, 3H), 2.16 (s, 3H), 2.11 (s, 3H), 2.03 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 169.94, 169.72, 168.84, 168.14, 135.79, 135.50, 134.15, 130.38, 128.15, 126.36, 126.20, 123.56, 92.69, 72.45, 70.34, 66.90, 52.98, 45.15, 21.13, 20.95, 20.89, 19.89. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₂H₂₆O₉Na [(M + Na)⁺], 457.1469, found, 457.1465.

Data for equatorial product (**4e**-*eq*): $t_R = 8.60 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.10-7.20 (m, 4H), 6.74 (d, *J* = 15.5 Hz, 1H), 6.27 (d, *J* = 3.4 Hz, 1H, H-1), 5.66 (dd, *J* = 9.5, 15.5 Hz, 1H), 5.51 (dd, *J* = 9.5, 11.0 Hz, 1H), 5.24 (q, *J* = 10.5 Hz, 1H), 4.40 (d, *J* = 10.0 Hz, 1H), 3.76 (s, 3H), 2.96 (ddd, *J* = 3.5, 10.0, 11.5 Hz, 1H), 2.30 (s, 3H), 2.17 (s, 3H), 2.06 (s, 3H), 1.98 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.39, 169.86, 168.79, 167.94, 135.66, 135.54, 134.24, 130.37, 128.21, 126.38, 126.19, 123.66, 92.57, 73.17, 71.03, 69.81, 53.57, 48.86, 21.01, 20.90, 20.74, 19.85. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₂H₂₆O₉Na [(M + Na)⁺], 457.1469, found, 457.1465.

(2S,3S,4S,5R,6S)-6-methyl-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (4f)

According to the **General Procedure B**, the title compound was obtained as a white foam (56.0 mg, 0.144 mmol, 72% yield, axial: equatorial = 2.4:1). $\mathbf{R}_f = 0.39$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4f**-*ax*): $t_R = 6.30 \text{ min}$, 3% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. **¹H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.47 (d, *J* = 6.3 Hz, 1H), 7.12-7.22 (m, 3H), 6.63 (d, *J* = 15.4 Hz, 1H), 6.34 (d, *J* = 9.8, 15.4 Hz, 1H), 6.19 (s, 1H, H-1), 5.35-5.39 (m, 1H), 5.24-5.27 (m, 1H), 4.23-4.31 (m, 1H), 2.90-2.97 (m, 1H), 2.33 (s, 3H), 2.15 (s, 3H), 2.08 (s, 3H), 2.00 (s, 3H), 1.21 (d, *J* = 5.6 Hz, 3H). **¹³C** **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.51, 170.30, 169.28, 136.23, 135.35, 131.76, 130.49, 127.64, 126.57, 126.24, 125.50, 95.36, 69.47, 67.91, 67.41, 44.51, 21.31, 21.02, 20.96, 19.94, 16.43. **HRMS** (ESI-TOF) *m/z* calcd for C₂₁H₂₆O₇Na [(M + Na)⁺], 413.1571, found, 413.1565.

Data for equatorial product (**4f**-*eq*): $t_R = 5.05$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): δ 7.28 (dd, J = 2.1, 7.0 Hz, 1H), 7.10-7.18 (m, 3H), 6.74 (d, J = 16.1 Hz, 1H), 6.22 (d, J = 3.5 Hz, 1H, H-1), 5.68 (dd, J = 9.1, 16.1 Hz, 1H), 5.39 (dd, J = 2.8, 11.9 Hz, 1H), 5.27 (dd, J = 1.4, 2.8 Hz, 1H), 4.18-4.25 (m, 1H), 3.12 (ddd, J = 3.5, 8.4, 12.1 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H), 2.13 (s, 3H), 1.96 (s, 3H), 1.18 (d, J = 6.3 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.79, 170.50, 169.46, 136.07, 135.43, 133.46, 130.37, 127.94, 126.32, 126.06, 125.32, 93.84, 69.54, 68.81, 67.33, 42.94, 21.14, 20.95, 20.92, 19.92, 16.55. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₁H₂₆O₇Na [(M + Na)⁺], 413.1571, found, 413.1567.

(2R,4aR,6R,7S,8R,8aS)-2-(4-methoxyphenyl)-7-((E)-2-methylstyryl) hexahydropyrano [3,2-d][1,3] dioxine-6,8-diyl diacetate (4g)

According to the **General Procedure B**, the title compound was obtained as a white solid (62.6 mg, 0.130 mmol, 65% yield, axial: equatorial = 10:1). $\mathbf{R}_f = 0.55$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4g**-*ax*): $t_R = 5.37$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.45 (dd, J = 3.5, 4.9 Hz, 1H), 7.38-7.42 (m, 2H), 7.18-7.22 (m, 2H), 7.15-7.18 (m, 1H), 6.87-6.91 (m, 2H), 6.75 (d, J = 15.4 Hz, 1H), 6.16 (d, J = 1.4 Hz, 1H), 6.07 (dd, J = 9.8, 15.4 Hz, 1H), 5.54 (s, 1H), 5.39 (dd, J = 5.6, 10.5 Hz, 1H), 4.31 (dd, J = 4.2, 10.5 Hz, 1H), 4.08 (dt, J = 4.2, 9.8 Hz, 1H), 4.00 (t, J = 10.5 Hz, 1H), 3.78-3.83 (m, 1H), 3.80 (s, 3H), 3.33-3.38 (m, 1H), 2.34 (s, 3H), 2.20 (s, 3H), 2.04 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.42, 169.31, 160.34, 135.95, 135.52, 133.87, 130.46, 129.62, 128.10, 127.66, 126.33, 126.03, 124.59, 113.80, 113.80, 102.14, 94.71, 76.56, 70.08, 68.86, 66.18, 55.45, 46.57, 21.28, 21.20, 19.95. HRMS (ESI-TOF) *m/z* calcd for C₂₇H₃₁O₈ [(M + H)⁺], 483.2013, found, 483.2006.

Data for equatorial product (**4g**-*eq*): $t_R = 12.00 \text{ min}$, 7% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.36-7.41 (m, 2H), 7.28-7.33 (m, 1H), 7.11-7.20 (m, 3H), 6.86-6.91 (m, 2H), 6.73 (d, *J* = 16.1 Hz, 1H), 6.14 (d, *J* = 4.2 Hz, 1H, H-1), 5.75 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.57 (t, *J* = 9.8 Hz, 1H), 5.52 (s, 1H), 4.29 (dd, *J* = 4.9, 10.5 Hz, 1H), 4.02 (dt, *J* = 3.5, 10.5 Hz, 1H), 3.81 (s, 3H), 3.72-3.80 (m, 2H), 2.89 (dt, *J* = 3.5, 10.5 Hz, 1H), 2.31 (s, 3H), 2.17 (s, 3H), 1.99 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.39, 169.48, 160.29, 135.90, 135.44, 133.61, 130.32, 129.68, 128.07, 127.65, 126.42, 126.33, 124.80, 113.74, 113.74, 101.84, 93.42, 79.81, 69.50, 68.90, 65.43, 55.45, 50.10, 21.14, 21.12, 19.88. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₇H₃₁O₈ [(M + H)⁺], 483.2013, found,

483.2008.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-5-((E)-2-methylstyryl)-6-((thiophene-2-carbonyl)oxy)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4h)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white foam (49.1 mg, 0.07 mmol, 70% yield, axial: equatorial = 4.0:1). $\mathbf{R}_f = 0.48$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4h**-*ax*): $t_R = 6.72 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.03 (dd, J = 1.4, 8.4 Hz, 2H), 8.01 (dd, J = 0.7, 3.5 Hz, 1H), 7.97 (dd, J = 1.4, 8.4 Hz, 2H), 7.95 (dd, 1.4, 8.4 Hz, 2H), 7.70 (dd, J = 1.4, 4.9 Hz, 1H), 7.50-7.55 (m, 2H), 7.47-7.50 (m, 1H), 7.42 (dd, J = 0.7, 7.7 Hz, 1H), 7.32-7.40 (m, 6H), 7.21 (dd, J = 4.2, 4.9 Hz, 1H), 7.14-7.20 (m, 2H), 7.07-7.11 (m, 1H), 6.82 (d, J = 15.4 Hz, 1H), 6.53 (d, J = 1.4 Hz, 1H, H-1), 6.27 (dd, J = 9.1, 15.4 Hz, 1H), 6.07 (t, J = 9.8 Hz, 1H), 5.94 (dd, J = 5.6, 9.8 Hz, 1H), 4.66 (dd, J = 2.1, 11.9 Hz, 1H), 4.55 (dt, J = 2.8, 9.8 Hz, 1H), 4.45 (dd, J = 3.5, 11.9 Hz, 1H), 3.63-3.70 (m, 1H), 2.07 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.25, 165.97, 165.49, 160.09, 135.86, 135.73, 134.79, 134.51, 133.85, 133.61, 133.52, 133.21, 132.75, 130.41, 129.98, 129.98, 129.90, 129.90, 129.84, 129.84, 129.80, 129.31, 129.10, 128.62, 128.62, 128.59, 128.59, 128.57, 128.57, 128.37, 128.08, 126.36, 126.05, 123.53, 94.94, 71.83, 71.53, 66.52, 62.73, 46.65, 19.62. **HRMS** (ESI-TOF) *m/z* calcd for C₄₁H₃₄O₉SNa [(M + Na)⁺], 725.1816, found, 725.1814.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-methoxybenzoyl)oxy)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4i)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white foam (34.1 mg, 0.047 mmol, 47% yield, axial: equatorial = 3.6:1). $\mathbf{R}_f = 0.45$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4i**-*ax*): $t_R = 10.9$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.14-8.19 (m, 2H), 8.03 (dd, J = 1.4, 8.4 Hz, 2H), 7.94-7.98 (m, 4H), 7.47-7.55 (m, 3H), 7.43 (dd, J = 1.4, 7.0 Hz, 1H), 7.37 (dd, J = 7.7, 8.4 Hz, 2H), 7.31-7.35 (m, 4H), 7.15-7.21 (m, 2H), 7.07-7.10 (m, 1H), 7.01-7.05 (m, 2H), 6.83 (d, J = 16.1 Hz, 1H), 6.55 (d, J = 1.4 Hz, 1H), 6.30 (dd, J = 9.1, 16.1 Hz, 1H), 6.08 (t, J = 10.5 Hz, 1H), 5.97 (dd, J = 5.6, 10.5 Hz, 1H), 4.64 (dd, J = 2.8, 12.6 Hz, 1H), 4.54 (dt, J = 2.8, 9.8 Hz, 1H), 4.44 (dd, J = 3.5, 11.9 Hz, 1H), 3.92 (s, 3H), 3.62-3.68 (m, 1H), 2.08 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.26, 166.04, 165.50, 164.30, 164.21, 135.93, 135.72, 134.37, 133.59, 133.52, 133.19, 132.33, 132.33, 130.40, 129.97, 129.97, 129.90, 129.90, 129.83, 129.83, 129.34, 129.13, 128.62, 128.62, 128.57, 128.57, 128.55, 128.55, 128.03, 126.35, 126.07, 123.79, 121.68, 114.17, 114.17, 94.56, 71.97, 71.38, 66.63, 62.79, 55.72, 46.73, 19.63. HRMS (ESI-TOF) *m*/*z* calcd for C₄₄H₃₈O₁₀Na [(M + Na)⁺], 749.2357, found, 749.2352.

(2R,3S,4R,5S,6R)-6-((benzoyloxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl tribenzoate (4j)

According to the **General Procedure B**, the title compound was obtained as a white solid (83.4 mg, 0.120 mmol, 60% yield, axial: equatorial = 5.0:1). $\mathbf{R}_f = 0.40$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4j**-*ax*): $t_R = 8.59 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.19-8.22 (m, 2H), 8.01-8.04 (m, 2H), 7.93-7.99 (m, 4H), 7.65-7.70 (m, 1H), 7.56 (t, *J* = 7.0 Hz, 2H), 7.46-7.54 (m, 3H), 7.42-7.45 (m, 1H), 7.35-7.39 (m, 2H), 7.30-7.35 (m, 4H), 7.14-7.22 (m, 2H), 7.07-7.12 (m, 1H), 6.84 (d, *J* = 16.1 Hz, 1H), 6.58 (d, *J* = 1.4 Hz, 1H), 6.30 (dd, *J* = 9.1, 16.1 Hz, 1H), 6.09 (t, *J* = 9.8 Hz, 1H), 5.97 (dd, *J* = 4.9, 9.8 Hz, 1H), 4.65 (dd, *J* = 2.8, 12.6 Hz, 1H), 4.56 (dt, *J* = 2.8, 9.8 Hz, 1H), 4.45 (dd, *J* = 3.5, 12.6 Hz, 1H), 3.68 (dd, *J* = 4.9, 9.1 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.25, 166.03, 165.49, 164.62, 135.89, 135.73, 134.47, 133.98, 133.61, 133.54, 133.20, 130.41, 130.19, 130.19, 129.97, 129.97, 129.90, 129.90, 129.83, 129.83, 129.81, 129.41, 129.30, 129.10, 128.91, 128.91, 128.63, 128.63, 128.58, 128.58, 128.56, 128.06, 128.07, 126.36, 126.06, 123.64, 94.89, 71.92, 71.49, 66.57, 62.76, 46.68, 19.63. **HRMS** (ESI-TOF) *m*/*z* calcd for C₄₃H₃₆O₉Na [(M + Na)⁺], 719.2252, found, 719.2244.

Data for equatorial product (**4***j*-*eq*): $t_R = 10.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.18-8.22 (m, 2H), 7.98-8.03 (m, 2H), 7.92-7.95 (m, 2H), 7.88-7.92 (m, 2H), 7.65-7.69 (m, 1H), 7.52-7.58 (m, 3H), 7.44-7.52 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.30-7.37 (m, 4H), 7.20 (dd, J = 7.6, 1.6 Hz, 1H), 7.01-7.08 (m, 2H), 6.99 (d, *J* = 7.0 Hz, 1H), 6.79 (d, *J* = 15.4

Hz, 1H), 6.57 (d, J = 3.5 Hz, 1H, H-1), 6.11 (dd, J = 9.8, 10.5 Hz, 1H), 5.90 (dd, J = 9.1, 16.1 Hz, 1H), 5.80 (t, J = 9.8 Hz, 1H), 4.59 (dd, J = 2.8, 11.9 Hz, 1H), 4.55 (dt, J = 2.8, 9.8 Hz, 1H), 4.46 (dd, J = 4.2, 11.9 Hz, 1H), 3.32 (ddd, J = 3.5, 9.8, 11.9 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.25, 166.21, 165.56, 164.67, 135.81, 135.49, 134.33, 134.03, 133.54, 133.34, 133.17, 130.14, 130.14, 130.10, 129.96, 129.96, 129.90, 129.90, 129.83, 129.77, 129.77, 129.42, 129.26, 129.08, 128.97, 128.97, 128.54, 128.54, 128.49, 128.49, 128.47, 128.47, 127.92, 126.34, 126.19, 124.09, 93.73, 71.44, 70.82, 69.80, 62.99, 50.14, 19.56. **HRMS** (ESI-TOF) *m/z* calcd for C₄₃H₃₆O₉Na [(M + Na)⁺], 719.2252, found, 719.2250.

(2R,3S,4R,5S,6R)-2-((benzoyloxy)methyl)-6-((4-cyanobenzoyl)oxy)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl dibenzoate (4k)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (41.0 mg, 0.057 mmol, 57% yield, axial: equatorial = 3.0:1). $\mathbf{R}_f = 0.56$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**4k**-*ax*): $t_R = 12.5$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.27-8.30 (m, 2H), 8.01-8.04 (m, 2H), 7.93-7.98 (m, 4H), 7.84-7.87 (m, 2H), 7.48-7.55 (m, 3H), 7.31-7.42 (m, 7H), 7.14-7.22 (m, 2H), 7.08-7.11 (m, 1H), 6.83 (d, *J* = 16.1 Hz, 1H), 6.58 (d, *J* = 1.4 Hz, 1H, H-1), 6.27 (dd, J = 9.1, 16.1 Hz, 1H), 6.08 (t, *J* = 10.5 Hz, 1H), 5.92 (dd, *J* = 4.9, 9.8 Hz, 1H), 4.68 (dd, *J* = 2.8, 11.9 Hz, 1H), 4.53 (dt, *J* = 2.8, 9.8 Hz, 1H), 4.45 (dd, *J* = 4.2, 12.6 Hz, 1H), 3.68 (dd, *J* = 5.6, 9.8 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 166.20, 166.07, 165.45, 163.13, 135.73, 135.69, 134.75, 133.72, 133.67, 133.30, 133.22, 132.72, 132.72, 130.64, 130.64, 130.45, 129.95, 129.95, 129.90, 129.90, 129.81, 129.81, 129.69, 129.13, 128.97, 128.67, 128.67, 128.62, 128.62, 128.59, 128.59, 128.20, 126.38, 126.03, 123.12, 117.96, 117.37, 95.77, 71.80, 71.68, 66.43, 62.64, 46.56, 19.60. HRMS (ESI-TOF) *m*/*z* calcd for C₄₄H₃₅NO₉Na [(M + Na)⁺], 744.2204, found, 744.2196.

(2R,3R,4S,5S,6S)-2-(acetoxymethyl)-6-(((2R,3S,4R,5S,6R)-3,4,6-triacetoxy-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (41)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (40.4 mg, 0.055 mmol, 55% yield, axial: equatorial = 3.2:1). $\mathbf{R}_f = 0.46$ Hexanes: EtOAc [1:1 (v/v)].

Data for axial product (**4***l-ax*): $t_R = 7.74$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.44 (d, J = 7.7 Hz, 1H), 7.10-7.18 (m, 3H), 6.73 (d, J = 15.4 Hz, 1H), 6.10 (d, J = 1.4 Hz, 1H, H-1), 6.02 (dd, J = 9.8, 15.4 Hz, 1H), 5.48 (d, J = 2.8 Hz, 1H), 5.41 (dd, J = 3.5, 10.5 Hz, 1H), 5.33-5.37 (m, 2H), 5.13 (d, J = 3.5 Hz, 1H), 5.11 (dd, J = 3.5, 10.5 Hz, 1H), 4.30 (t, J = 6.3 Hz, 1H), 4.12 (dd, J = 6.3, 11.2 Hz, 1H), 4.02-4.08 (m, 2H), 3.77 (dd, J = 4.9, 11.2 Hz, 1H), 3.57 (dd, J = 2.8, 10.5 Hz, 1H), 3.19-3.26 (m, 1H), 2.31 (s, 3H), 2.20 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.93 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.71, 170.56, 173.46, 170.37, 169.84, 169.70, 169.14, 135.77, 135.47, 134.07, 130.36, 128.07, 126.28, 126.28, 123.95, 96.01, 94.24, 71.23, 71.01, 68.41, 68.29, 67.57, 66.80, 66.60, 66.47, 61.86, 46.50, 21.20, 21.06, 20.90, 20.84, 20.84, 20.82, 20.66, 19.92. **HRMS** (ESI-TOF) *m*/*z* calcd C₃₅H₄₄O₁₇Na [(M + Na)⁺], 759.2471, found, 759.2455.

Data for equatorial product (**41**-*eq*): $t_R = 6.37 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.28 (dd, J = 1.4, 7.7 Hz, 1H), 7.09-7.20 (m, 3H), 6.74 (d, J = 16.1 Hz, 1H), 6.13 (d, J = 3.5 Hz, 1H, H-1), 5.68 (dd, J = 9.1, 16.1 Hz, 1H), 5.43-4.48 (m, 2H), 5.37 (dd, J = 3.5, 10.5 Hz, 1H), 5.13-5.20 (m, 2H), 5.10 (dd, J = 3.5, 11.2 Hz, 1H), 4.24-4.29 (m, 1H), 4.12 (dd, J = 6.3, 11.2 Hz, 1H), 4.02-4.08 (m, 2H), 3.75 (dd, J = 4.2, 11.2 Hz, 1H), 3.60 (dd, J = 2.1, 11.2 Hz, 1H), 2.88 (ddd, J = 3.5, 9.8, 11.9 Hz, 1H), 2.30 (s, 3H), 2.18 (s, 3H), 2.14 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.72, 170.59, 170.56, 170.38, 170.03, 169.82, 169.18, 135.79, 135.50, 133.88, 130.37, 128.13, 126.38, 126.18, 124.19, 95.96, 92.72, 70.84, 70.71, 69.27, 68.37, 68.33, 67.52, 66.41, 66.28, 61.70, 49.14, 21.04, 20.98, 20.92, 20.90, 20.88, 20.84, 20.83, 19.87. **HRMS** (ESI-TOF) *m*/*z* calcd C₃₅H₄₄O₁₇Na [(M + Na)⁺], 759.2471, found, 759.2466.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((2R,3S,4R,5S,6R)-4,6-diacetoxy-2-(acetoxymethyl)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4m)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white foam (50.0 mg, 0.068 mmol, 68% yield, axial: equatorial = 10.0: 1). $\mathbf{R}_f = 0.54$ Hexanes: EtOAc [1:1 (v/v)].

Data for axial product (**4m**-*ax*): $t_R = 10.2 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.37 (dd, *J* = 2.8, 6.3 Hz, 1H), 7.13-7.21 (m, 3H), 6.69 (d, *J* = 16.1 Hz, 1H), 6.12 (d, *J* = 2.8 Hz, 1H, H-1), 5.90 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.54 (d, *J* = 4.2 Hz, 1H), 5.42 (dd, *J* = 9.8, 10.5 Hz, 1H), 5.19 (dd, *J* = 4.9, 7.7 Hz, 1H), 5.08 (t, *J* = 9.8 Hz, 1H), 4.90 (dd, *J* = 4.2, 10.5 Hz, 1H), 4.40 (dd, *J* = 2.1, 12.6 Hz, 1H), 4.25 (dt, *J* = 3.5, 12.6 Hz, 2H), 4.05-4.14 (m, 3H), 3.97-4.02 (m, 1H), 3.19-3.24 (m, 1H), 2.31 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 2.04 (s, 2H), 2.03 (s, 3H), 2.03 (s, 3H), 2.02 (s, 2H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.76, 170.72, 170.31, 170.31, 170.27, 169.61, 169.29, 135.67, 135.44, 133.88, 130.51, 128.22, 126.38, 125.99, 124.18, 95.96, 93.73, 74.47, 71.26, 70.69, 70.26, 69.66, 68.62, 68.12, 63.37, 61.55, 45.51, 21.31, 21.23, 20.94, 20.82, 20.81, 20.75, 20.69, 19.93. **HRMS** (ESI-TOF) *m/z* calcd for C₃₅H₄₄O₁₇Na [(M + Na)⁺], 759.2471, found, 759.2462.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3S,5S,6R)-4,6-diacetoxy-2-(acetoxymethyl)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4n)

According to the **General Procedure B**, the title compound was obtained as a white foam (91.2 mg, 0.124 mmol, 62% yield, axial: equatorial = 5.7:1). $\mathbf{R}_f = 0.30$ Hexanes: EtOAc [2:1 (v/v)].

Data for axial product (**4n**-*ax*): $t_R = 28.9$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.36-7.41 (m, 1H), 7.13-7.22 (m, 3H), 6.75 (d, *J* = 15.5 Hz, 1H), 6.14 (d, *J* = 3.0 Hz, 1H, H-1), 5.92 (dd, *J* = 9.0, 16.0 Hz, 1H), 5.40 (dd, *J* = 5.0, 7.5 Hz, 1H), 5.17 (t, *J* = 9.5 Hz, 1H), 5.07 (t, *J* = 9.5 Hz, 1H), 4.97 (dd, *J* = 8.5, 9.0 Hz, 1H), 4.61 (d, *J* = 7.5 Hz, 1H), 4.37 (dd, *J* = 2.0, 12.0 Hz, 1H), 4.30 (dd, *J* = 4.5, 12.5 Hz, 1H), 4.14 (dd, *J* = 5.0, 12.0 Hz, 1H), 4.04 (dd, *J* = 2.0, 12.5 Hz, 1H), 4.00 (ddd, *J* = 2.0, 4.5, 9.5 Hz, 1H), 3.84 (dd, *J* = 7.5, 9.5 Hz, 1H), 3.70 (ddd, *J* = 2.0, 4.5, 9.5 Hz, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H), 2.05 (s, 6H), 2.01 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.69, 170.62, 170.37, 170.05,

169.52, 169.46, 169.43, 135.97, 135.52, 133.56, 130.51, 128.12, 126.33, 125.88, 124.53, 101.39, 93.69, 73.03, 72.03, 71.69, 71.59, 71.09, 68.09, 62.67, 61.94, 31.09, 21.27, 21.00, 20.97, 20.72, 20.72, 20.72, 20.72, 20.72, 20.64, 19.92. **HRMS** (ESI-TOF) m/z calcd for C₃₅H₄₄O₁₇Na [(M + Na)⁺], 759.2471, found, 759.2464.

(2R,3S,4R,5S,6R)-6-(((2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carbonyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7a)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (43.0 mg, 0.061 mmol, 61% yield, axial: equatorial = 4.1:1). $\mathbf{R}_f = 0.18$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7a**-*ax*): $t_R = 9.80$ min, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.07 (d, J = 2.1 Hz, 1H), 7.93 (dd, J = 2.1, 9.1 Hz, 1H), 7.35-7.45 (m, 1H), 7.07-7.14 (m, 2H), 6.99-7.04 (m, 1H), 6.94 (d, J = 9.1 Hz, 1H), 6.78 (d, J = 16.1 Hz, 1H), 6.23 (d, J = 1.4 Hz, 1H), 6.08 (dd, J = 9.1, 16.1 Hz, 1H), 5.50 (t, J = 9.8 Hz, 1H), 5.42 (dd, J = 5.6, 9.8 Hz, 1H), 4.49 (dd, J = 2.1, 12.6 Hz, 1H), 4.34 (dd, J = 3.5, 11.9 Hz, 1H), 4.19 (dt, J = 2.8, 9.8 Hz, 1H), 3.91 (d, J = 6.3 Hz, 2H), 3.23-3.28 (m, 1H), 2.77 (s, 3H), 2.30 (s, 3H), 2.20 (s, 3H), 2.18-2.25 (m, 1H) 2.08 (s, 3H), 2.05 (s, 3H), 1.11 (d, J = 7.0 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.45, 169.71, 168.98, 167.81, 162.64, 162.07, 161.67, 135.85, 135.55, 133.99, 132.95, 132.27, 130.48, 128.10, 126.32, 126.02, 125.91, 123.78, 121.14, 115.50, 112.63, 103.09, 94.13, 75.81, 70.86, 70.82, 65.91, 62.62, 46.26, 28.31, 21.23, 21.08, 20.87, 19.92, 19.22, 17.69. HRMS (ESI-TOF) *m/z* calcd for C₃₇H₄₁N₂O₁₀S [(M + H)⁺], 705.2476, found, 705.2465.

Data for equatorial product (**7a**-*eq*): $t_R = 13.4 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.20 (d, J = 2.1 Hz, 1H), 8.12 (dd, J = 2.1, 8.4 Hz, 1H), 7.27-7.39 (m, 1H), 7.11-7.20 (m, 3H), 7.02 (d, J = 9.1 Hz, 1H), 6.77 (d, J = 16.1 Hz, 1H), 6.22 (d, J = 3.5 Hz, 1H, H-1), 5.69 (dd, J = 9.1, 16.1 Hz, 1H), 5.50 (dd, J = 9.1, 11.2 Hz, 1H), 5.20 (t, J = 9.8 Hz, 1H), 4.38-4.46 (m, 2H), 4.21 (ddd, J = 2.1, 3.5, 10.5 Hz, 1H), 3.91 (d, J = 7.0 Hz, 2H), 2.95 (ddd, J = 3.5, 9.1, 11.9 Hz, 1H), 2.77 (s, 3H), 2.30 (s, 3H), 2.18-2.24 (m, 1H), 2.18 (s, 3H), 2.08 (s, 3H), 1.98 (s, 3H), 1.10 (d, J = 7.0 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.54, 169.81, 169.04, 167.90, 162.71, 162.02, 161.69, 135.74, 135.53, 134.09, 132.82, 132.39, 130.39, 128.18, 126.39, 126.18, 126.11, 123.97, 121.27, 115.58, 112.74, 103.12, 92.85, 75.85, 70.73, 70.11, 68.88, 62.74, 49.24, 28.31, 21.09, 20.94, 20.88, 19.89, 19.21, 19.21, 17.73. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₇H₄₁N₂O₁₀S [(M + H)⁺], 705.2476, found, 705.2467.

(2R, 3S, 4R, 5S, 6R) - 6 - (((2 - (4 - isobutyl phenyl) propanoyl) oxy) methyl) - 3 - ((E) - 2 - methyl styryl) tetrahydro - 2H - pyran - 2, 4, 5 - triyl triacetate (7b)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (39.2 mg, 0.066 mmol, 66% yield, axial: equatorial = 4.4:1). $\mathbf{R}_f = 0.38$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7b**-*ax*): $t_R = 5.40$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.40-7.44 (m, 1H), 7.13-7.22 (m, 5H), 7.03-7.06 (m, 2H), 6.72-6.76 (m, 1H), 6.12-6.17 (m, 1H), 6.00 (dd, J = 9.1, 15.4 Hz, 1H), 5.25-5.35 (m, 2H), 4.22-4.29 (m, 1H), 4.04-4.17 (m, 2H), 3.70-3.75 (m, 1H), 3.20-3.24 (m, 1H), 2.38-2.42 (m, 2H), 2.33 (s, 3H), 2.12-2.16 (m, 3H), 2.04 (s, 3H), 2.00-2.04 (m, 6H), 1.76-1.85 (m, 1H), 1.47-1.53 (m, 3H), 0.86-0.89 (m, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 174.57, 174.42, 170.41, 169.67, 169.56, 168.98, 168.97, 140.71, 137.50, 137.30, 135.98, 135.93, 135.51, 135.48, 134.12, 134.09, 130.42, 130.40, 129.46, 128.14, 127.39, 127.36, 126.36, 126.24, 126.22, 124.01, 123.99, 94.17, 94.10, 70.96, 70.90, 70.86, 66.25, 66.04, 62.81, 62.59, 46.46, 46.41, 45.31, 45.16, 45.14, 45.07, 30.29, 30.28, 22.53, 22.53, 21.19, 21.16, 21.03, 20.85, 20.83, 19.96, 19.94, 18.73, 18.53. HRMS (ESI-TOF) *m/z* calcd for C₃₄H₄₂O₉Na [(M + Na)⁺], 617.2721, found, 617.2717.

(2R,3S,4R,5S,6R)-6-(((4-(N,N-dipropylsulfamoyl)benzoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7c)

According to the **General Procedure B** (0.113 mmol of bromosugar was used), the title compound was obtained as a white solid (60.1 mg, 0.090 mmol, 79% yield, axial: equatorial = 4.0:1). $\mathbf{R}_f = 0.18$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7***c*-*ax*): $t_R = 10.7 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.12 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.40 (dd, *J* = 0.7, 8.4 Hz, 1H), 7.19-7.25 (m, 2H), 7.16 (d, *J* = 7.0 Hz, 1H), 6.81 (d, *J* = 16.1 Hz, 1H), 6.25 (d, *J* = 1.4 Hz, 1H, H-1), 6.08 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.52 (t, *J* = 9.8 Hz, 1H), 5.44 (dd, *J* = 5.6, 9.8 Hz, 1H), 4.51 (dd, *J* = 2.1, 12.6 Hz, 1H), 4.38 (dd, *J* = 3.5, 12.6 Hz, 1H), 4.22 (dt, *J* = 2.8, 10.5 Hz, 1H), 3.25-3.29 (m, 1H), 3.033.08 (m, 4H), 2.30 (s, 3H), 2.20 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.55 (h, J = 7.7 Hz, 4H), 0.87 (t, J = 7.7 Hz, 6H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.38, 169.77, 169.02, 164.96, 144.52, 135.77, 135.55, 133.91, 133.04, 130.58, 130.39, 130.39, 128.36, 127.24, 127.24, 126.49, 125.88, 123.74, 94.06, 70.83, 70.75, 65.96, 63.09, 50.22, 50.22, 45.97, 22.21, 22.21, 21.22, 21.04, 20.85, 19.92, 11.31, 11.31. **HRMS** (ESI-TOF) m/z calcd for C₃₄H₄₄NO₁₁S [(M + H)⁺], 674.2630, found, 674.2621.

Data for equatorial product (**7c**-*eq*): $t_R = 8.27 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.17 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.28 (dd, *J* = 1.4, 7.7 Hz, 1H), 7.09-7.21 (m, 3H), 6.76 (d, *J* = 15.4 Hz, 1H), 6.21 (d, *J* = 3.5 Hz, 1H, H-1), 5.69 (dd, *J* = 9.1, 15.4 Hz, 1H), 5.51 (dd, *J* = 9.1, 11.2 Hz, 1H), 5.26 (t, *J* = 9.8 Hz, 1H), 4.51 (dd, *J* = 2.1, 11.9 Hz, 1H), 4.45 (dd, *J* = 4.2, 12.6 Hz, 1H), 4.24 (ddd, *J* = 2.8, 3.5, 10.5 Hz, 1H), 3.07-3.18 (m, 4H), 2.93-2.98 (m, 1H), 2.30 (s, 3H), 2.18 (s, 3H), 2.07 (s, 3H), 1.97 (s, 3H), 1.52-1.60 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.50, 169.88, 169.07, 165.03, 144.59, 135.69, 135.51, 134.11, 133.11, 130.55, 130.40, 128.21, 127.24, 127.24, 126.40, 126.16, 123.90, 92.90, 70.70, 70.08, 68.85, 63.04, 50.20, 50.20, 49.27, 22.18, 22.18, 21.09, 20.92, 20.87, 19.86, 11.32, 11.32. HRMS (ESI-TOF) *m*/*z* calcd for C₃₄H₄₄NO₁₁S [(M + H)⁺], 674.2630, found, 674.2620.

(2R,3S,4R,5S,6R)-3-((E)-2-methylstyryl)-6-(((2-(10-oxo-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoyl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7d)

According to the **General Procedure B** (0.08 mmol of bromosugar was used), the title compound was obtained as a white solid (30.7 mg, 0.045 mmol, 56% yield, axial: equatorial = 4.6:1). $\mathbf{R}_f = 0.24$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (7d-ax)

isomer **1** (**7d**-*ax*-iso-1): $t_R = 11.0$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.19 (dd, J = 1.4, 8.4 Hz, 1H), 7.59 (dd, J = 1.4, 8.4 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.39-7.43 (m, 2H), 7.37 (d, J = 1.4 Hz, 1H), 7.29-7.33 (m, 1H), 7.19-7.21 (m, 2H), 7.15-7.18 (m, 1H), 7.13 (dd, J = 2.1, 7.7 Hz, 1H), 6.74 (d, J = 15.4 Hz, 1H), 6.15 (d, J = 1.4 Hz, 1H), 5.99 (dd, J = 9.1, 15.4 Hz, 1H), 5.29-5.35 (m, 2H), 4.35 (s, 2H), 4.27 (dd, J = 4.9, 12.6 Hz, 1H), 4.10 (dd, J = 2.1, 12.6 Hz, 1H), 4.06 (ddd, J = 2.1, 4.9, 9.1 Hz, 1H), 3.74 (q, J = 7.0 Hz, 1H), 3.22 (dd, J = 5.6, 9.8 Hz, 1H), 2.32 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.49 (d, J = 7.0 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.47, 173.70, 170.38, 169.71, 168.95, 142.46, 140.30, 138.08, 136.31, 135.94, 135.50, 134.12, 133.45, 132.63, 131.68, 131.60, 131.01, 130.44, 128.73, 128.17, 126.99, 126.75, 126.39, 126.17, 123.91, 94.08, 70.91, 70.81, 65.95, 62.80, 51.19, 46.33, 45.18, 21.14, 21.03, 20.84, 19.96, 18.71. HRMS (ESI-

TOF) m/z calcd for C₃₈H₃₈O₁₀SNa [(M + Na)⁺], 709.2078, found, 709.2066.

Isomer **2** (7d-*ax*-iso-2): $t_R = 12.1 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. Isomer **1**. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.19 (dd, *J* = 1.4, 8.4 Hz, 1H), 7.58 (dd, *J* = 1.4, 7.7 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.35-7.44 (m, 3H), 7.28-7.31 (m, 1H), 7.08-7.21 (m, 4H), 6.75 (d, *J* = 16.1 Hz, 1H), 6.17 (d, *J* = 1.4 Hz, 1H), 5.99 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.33 (dd, *J* = 5.6, 9.8 Hz, 1H), 5.25 (t, *J* = 9.8 Hz, 1H), 4.35 (s, 2H), 4.22 (dd, *J* = 2.1, 11.9 Hz, 1H), 4.16 (dd, *J* = 4.9, 11.9 Hz, 1H), 4.09 (ddd, *J* = 2.1, 4.9, 9.8 Hz, 1H), 3.75 (q, *J* = 7.0 Hz, 1H), 3.19-3.27 (m, 1H), 2.32 (s, 3H), 2.14 (s, 3H), 2.01 (s, 3H), 2.01 (s, 3H), 1.50 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.50, 173.62, 170.39, 169.57, 168.96, 142.22, 140.35, 138.04, 136.34, 135.93, 135.49, 134.15, 133.45, 132.61, 131.66, 131.60, 131.02, 130.44, 128.83, 128.17, 126.97, 126.63, 126.39, 126.17, 123.93, 94.12, 70.89, 70.78, 66.16, 63.04, 51.19, 46.35, 45.25, 21.18, 21.04, 20.80, 19.95, 18.44. HRMS (ESI-TOF) *m/z* calcd for C₃₈H₃₈O₁₀SNa [(M + Na)⁺], 709.2078, found, 709.2070.

Data for equatorial product (7d-eq)

isomer **1** (7d-*eq*-iso-1): $t_R = 11.5$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 8.20 (dd, J = 1.4, 8.4 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.59 (dd, J = 0.7, 7.7 Hz, 1H), 7.44 (d, J = 1.4 Hz, 1H), 7.42 (dt, J = 2.1, 7.7 Hz, 1H), 7.25-7.32 (m, 2H), 7.10-7.19 (m, 4H), 6.77 (d, J = 16.1 Hz, 1H), 6.14 (d, J = 3.5 Hz, 1H, H-1), 5.64 (dd, J = 9.1, 15.4 Hz, 1H), 5.41 (dd, J = 9.8, 11.2 Hz, 1H), 4.99 (t, J = 9.8 Hz, 1H), 4.35-4.44 (m, 2H), 4.15-4.21 (m, 2H), 4.06 (ddd, J = 2.1, 3.5, 9.8 Hz, 1H), 3.7-3.80 (m, 1H), 2.80 (ddd, J = 3.5, 9.1, 11.9 Hz, 1H), 2.31 (s, 3H), 2.12 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H), 1.52 (d, J = 7.0 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 191.53, 173.59, 170.55, 169.60, 169.03, 142.30, 140.31, 138.04, 136.35, 135.82, 135.52, 134.01, 133.39, 132.64, 131.68, 131.56, 130.99, 130.36, 128.98, 128.13, 126.99, 126.88, 126.37, 126.18, 124.06, 92.77, 70.67, 70.04, 68.75, 62.51, 51.21, 49.06, 45.25, 21.03, 20.94, 20.76, 19.90, 18.21. HRMS (ESI-TOF) *m*/*z* calcd for C₃₈H₃₈O₁₀SNa [(M + Na)⁺], 709.2078, found, 709.2075.

(2R,3S,4R,5S,6R)-6-(((6-(3-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7e)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (51.2 mg, 0.064 mmol, 64% yield, axial: equatorial = 4.0:1). $\mathbf{R}_f = 0.26$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (7e-ax): $t_R = 10.8 \text{ min}$, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.

¹**H** NMR (700 MHz, CDCl₃, 25 °C, δ): 8.60-8.63 (m, 1H), 8.06 (dd, J = 1.4, 8.4 Hz, 1H), 7.99 (d, J = 1.4 Hz, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.75 (dd, J = 1.4, 8.4 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.55 (dd, J = 2.1, 8.4 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 7.7 Hz, 1H), 6.98-7.05 (m, 2H), 6.79 (d, J = 15.4 Hz, 1H), 6.26 (d, J = 1.4 Hz, 1H, H-1), 6.11 (dd, J = 9.1, 15.4 Hz, 1H), 5.58 (t, J = 9.8 Hz, 1H), 5.45 (dd, J = 5.6, 9.8 Hz, 1H), 4.62 (dd, J = 2.1, 11.9 Hz, 1H), 4.43 (dd, J = 3.5, 11.9 Hz, 1H), 4.28 (dt, J = 3.5, 9.8 Hz, 1H), 3.92 (s, 3H), 3.25-3.30 (m, 1H), 2.29 (s, 3H), 2.20 (s, 3H), 2.18-2.22 (m, 6H), 2.09-2.13 (m, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 1.78-1.85 (m, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.47, 169.69, 169.06, 166.47, 159.07, 141.65, 139.15, 136.20, 135.79, 135.53, 133.91, 132.76, 131.36, 131.24, 130.44, 130.06, 128.51, 128.05, 126.62, 126.56, 126.41, 126.16, 125.98, 125.91, 125.64, 124.86, 123.81, 112.24, 94.26, 71.11, 70.96, 66.25, 62.72, 55.32, 46.31, 40.73, 40.73, 37.35, 37.26, 37.26, 37.26, 29.24, 29.24, 29.24, 21.25, 21.07, 20.89, 19.92. HRMS (ESI-TOF) *m*/z calcd for C₄₉H₅₂O₁₀Na [(M + Na)⁺], 823.3453, found, 823.3448.

(2R,3S,4R,5S,6S)-6-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7f)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white foam (25.1 mg, 0.045 mmol, 45% yield, axial: equatorial = 3.5:1). $\mathbf{R}_f = 0.53$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7f**-*ax*): $t_R = 6.60 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.38-7.41 (m, 1H), 7.12-7.19 (m, 3H), 6.76 (d, *J* = 15.4 Hz, 1H), 6.35 (d, *J* = 3.5 Hz, 1H), 5.98 (dd, *J* = 9.8, 15.4 Hz, 1H), 5.42 (t, *J* = 7.7 Hz, 1H), 5.34 (dd, *J* = 4.9, 8.4 Hz, 1H), 4.76 (dt, *J* = 4.2, 11.2 Hz, 1H), 4.49 (d, *J* = 8.4 Hz, 1H), 3.13-3.20 (m, 1H), 2.32 (s, 3H), 2.17 (s, 3H), 2.09 (s, 3H), 2.03 (s, 3H), 1.99-2.05 (m, 1H), 1.87-1.90 (m, 1H), 1.65-1.72 (m, 2H), 1.41-1.52 (m, 2H), 1.02-1.11 (m, 1H), 0.97 (q, *J* = 11.2 Hz, 1H), 0.90 (dd, *J* = 3.5, 7.0 Hz, 6H), 0.77 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.11, 169.30, 168.78, 167.36, 135.86, 135.50, 133.96, 130.37, 128.10, 126.37, 126.18, 123.72, 92.89, 76.53, 72.66, 70.63, 66.87, 46.93, 45.38, 40.63, 34.20, 31.49, 26.28, 23.44, 22.11, 21.19, 21.05, 20.97, 20.91, 19.93, 16.41. HRMS (ESI-TOF) *m/z* calcd for C₃₁H₄₂O₉Na [(M + Na)⁺], 581.2721, found, 581.2714.

Data for equatorial product (**7f**-*eq*): $t_R = 5.10 \text{ min}$, 5% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.25-7.27 (m, 1H), 7.10-7.19 (m, 3H), 6.74 (d, *J* = 15.4 Hz, 1H), 6.29 (d, *J* = 2.8 Hz, 1H), 5.64 (dd, *J* = 8.4, 15.4 Hz, 1H), 5.47 (dd, *J* = 9.1, 11.2 Hz, 1H), 5.28 (t, *J* = 9.8 Hz, 1H), 4.77 (dt, *J* = 4.9, 11.2 Hz, 1H), 4.42 (d, *J* = 10.5 Hz, 1H), 2.98 (ddd, *J* = 3.5, 9.1, 11.9 Hz, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 2.04 (s, 3H), 1.97 (s, 3H), 1.93-1.99 (m, 1H), 1.82-1.88 (m, 1H), 1.66-1.72 (m, 1H), 1.82-1.88 (m, 1H), 1.82-1.88 (m, 1H), 1.66-1.72 (m, 1H), 1.82-1.88 (m, 1H), 1.

2H), 1.44-1.51 (m, 1H), 1.36-1.45 (m, 1H), 1.00-1.09 (m, 1H), 0.96 (q, J = 11.9 Hz, 1H), 0.90 (dd, J = 2.8, 7.0 Hz, 6H), 0.82-0.89 (m, 1H), 0.75 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 170.50, 169.38, 168.76, 167.09, 135.73, 135.53, 134.16, 130.37, 128.17, 126.37, 126.17, 123.74, 92.57, 76.35, 71.45, 70.40, 69.78, 48.71, 46.97, 40.59, 34.23, 31.50, 26.11, 23.35, 22.10, 21.07, 20.94, 20.90, 20.83, 19.85, 16.23. **HRMS** (ESI-TOF) m/z calcd for C₃₁H₄₂O₉Na [(M + Na)⁺], 581.2721, found, 581.2719.

(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl 1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3yl)oxy)carbonyl)styryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (7g)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white solid (59.6 mg, 0.640 mmol, 64% yield, axial: equatorial = 5.4:1). $\mathbf{R}_f = 0.22$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7g-ax**): $t_R = 22.5 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.00 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 7.7 Hz, 2H), 6.60 (d, J = 16.1 Hz, 1H), 6.28 (dd, J = 9.1, 16.1 Hz, 1H), 6.18 (s, J = 1.4 Hz, 1H, H-1), 5.37 (dd, J = 5.6, 10.5 Hz, 1H), 5.32 (d, J = 10.5 Hz, 1H), 5.29 (t, J = 4.2 Hz, 1H), 4.74 (dd, J = 5.6, 11.2 Hz, 1H), 4.25 (dd, J = 4.2, 12.6 Hz, 1H), 4.15 (dd, J = 2.1, 12.6 Hz, 1H), 4.12 (ddd, J = 2.1, 4.2, 9.8 Hz, 1H), 3.63 (s, 3H), 3.24 (dd, J = 5.6, 9.1 Hz, 1H), 2.87 (dd, J = 4.2, 14.0 Hz, 1H), 2.18 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.85-2.01 (m, 3H), 1.37-1.80 (m, 13H), 1.27-1.37 (m, 2H), 1.15 (s, 3H), 1.03-1.22 (m, 4H), 1.01 (s, 3H), 0.98 (s, 3H), 0.94 (s, 3H), 0.93 (s, 3H), 0.90 (s, 3H), 0.74 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 178.47, 170.80, 170.38, 169.70, 168.93, 166.06, 143.96, 140.58, 135.09, 130.50, 130.09, 130.09, 126.50, 126.50, 124.90, 122.42, 94.00, 81.76, 70.83, 70.77, 66.05, 62.38, 55.49, 51.68, 47.70, 46.87, 46.22, 45.98, 41.79, 41.43, 39.44, 38.24, 38.24, 37.12, 33.99, 33.25, 32.74, 32.52, 30.84, 28.35, 27.83, 26.07, 23.78, 23.73, 23.57, 23.21, 21.21, 21.00, 20.91, 20.85, 18.38, 17.12, 16.99, 15.52. HRMS (ESI-TOF) *m/z* calcd for C₅₄H₇₄O₁₃Na [(M + Na)⁺], 953.5022, found, 953.5013.

 3H), 1.85-2.03 (s, 3H), 1.26-1.85 (m, 15H), 1.15 (s, 3H), 1.03-1.22 (m, 4H), 1.00 (s, 3H), 0.98 (s, 3H), 0.93 (s, 3H), 0.92 (s, 3H), 0.90 (s, 3H), 0.74 (s, 3H). ¹³**C NMR** (175 MHz, CDCl₃, 25 °C, δ): 13C NMR (176 MHz, CDCl₃) δ 178.48, 170.86, 170.52, 169.82, 168.99, 166.02, 143.97, 140.50, 135.06, 130.54, 130.09, 130.09, 126.49, 126.49, 125.19, 122.42, 92.65, 81.77, 70.65, 70.14, 68.54, 62.01, 55.50, 51.69, 49.11, 47.70, 46.88, 46.00, 41.80, 41.44, 39.45, 38.24, 38.24, 37.12, 34.00, 33.26, 32.74, 32.53, 30.85, 28.34, 27.84, 26.08, 23.79, 23.73, 23.7, 23.21, 21.08, 20.89, 20.84, 20.83, 18.39, 17.12, 17.00, 15.52. **HRMS** (ESI-TOF) *m*/*z* calcd for C₅₄H₇₄O₁₃Na [(M + Na)⁺], 953.5022, found, 953.5016.

(2R,4R,6R)-6-(acetoxymethyl)-3-((E)-4-((((3aR,5S,6S)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy) carbonyl) styryl) tetrahydro-2H-pyran-2,4,5-triyl triacetate (7h)

According to the **General Procedure B** (0.1 mmol of bromosugar was used), the title compound was obtained as a white foam (58.3 mg, 0.081 mmol, 81% yield, axial: equatorial = 5.0:1). $\mathbf{R}_f = 0.08$ Hexanes: EtOAc [3:1 (v/v)].

Data for axial product (**7h**-*ax*): $t_R = 18.4 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.99 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 15.4 Hz, 1H), 6.30 (dd, J = 9.1, 15.4 Hz, 1H), 6.18 (d, J = 1.4 Hz, 1H, H-1), 5.96 (d, J = 3.5 Hz, 1H), 5.50 (d, J = 2.8 Hz, 1H), 5.38 (dd, J = 5.6, 9.8 Hz, 1H), 5.31 (t, J = 9.8 Hz, 1H), 4.64 (d, J = 4.2 Hz, 1H), 4.34-4.38 (m, 1H), 4.33 (dd, J = 2.8, 8.4 Hz, 1H), 4.26 (dd, J = 4.2, 11.9 Hz, 1H), 4.10-4.17 (m, 3H), 4.09 (dd, J = 4.9, 9.1 Hz, 1H), 3.22-3.26 (m, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.56 (s, 3H), 1.42 (s, 3H), 1.33 (s, 3H), 1.27 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.79, 170.35, 169.76, 168.94, 164.99, 141.33, 134.85, 130.29, 130.29, 128.97, 126.69, 126.69, 125.56, 112.53, 109.56, 105.30, 93.93, 83.52, 80.13, 76.79, 72.71, 70.86, 70.74, 67.42, 66.04, 62.37, 46.20, 26.98, 26.88, 26.36, 25.35, 21.21, 21.00, 20.91, 20.85. HRMS (ESI-TOF) *m*/*z* calcd for C₃₅H₄₄O₁₆Na [(M + Na)⁺], 743.2522, found, 743.2511.

Data for equatorial product (**7h**-*eq*): $t_R = 9.50 \text{ min}$, 20% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.96 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 16.1 Hz, 1H), 6.18 (d, J = 3.5 Hz, 1H, H-1), 5.89-5.95 (m, 2H), 5.48 (d, J = 2.8 Hz, 1H), 5.46 (dd, J = 9.1, 10.5 Hz, 1H), 5.16 (t, J = 9.8 Hz, 1H), 4.62 (d, J = 3.5 Hz, 1H), 4.29-4.38 (m, 3H), 4.04-4.14 (m, 4H),

2.93 (ddd, J = 3.5, 9.8, 12.0 Hz, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.94 (s, 3H), 1.56 (s, 3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H). ¹³**C** NMR (175 MHz, CDCl₃, 25 °C, δ): 170.84, 170.52, 169.80, 169.00, 164.96, 141.25, 134.78, 130.29, 130.29, 129.02, 126.65, 126.65, 125.89, 112.54, 109.57, 105.27, 92.60, 83.51, 80.10, 76.81, 72.71, 70.64, 70.15, 68.50, 67.41, 61.98, 49.10, 26.99, 26.89, 26.36, 25.37, 21.09, 20.89, 20.86, 20.83. **HRMS** (ESI-TOF) *m*/*z* calcd for C₃₅H₄₄O₁₆Na [(M + Na)⁺], 743.2522, found, 743.2518.

Post-Functionalization

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(2-methylphenethyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8a)

To a solution of **3k** (8.96 mg, 0.0200 mmol, 1.00 equiv) in EtOAc (0.200 ml, 0.100 M) was added Palladium on carbon (8.96 mg, 10 wt. % loading). After gas exchanged using hydrogen balloon for 10 min, the reaction mixture was stirred under hydrogen atmosphere at room temperature for 3h. Upon completion, the reaction was filtered through a pad of celite. The mixture was concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the desired compound **8a** as a white foam (8.60 mg, 96% yield). Data for **8a**: $\mathbf{R}_f = 0.10$ Hexanes: EtOAc [3:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.10-7.17 (m, 4H), 6.21 (d, J = 1.4 Hz, 1H), 5.37 (dd, J = 4.9, 9.8 Hz, 1H), 5.17 (t, J = 9.8 Hz, 1H), 4.18 (dd, J = 4.2, 12.6 Hz, 1H), 4.11 (dd, J = 2.1, 12.6 Hz, 1H), 4.02 (ddd, J = 2.1, 4.2, 9.8 Hz, 1H), 2.78 (ddd, J = 5.6, 10.5, 14.0 Hz, 1H), 2.57 (ddd, J = 7.0, 10.5, 14.0 Hz, 1H), 2.30 (s, 3H), 2.25-2.30 (m, 1H), 2.16 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.93-2.00 (m, 1H), 1.72-1.79 (m, 1H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.15, 169.78, 169.26, 139.31, 135.88, 130.56, 128.94, 126.57, 126.30, 93.31, 70.64, 70.58, 66.11, 62.38, 41.93, 31.43, 25.71, 21.26, 20.98, 20.88, 20.84, 19.34. HRMS (ESI-TOF) m/z calcd for C₂₃H₃₀O₉Na [(M + Na)⁺], 473.1782, found, 473.1780.

(2R,3S,4R,5S,6R)-6-(((6-(3-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoyl)oxy)methyl)-3-((E)-2-methylstyryl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8b)

Ozone was passed through a stirred solution of 3k (8.96 mg, 0.0200 mmol, 1.00 equiv) in DCM (0.100 ml, 0.200 M) at -78 °C for 45 min. Oxygen was then bubbled through reaction mixture for 20 min and followed

by nitrogen gas. After PPh₃ (2.0 equiv) was added, the mixture was warmed slowly to room temperature and stirred overnight. Then the mixture was concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel, eluting with Hexanes: EtOAc [3:1 (v/v)] to afford the desired compound **8b** as white foam (5.10 mg, 85% yield). **R**_f = 0.10 Hexanes: EtOAc [3:1 (v/v)]. Data for **8b**: ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 9.37 (s, 1H), 7.46 (s, 1H), 5.70 (dd, *J* = 1.4, 2.8 Hz, 1H), 5.20 (t, *J* = 3.5 Hz, 1H), 4.62-4.67 (m, 1H), 4.49 (dd, *J* = 7.7, 11.9 Hz, 1H), 4.17 (dd, *J* = 4.2, 11.9 Hz, 1H), 2.11 (s, 3H), 2.08 (s, 2H), 2.06 (s, 2H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 188.23, 170.46, 169.58, 169.34, 163.80, 115.90, 76.44, 65.75, 60.94, 60.73, 20.89, 20.81, 20.81. **HRMS** (ESI-TOF) *m*/*z* calcd for C₁₃H₁₆O₈Na [(M + Na)⁺], 323.0737, found, 323.0736.

(2R,3S,4R,5S,6R)-6-(acetoxymethyl)-3-(3-(o-tolyl)oxiran-2-yl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (8c)

A solution of compound **3k** (8.96 mg, 0.0200 mmol, 1.00 equiv) in DCM (0.100 ml, 0.200 M) was cooled to 0 °C and *m*-CPBA (6.90 mg, 2.00 equiv) was added in one portion. After the reaction mixture was stirred at 0 °C for 15 min, it was warm to rt and stirred for overnight. The reaction was then quenched with a 1:1 mixture of saturated Na₂S₂O_{3(aq)} and NaHCO_{3(aq)} (1 mL), extracted with DCM (2 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude product was purified by flash column chromatography (Hexanes: EtOAc [3:1 (v/v)]) to give **8c-iso-1** and **8c-iso-2** as colorless oil (7.40 mg (1.7:1), 80% yield) **R**_f = 0.30, 0.29 Hexanes: EtOAc [3:1 (v/v)].

Data for **8c**-*iso*-1: ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.14-7.24 (m, 4H), 6.27 (d, J = 1.2 Hz, 1H), 5.40-5.44 (m, 2H), 4.23 (dd, J = 5.2, 12.8 Hz, 1H), 4.06-4.13 (m, 2H), 3.94 (d, J = 2.0 Hz, 1H), 3.09 (dd, J = 2.0, 7.2 Hz, 1H), 2.46-2.52 (m, 1H), 2.45 (s, 3H), 2.17 (s, 3H), 2.13 (s, 3H), 2.08 (s, 3H), 1.99 (s, 3H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.80, 170.60, 169.69, 168.91, 136.38, 134.57, 130.17, 128.21, 126.36, 124.58, 92.28, 70.77, 70.28, 65.94, 62.21, 58.25, 54.67, 44.81, 21.17, 21.06, 20.84, 20.79, 19.23. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1576.

Data for **8c**-*iso*-**2** : ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.15-7.27 (m, 4H), 6.42 (d, *J* = 1.6 Hz, 1H, H-1), 5.55 (dd, *J* = 5.6, 10.0 Hz, 1H), 5.32 (t, *J* = 10.0 Hz, 1H), 4.24 (dd, *J* = 4.0, 12.0 Hz, 1H), 4.07-4.17 (m, 2H), 3.86 (d, *J* = 2.0 Hz, 1H), 3.16 (dd, *J* = 2.0, 8.8 Hz, 1H), 2.44 (s, 3H), 2.25 (ddd, *J* = 1.5, 5.2, 8.4 Hz, 1H), 2.17 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.04 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 13C NMR (176 MHz, CDCl₃) δ 170.85, 170.21, 169.77, 168.67, 136.54, 134.57, 130.18, 128.40, 126.44, 125.13, 92.33, 70.52, 69.89, 66.42, 62.27, 57.68, 57.62, 46.15, 21.14, 21.09, 20.85, 20.81, 19.12. HRMS (ESI-TOF) *m/z* calcd for C₂₃H₂₈O₁₀Na [(M + Na)⁺], 487.1575, found, 487.1571. (2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-azido-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8d)

3k (8.96 mg, 0.0200 mmol, 1.00 equiv) was dissolved under argon atmosphere in DCM (0.200 mL) and cooled to 0 °C. TMSN₃ (3.20 μ L, 0.0240 mmol, 1.20 equiv) and BF₃·OEt₂ (3.10 μ L, 0.0240 mmol, 1.20 equiv) were added to the reaction mixture. The reaction mixture was stirred for 2 h and slowly reached room temperature during this time. After complete consumption of the starting material (monitored by TLC), the reaction mixture was diluted with DCM. The organic phase was washed with cold saturated NaHCO₃ solution (3x1 ml) and water (3x1 ml). The organic phase was dried over MgSO₄, concentrated, and purified by flash column chromatography (Hexanes: EtOAc [5:1 (v/v)]) to give **8d** as colorless oil (7.30 mg, 85% yield). **R**_f = 0.54 Hexanes: EtOAc [3:1 (v/v)].

Data for **8d**: ¹**H NMR** (400 MHz, CDCl₃, 25 °C, δ): 7.39-7.44 (m, 1H), 7.13-7.23 (m, 3H), 6.72 (d, *J* = 15.6 Hz, 1H), 6.02 (dd, *J* = 9.2, 15.6 Hz, 1H), 5.45 (d, *J* = 1.6 Hz, 1H), 5.23-5.26 (m, 2H), 4.28 (dd, *J* = 5.6, 12.4 Hz, 1H), 4.16-4.24 (m, 2H), 3.11-3.17 (m, 1H), 2.32 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H). ¹³C **NMR** (175 MHz, CDCl₃, 25 °C, δ): 170.83, 170.20, 169.80, 135.80, 135.50, 133.88, 130.46, 128.19, 126.38, 126.13, 124.41, 90.53, 70.87, 70.73, 66.11, 62.46, 46.75, 20.99, 20.89, 20.87, 19.94. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₁H₂₅N₃O₇Na [(M + Na)⁺], 454.1585, found, 454.1583.

 $methylstyryl) tetrahydro-2H-pyran-2-yl) oxy) methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triyl tribenzoate (8e-a) & (2R,3R,4S,5R,6S)-2-((((2R,3S,4R,5S,6R)-4,5-diacetoxy-6-(acetoxymethyl)-3-((E)-2-methylstyryl) tetrahydro-2H-pyran-2-yl) oxy) methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triyl tribenzoate(8e-\beta)$

According to the procedure of synthesizing **8d**, **3k** (8.07 mg, 0.0180 mmol, 1.00 equiv) and **S31** (10.9 mg, 1.20 equiv) was used to obtain the title compound **8e-** α and **8e-** β as colorless oil (**8e-** α , 9.70 mg; **8e-** β , 2.70 mg, total 77% yield).

Data for α isomer (8e- α): $\mathbf{R}_f = 0.23$ Hexanes: EtOAc [3:1 (v/v)]. (purify using HPLC: Lux[®] 5µm i-Amylose 1 column, $t_R = 10.00$ min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.) ¹H NMR (700

MHz, CDCl₃, 25 °C, δ): 8.10-8.13 (m, 2H), 7.93-7.97 (m, 2H), 7.87-7.91 (m, 2H), 7.59-7.63 (m, 1H), 7.47-7.52 (m, 3H), 7.34-7.38 (m, 2H), 7.18-7.22 (m, 1H), 7.15 (t, *J* = 7.7 Hz, 2H), 7.08-7.12 (m, 1H), 7.01-7.06 (m, 2H), 6.95-6.98 (m, 1H), 6.11 (dd, *J* = 9.8, 10.5 Hz, 1H), 6.01 (d, *J* = 16.1 Hz, 1H), 5.62 (dd, *J* = 9.1, 16.1 Hz, 1H), 5.29 (dd, *J* = 5.6, 9.8 Hz, 1H), 5.18 (d, *J* = 1.4 Hz, 1H, H-1), 5.08-5.17 (m, 3H), 4.75 (dd, *J* = 2.1, 11.9 Hz, 1H), 4.61 (dd, *J* = 4.9, 11.9 Hz, 1H), 4.27 (ddd, *J* = 2.1, 4.9, 9.8 Hz, 1H), 4.21 (dd, *J* = 4.2, 11.9 Hz, 1H), 4.17 (t, *J* = 9.1 Hz, 1H), 4.12 (ddd, *J* = 2.1, 4.2, 9.8 Hz, 1H), 4.01 (dd, *J* = 2.1, 12.6 Hz, 1H), 3.46 (s, 3H), 2.90-2.94 (m, 1H), 2.03 (s, 3H), 2.00 (s, 3H), 2.00 (s, 3H), 1.91 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.74, 169.91, 169.75, 166.38, 166.10, 165.39, 135.92, 135.15, 133.52, 133.50, 133.38, 133.32, 130.09, 130.09, 130.01, 129.90, 129.90, 129.78, 129.72, 129.72, 129.08, 128.94, 128.74, 128.55, 128.55, 128.49, 128.49, 127.67, 126.17, 125.93, 124.23, 102.36, 96.94, 76.11, 73.03, 72.11, 70.49, 70.04, 68.31, 66.44, 63.58, 62.54, 55.65, 47.95, 20.91, 20.85, 20.81, 19.74. HRMS (ESI-TOF) *m*/*z* calcd for C₄₉H₅₀O₁₆Na [(M + Na)⁺], 917.2991, found, 917.2990.

Data for **β isomer (8e-β)**: **R**_{*f*} = 0.23 Hexanes: EtOAc [3:1 (v/v)]. (purify using HPLC: Lux[®] 5µm i-Amylose 1 column, t_R = 13.18 min, 10% (v/v) isopropanol in hexane at the flow rate of 1.0 ml/min.) ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 8.07-8.11 (m, 2H), 8.02-8.05 (m, 2H), 7.96-7.99 (m, 2H), 7.59-7.63 (m, 1H), 7.52-7.57 (m, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.21-7.29 (m, 3H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.01-7.06 (m, 2H), 6.97 (d, *J* = 7.7 Hz, 1H), 5.97 (d, *J* = 16.1 Hz, 1H), 5.59-5.68 (m, 2H), 5.34 (dd, *J* = 4.2, 9.8 Hz, 1H), 5.00-5.14 (m, 4H), 4.61 (t, *J* = 9.8 Hz, 1H), 4.56 (dd, *J* = 2.8, 12.6 Hz, 1H), 4.40 (dd, *J* = 4.9, 12.6 Hz, 1H), 4.23-4.28 (m, 1H), 3.88 (d, *J* = 9.8 Hz, 1H), 3.79 (dd, *J* = 2.1, 11.9 Hz, 1H), 3.65 (dd, *J* = 3.5, 12.6 Hz, 1H), 3.45 (s, 3H), 2.91 (dd, *J* = 5.6, 9.8 Hz, 1H), 2.01 (s, 3H), 1.99 (s, 3H), 1.85 (s, 3H), 1.74 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.77, 169.81, 169.57, 166.38, 165.79, 164.98, 136.12, 135.13, 133.76, 133.73, 133.26, 133.04, 130.03, 129.98, 129.98, 129.93, 129.93, 129.87, 129.87, 129.79, 129.68, 128.70, 128.70, 128.65, 128.65, 128.64, 128.55, 128.55, 127.62, 126.20, 125.91, 124.76, 101.72, 97.26, 75.21, 72.38, 71.86, 70.63, 68.65, 67.64, 65.91, 63.10, 61.99, 55.71, 47.80, 20.90, 20.82, 20.64, 19.74. **HRMS** (ESI-TOF) *m*/*z* calcd for C₄₉H₅₀O₁₆Na [(M + Na)⁺], 917.2991, found, 917.2990.

(2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-((4-(tert-butyl)phenyl)thio)-5-((E)-2methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8f-α)& (2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-((4-(tert-butyl)phenyl)thio)-5-((E)-2-methylstyryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8f-β)

According to the procedure of synthesizing **8d**, **3k** (8.96 mg, 0.0200 mmol, 1.00 equiv) and 4-*tert*butylthiophenol (4.06 mg, 1.20 equiv) was used to obtain the title compound **8f-\alpha** and **8f-\beta** as colorless oil (**8f-\alpha**, 7.95 mg; **8f-\beta**, 2.00 mg, total 90% yield).

Data for *α* isomer (8f-*α*): $\mathbf{R}_f = 0.56$ Hexanes: EtOAc [3:1 (v/v)]. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.37-7.46 (m, 3H), 7.31-7.36 (m, 2H), 7.11-7.20 (m, 3H), 6.69 (d, J = 15.5 Hz, 1H), 6.15 (dd, J = 9.5, 15.5 Hz, 1H), 5.54 (s, 1H, H-1), 5.34 (dd, J = 5.5, 9.5 Hz, 1H), 5.26 (t, J = 10.0Hz, 1H), 4.64 (ddd, J = 2.0, 5.5, 10.1 Hz, 1H), 4.28 (dd, J = 5.5, 12.0 Hz, 1H), 4.14 (dd, J = 2.5, 12.0 Hz, 1H), 3.96-3.45 (m, 1H), 2.32 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.30 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.79, 170.22, 169.91, 151.24, 136.01, 135.46, 132.89, 132.01, 132.01, 130.39, 130.19, 127.98, 126.33, 126.30, 126.30, 126.29, 126.16, 88.06, 71.75, 69.38, 67.01, 62.84, 48.17, 34.72, 31.36, 31.36, 31.36, 21.03, 20.92, 20.90, 19.97. **HRMS** (ESI-TOF) m/z calcd for $C_{31}H_{39}O_7S$ [(M + H)⁺], 555.2411, found, 555.2407. Data for β isomer (8f-β): $\mathbf{R}_f = 0.46$ Hexanes: EtOAc [3:1 (v/v)]. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.50-7.54 (m, 1H), 7.41-7.46 (m, 2H), 7.29-7.34 (m, 2H), 7.13-7.22 (m, 3H), 6.73 (d, J = 15.5 Hz, 1H), 6.17 (dd, J = 10.0, 15.5 Hz, 1H), 5.26 (t, J = 10.0 Hz, 1H), 4.97-5.03 (m, 1H), 4.98 (d, J = 2.0 Hz, 1H, H-1), 4.26 (dd, J = 6.0, 12.5 Hz, 1H), 4.19 (dd, J = 2.0, 12.5 Hz, 1H), 3.71 (ddd, J = 2.0, 5.5, 9.9 Hz, 1H), 3.42-3.48 (m, 1H), 2.36 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.31 (s, 9H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.86, 170.44, 169.82, 151.09, 136.16, 135.42, 135.11, 131.65, 131.65, 130.28, 127.99, 126.65, 126.33, 126.10, 126.10, 122.75, 87.69, 76.59, 74.60, 66.38, 63.10, 49.14, 34.71, 31.38, 31.38, 31.38, 20.99, 20.95, 20.90, 20.85, 20.00. **HRMS** (ESI-TOF) m/z calcd for $C_{31}H_{39}O_7S$ [(M + H)⁺], 555.2411, found, 555.2409.

 $(2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(furan-2-yl)-5-((E)-styryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8g-a) & (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(furan-2-yl)-5-((E)-styryl)tetrahydro-2H-pyran-3,4-diyl diacetate (8g-\beta)$

According to the procedure of synthesizing **8d**, **3k** (8.96 mg, 0.0200 mmol, 1.00 equiv) and Furan (40.7 μ L, 20.0 equiv) was used to obtain the title compound **8g-a** and **8g-b** as colorless oil (**8g-a**, 4.04 mg; **8g-b**, 1.00 mg, total 56% yield).

Data for α isomer (8g- α): $\mathbf{R}_f = 0.41$ Hexanes: EtOAc [3:1 (v/v)]. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ): 7.46-7.48 (m, 1H), 7.37-7.41(m, 1H), 7.11-7.20 (m, 3H), 6.70 (d, J = 15.4 Hz, 1H), 6.55 (d, J = 2.8 Hz, 1H), 6.38-6.42 (m, 1H), 6.15 (dd, J = 9.1, 15.4 Hz, 1H), 5.36 (dd, J = 4.9, 9.4 Hz, 1H), 5.21 (t, J = 7.7 Hz, 1H), 5.10 (d, J = 3.5 Hz, 1H), 4.37 (dd, J = 5.6, 11.9 Hz, 1H), 4.14 (dd, J = 2.8, 11.9 Hz, 1H), 3.82-3.88 (m, 1H), 3.56-3.62 (m, 1H), 2.29 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H). ¹³C NMR (175 MHz, Data for **β isomer** (**8g-β**): **R**_{*f*} = 0.38 Hexanes: EtOAc [3:1 (v/v)]. ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 7.32-7.37 (m, 2H), 7.15-7.19 (m, 2H), 7.09-7.13 (m, 1H), 6.51 (d, J = 15.4 Hz, 1H), 6.30 (d, J = 2.8 Hz, 1H), 6.27 (dd, J = 2.1, 3.5 Hz, 1H), 6.12 (dd, J = 9.8, 15.4 Hz, 1H), 5.31 (t, J = 9.8 Hz, 1H), 5.14 (dd, J =4.9, 9.8 Hz, 1H), 4.84-4.86 (m, 1H), 4.29 (dd, J = 4.9, 11.9 Hz, 1H), 4.22 (dd, J = 2.1, 11.9 Hz, 1H), 3.84 (ddd, J = 2.8, 4.9, 9.8 Hz, 1H), 3.46 (ddd, J = 2.1, 4.9, 9.8 Hz, 1H), 2.23 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.99, 170.56, 169.82, 151.25, 142.15, 136.63, 135.23, 133.92, 130.22, 127.74, 126.35, 126.30, 124.26, 110.34, 108.04, 75.13, 74.92, 66.42, 62.98, 47.06, 21.07, 20.99, 20.92, 19.86. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₅H₂₈O₈Na [(M + Na)⁺], 479.1676, found, 479.1674.

HRMS (ESI-TOF) m/z calcd for C₂₅H₂₈O₈Na [(M + Na)⁺], 479.1676, found, 479.1673.

Mechanistic Studies

Radical Trapping Experiments

The procedure is based on General Procedure B: In a glovebox, to an oven-dried 4 mL screw cap vial was added $Pd(PPh_3)_4$ (2.31 mg, 0.00200 mmol, 10.00 mol%), Xantphos (2.31 mg, 0.00400 mmol, 20.00 mol%), 1-bromosugar **1a** (0.0200 mmol, 1.00 equiv), styrene (3.12 mg, 0.0300 mmol, 1.50 equiv), TEMPO (3.12 mg, 0.0200 mmol, 1.00 equiv) *or* butylated hydroxytoluene (BHT, 4.41 mg, 0.0200 mmol, 1.00 equiv), K₃PO₄ (8.49 mg, 0.0400 mmol, 2.00 equiv), benzene (8.00 mL, 0.0250 M), and a stir bar. Next, the vial was capped, taken out of the glovebox, and sealed with a black tape. After the reaction mixture was heated to 90 °C and stirred for 5 min, it was irradiated with 34W Blue LEDs for 14h. The yield was determined based on crude ¹H-NMR spectrum using dibromomethane as an internal standard.

Figure S1. Radical trapping experiments with TEMPO or BHT

The crude NMR of reaction mixture with the TEMPO additive:

Characterization data for TEMPO adduct **3a**': ¹**H NMR** (700 MHz, CDCl₃, 25 °C, δ): 5.21 (t, *J* = 9.8 Hz, 1H), 5.06 (q, *J* = 9.1 Hz, 2H), 4.85 (d, *J* = 9.1 Hz, 1H), 4.23 (dd, *J* = 4.9, 11.9 Hz, 1H), 4.13 (dd, *J* = 2.8, 11.9 Hz, 1H), 3.66-3.70 (m, 1H), 2.07 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H), 1.23-1.60 (m, 6H), 1.23 (s, 3H), 1.17 (s, 3H), 1.05 (s, 6H). ¹³C NMR (175 MHz, CDCl₃, 25 °C, δ): 170.88, 170.53, 169.65, 169.33, 103.43, 73.46, 71.55, 70.95, 68.96, 62.29, 61.32, 59.76, 40.61, 40.39, 34.37, 32.65, 20.98, 20.91, 20.79, 20.79, 20.64, 19.99, 17.12. **HRMS** (ESI-TOF) *m*/*z* calcd for C₂₃H₃₈NO₁₀ [(M + H)⁺], 488.2490, found, 488.2487.

The crude NMR of reaction mixture with the BHT additive:

Results and Conclusion: The desired reaction was inhibited in the presence of a radical scavenger, 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO, 1.00 equiv), indicating that the reaction is likely proceeded through a radical mechanism.

Stern–Volmer Luminescence Quenching Experiments

Emission intensities were recorded using a Perkin Elmer LS50B Luminescence spectrometer. All quenching data was recorded in the dark using a 1.00 cm screw-top quartz cuvette at 23 °C in the presence of Pd(PPh₃)₄ (0.600 μ M) and varying concentration of quencher in degassed benzene. Excitation of the sample was performed at 375 nm and emission was detected at 580 nm. After the acquisition, the data were plotted according to the Stern-Volmer equation shown below.

$$I_o/I = 1 + K_{SV}[Q]$$

 $K_{SV} = k_q \tau_o$

Where I_o is the luminescence intensity in the absence of the quencher, I is the intensity in the presence of the quencher, K_{SV} is the Stern–Volmer constant, k_q is the quenching rate, τ_o is the life-time of the photoredox catalyst and [Q] is the concentration of the quencher.

Results and Conclusion: The results indicate that while the 1-bormosugar and styrene can both quench the excited state of $Pd(PPh_3)_4$, 1-bromosugar is more effective and likely to be the quencher in the reaction.

Figure S2. Stern-Volmer plot for the emission quenching of Pd(PPh₃)₄ by various concentrations of 1bromosugar and styrene. (*benzene* as solvent)

Quantum Yield Experiment

Quantum yield experiments suggest that an extended radical chain propagation is unlikely under our reaction conditions. The following quantum yield measurements are adapted from the procedure developed by Yoon et al.¹²

Determination of the Light Intensity at 450 nm:

The fraction of light absorbed (*f*) by ferrioxalate solution was calculated as shown in **Figure S3**, where the absorbance of the ferrioxalate solution at 450 nm was measured to be 1.85441 (A), based on eqation ($f = 1-10^{-A}$), indicating f = 0.98602).

Figure S3. Absorbance of the ferrioxalate solution at 450 nm (A = 1.85441).

The photon flux of the 30 W Blue LEDs ($\lambda_{max} = 450$ nm) was determined by standard ferrioxalate actinometry.¹³ A 0.150 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate (K₃[Fe(C₂O₄)₃] • 3H₂O) in 30.0 mL of 0.05 M H₂SO₄ (aq). Next, a buffered solution of phenanthroline was prepared by dissolving 50.0 mg of phenanthroline and 11.25 g of sodium acetate in 50.0 mL of 0.500 M H₂SO₄. Both solutions were stored in an amber vial in the dark. To determine the photon flux of the 30 W Blue LEDs, 2.00 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 5.00 seconds at $\lambda = 450$ nm. After irradiation, 0.500 mL of the phenanthroline solution was added to the cuvette. The solution was then rested for 1 h in the dark to allow the ferrous ions to completely coordinate to the phenanthroline. A non-irradiated sample was also prepared and developed in the dark as well (*note: after developing the non/irradiated samples they were diluted with a dilution factor of 4 to prevent deviation from the Beer-Lambert law at high concentrations A = >2. Thus, to obtain the actual mol of Fe²⁺ they were multiplied by four. The values of the optical difference are the average of three trials).*

S64

1 Ferrioxalate Actinometry

mol of Fe²⁺ = 4 x
$$\begin{bmatrix} V \times \Delta A_{510} \\ I \times \varepsilon_{510} \end{bmatrix}$$
 V= 0.00250L (total volume)
 $\Delta A_{510} = 0.48978$ (difference in absorption at 510 nm)
I = 1.00 cm (path length)
 $\varepsilon_{510} = 11,100$ L mol⁻¹cm⁻¹ (molar absorptivity at 510 nm)

2 Determination of photon flux of 30W Blue Led

4.40 x 10⁻⁷ mol

photon flux =
$$\left[\frac{\text{mol of Fe}^{2+}}{\phi \text{ x t x f}}\right]$$

 $\phi = 1.01 \quad (quantum yield of ferrioxalate actiometer)$
 $t = 5.00s \quad (time)$
 $f = 0.98602 \quad (Fraction of light absorbed)$
photon flux = $\left[\frac{4.40 \times 10^{-7}}{1.01 \times 5.00 \times 0.98602}\right]$ einstein s⁻¹

= 8.836×10^{-8} einstein s⁻¹

Figure S4. Determination of the light intensity (photon flux) at 450 nm via ferrioxalate actinometry ($\epsilon = 11,100 \text{ L mol}^{-1}\text{cm}^{-1}$).^{13a}

Afterward, the absorbance of both solutions was measured at 510 nm and with mol of Fe²⁺ known, next, the photon flux determined to be 8.84×10^{-8} einstein s⁻¹. We can obtain the quantum yield of our reaction provided if it is irradiated using the same geometry (*note: although* $\Phi = 1.01$ at 436 nm was used for the calculation of the photon flux it known that the ferrioxalate system varied little with the wavelength as the Φ remained between 0.9 and 1.1 at wavelength between 400–480 nm).^{13a}

Determination of Quantum Yield of migration reduction reaction:

To determine the photon flux, in a glovebox, the cuvette was charged with **1a** (20.5 mg, 0.050 mmol, 1.00 equiv), Pd(PPh₃)₄ (5.78 mg, 10 mol%), xantphos (5.79 mg, 20 mol%), K₃PO₄ (21.2 mg, 0.100 mmol) and benzene (2.00 mL, 0.0250 M). To this suspension was added styrene (25.8 mg, 0.100 mmol, 1.50 equiv). Afterward the cuvette was capped with a PTFE stopper and taken out of the glovebox. The cuvette was heated up in the oil bath and the reaction mixture was irradiated ($\lambda_{max} = 450$ nm) for 1800 s (30 min) with the same 30 W Blue LEDs at 90 °C. To determine the yield of the product, the solvent is removed under vacuum, an internal standard, dibromomethane (CH₂Br₂) (8.70 mg, 0.0500 mmol, 1.00 equiv) was added

to the cuvette, followed by 500 μ L CDCl₃. The reaction was repeated three times with yield to be: 10%, 12%, 10.5%. The quantum yield was determined using the equation shown below.

Figure S5. Quantum yield determination of migration reduction reaction.

Results and Conclusion: Quantum yield of the C2 alkenylation reaction was 0.15, suggesting that an extended radical chain propagation is unlikely under our reaction conditions.

Light On-Off Experiment

The procedure is based on General Procedure B: In a glovebox, to an oven-dried 4 mL screw cap vial was added Pd(PPh₃)₄ (2.31 mg, 0.00200 mmol, 10.00 mol%), xantphos (2.31 mg, 0.0400 mmol, 20.00 mol%), bromosugar (0.0500 mmol, 1.00 equiv), Styrene (3.12 mg, 0.0300 mmol, 1.50 equiv), K₃PO₄ (8.49 mg, 0.0400 mmol, 2.00 equiv) and benzene (8.00 mL, 0.0250 M). A magnetic stir bar was then added. Six parallel reaction mixtures in six vials were prepared and next, the vials were capped, taken out of the glovebox, and sealed with a black tape. The vials were heated to 90 °C at the same time and stir for 5 min, then they were irradiated with 34W Blue LEDs. After 30min, the light is turned off and one vial is removed from oil bath. After another 30min in dark, another vial is removed. Then the light is turned on for another 30mins. Repeat the same procedure until the last vial is removed from the oil bath. The yields were determined based on crude ¹H-NMR spectrum with dibromomethane as an internal standard.

Results and Conclusion: The result indicated that an extended radical chain propagation is unlikely under our reaction conditions.

Studies of Stereochemical Outcome Using 2-Iodo Sugar

The procedure is based on **General Procedure B** with **9a**-eq or **9a**-ax (0.0500 mmol, 1.00 equiv), styrene (3.12 mg, 0.0300 mmol, 1.50 equiv) as substrates. The yields were determined based on crude ¹H-NMR spectrum with dibromomethane as an internal standard.

Figure S7. Alkenylation reaction with different 2-iodosugars as substrates

Crude NMR spectrum of the reaction using **9a**-eq as the starting material:

Crude NMR spectrum of the reaction using **9a**-ax as starting material:

Results and Conclusion: The results indicate that the reaction involves the formation of C2 radical species.

Kinetic Isotope Effect Measurements

The substrates $2e - d_1$ and $2e - d_2$ were prepared according to the literature procedure.¹⁴

For the top reaction, the procedure is based on **General Procedure B** with **1a** (0.02 mol, 1.00 equiv), **2e**- d_2 (0.0150 mol, 0.750 equiv) and **2e** (0.0150 mol, 0.750 equiv). For the bottom reaction, the procedure is based on **General Procedure B** with **1a** (0.02 mol, 1.00 equiv), **2e**- d_1 (0.0300 mol, 1.00 equiv). The yield was determined based on crude ¹H-NMR spectrum with dibromomethane as internal standard.

A. Reaction time at 14 h; 97% conversion

Figure S8. Kinetic isotope effect measurements

Crude spectrum of reaction A.1: (H-ax+D-ax = 59%, H-eq+D-eq =14%) (97% conversion)

After prep TLC separation:

Spectrum for axial product: (H-ax:D-ax=64%:36%)

KIE Calculations:

H-product: axial = 59% x 0.64 = 37.8%; equatorial: 14% x 0.68 = 9.5%; Total H-product = 47.3% D-product: axial = 59% x 0.36 = 21.2%; equatorial: 14% x 0.32 = 4.5%; Total D-product = 25.7% KIE = 47.3/25.7 = 1.84

Crude spectrum of reaction A.2: (H-ax+D-ax = 63%, H-eq+D-eq =15%) (97% conversion)

After prep TLC separation:

Spectrum for axial product: (H-ax:D-ax=68%:32%)

Spectrum for equatorial product: (H-eq:D-eq=69%:31%)

KIE Calculations:

H-product: axial = $63\% \times 0.68 = 42.8\%$; equatorial: 15% x 0.69 = 10.4%; Total H-product = 53.2% D-product: axial = $63\% \times 0.32 = 20.2\%$; equatorial: 15% x 0.31 = 4.7%; Total D-product = 24.9% KIE = 53.2/24.9 = 2.14

Crude NMR spectrum of reaction B.1: (H-ax+D-ax = 36%, H-eq+D-eq =9%) (69% conversion)

After Pre TLC separation:

Spectrum for axial product: (H-ax:D-ax = 68%:32%; H-eq:D-eq = 82%:18%)

Results and Conclusion: These results showed primary kinetic isotope effect.

DFT Calculations

Computational Details

All density functional theory (DFT) calculations were carried out using Gaussian 16.¹⁵ Geometries of intermediates and transition states were optimized using the dispersion-corrected B3LYP-D3 functional,¹⁶ using Grimme's DFT-D3 dispersion correction,¹⁷ with a mixed basis set of SDD for Pd and 6-31G(d) for other atoms in the gas phase. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a local minimum or a transition state structure. The M06 functional¹⁸ with a mixed basis set of SDD for Pd and 6-311+G(d,p) for other atoms was used in single-point energy calculations. Solvation energy corrections were calculated in benzene solvent with the SMD continuum solvation model¹⁹ based on the gas-phase optimized geometries. Thermal corrections to the Gibbs free energies and enthalpies were calculated using GoodVibes²⁰ with Truhlar's quasi-harmonic oscillator approximation²¹ at 363.15 K. Conformational sampling of carbohydrate structures and transition states was carried out using the iterative metadynamic sampling and genetic crossover (iMTD-GC) method implemented in the CREST program²² with the GFN2-xTB method.²³ Default settings in CREST were used in the conformational sampling and the forming/breaking bonds in the transition state structures were constrained to the corresponding distances obtained from the DFT-optimized TS structures in the CREST conformational sampling. Low-energy conformers from CREST/xTB were then re-optimized using DFT at the M06/SDD-6-311+G(d,p)/SMD//B3LYP-D3/SDD-6-31G(d) level of theory. Only the lowest energy conformer from the DFT calculations were reported in this manuscript. DFT calculations were performed using a simplified model of the glucosyl radical (\mathbf{II}) , where OMe groups were used in place of the OAc groups at the C3, 4, and 6 positions of the pyranose ring. Images of 3D molecular structures were generated using CYLview 2.0.24

TS4

13.7

(-4.1)

C

AcO

MeO MeOT

MeO

Ш

TS4

ΔG (ΔH) kcal/mol

MeO-

MeO MeO

MeO

MeO-MeO-

ш όAc

Reaction Energy Profile of the C2-Selective Alkenylation at 90 °C

Figure S9. Reaction energy profile of C2-selective alkenylation at 90 °C. The disfavored C1-selective pathway (via TS4) is shown in grey. Gibbs free energies and enthalpies are with respect to II and styrene (2a).

ш

-2.7 (-2.6)

TS5

MeO-MeO-

Ph

όAc

IV

MeO

MeO MeO

VII

VII -18.9

(-38.1)

IV

-19.5 (-38.3)

ÓACPh

Optimized Geometry of C2 Radical Addition Transition States

The DFT-computed energy profiles indicate that the radical alkene addition (**TS6** and **TS7**, Figure S9) is exergonic and irreversible. Therefore, axial/equatorial selectivity is determined in the radical addition step. The computed styrene addition transition state leading to the C2-axial product (**TS6**) is 1.9 kcal/mol more stable than the styrene addition transition state leading to the C2-equatorial product (**TS7**). This energy difference qualitatively agrees with the preference for the axial isomer observed experimentally. Here, the equatorial radical addition transition state **TS7** is destabilized due to steric repulsions with the C1-OAc group. This is evidenced by a short H…O distance (2.75 Å) between the styrene terminal CH₂ group and the C1-O atoms in **TS7**. A twist boat conformer of the equatorial radical addition transition state was also considered (**TS8**), which is even less stable.

Figure S10. Optimized geometry of the axial radical addition transition state **TS6** and low-energy conformers of the equatorial radical addition transition states **TS7**. All energies are with respect to the anomeric glycosyl radical **II** and styrene 2a.

Optimized Geometry of C1 Radical Addition Transition States

Figure S11. Optimized geometry of the α -radical addition transition state **TS4** and β -radical addition transition states **TS4'** and **TS4''**. All energies are with respect to the anomeric glycosyl radical **II** and styrene **2a**.

Optimize Geometry of Alkene Formation Transitions States

Figure S12. Possible transition states for the alkene formation step. All energies are with respect to **IV** and (Xantphos)Pd^IBr.

Outersphere Single Electron Transfer (OSET) Pathway

Figure S13. Reaction energy of the outersphere single electron transfer pathway. L = Xantphos.

Spectroscopic Data

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1a)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1b)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1d)

$^{13}\mathrm{C}$ NMR (125 MHz, CDCl₃, 25 °C) of (1d)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1e)

90

80

70

60

50

40

30

20

10

ppm

Me

AcO ÓAc 1f

OAc

190 180 170 160 150 140 130 120 110 100

¹³C NMR (100 MHz, CDCl₃, 25 °C) of (1g)

-20.88 -20.81

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1h)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (1i)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (1i)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1j)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (1k)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (1k)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (11)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (5a)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (5a)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (5b)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (5b)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5c)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (5d)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (5d)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (5e)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (5e)

6.5 8.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 3.5 2.5 4.0 3.0 2.0 1.5 1.0 0.5 ppm 0.94 0.94 0.97 8 0.99

¹³C NMR (100 MHz, CDCl₃, 25 °C) of (2l)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (2l)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (2p)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (2p)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (6a)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (6b)

¹³C NMR (100 MHz, CDCl₃, 25 °C) of (6b)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3a-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3a-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3a-eq)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3a-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3b-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3b-ax)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3b-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3b-eq)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3b-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3c-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3c-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3c-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3d-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3d-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3d-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3e-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3e-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3e-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3f-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3f-eq)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3g-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3g-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3g-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3h-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3h-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3h-*eq*)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3i-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3i-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3i-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3j-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3j-ax)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3j-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3j-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3j-eq)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3j-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3k-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3k-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3k-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3k-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (31-ax)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (31-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (31-eq)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (31-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3m-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3m-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3m-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3n-ax)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3n-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3n-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3n-eq)

¹⁹F NMR (376 MHz, CDCl₃, 25 °C) of (3n-*eq*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (30-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (30-*ax*)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (30-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3p-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3p-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3p-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3p-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3q-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3q-ax)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (3q-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3q-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3r-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3r-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3r-eq)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3s-ax)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (3s-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3t-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3t-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3t-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (3t-*eq*)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3u-ax)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3u-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (3u-eq)

¹³C NMR (125 MHz, CDCl₃, 25 °C) of (3u-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4b-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4b-*eq*)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4b-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4c-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4c-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4c-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4c-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4d-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4d-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4e-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (4e -eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4e-*eq*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4f-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4g-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4g-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4g-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4g-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4h-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4h-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4i-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4i-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4j-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4j-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4j-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4k-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4k-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (41-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (41-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4l-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (41-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (4m-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4m-ax)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (4n-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (4n-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7a-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7a-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7a-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7b-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7b-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7c-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7c-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7c-*eq*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7d-ax-iso-1)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7d-ax-iso-1)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7d-ax-iso-2)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7d-ax-iso-2)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7d-eq-iso-1)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7d-eq-iso-1)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7e-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7e-*ax*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7f-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7f-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7f-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7f-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7g-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7g-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7g-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7g-eq)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7h-ax)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7h-ax)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (7h-eq)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (7h-*eq*)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8a)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8b)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (8b)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8c-iso-1)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8c-iso-2)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (8c-iso-2)

¹H NMR (400 MHz, CDCl₃, 25 °C) of (8d)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8e-α)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (8e-α)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8e-β)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (8e-β)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (8f-α)

¹H NMR (500 MHz, CDCl₃, 25 °C) of (8f-β)

¹³C NMR (175 MHz, CDCl₃, 25 °C) of (8f-β)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8g-α)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (8g-β)

¹H NMR (700 MHz, CDCl₃, 25 °C) of (3a')

Cartesian Coordinates (Å) and Energies of the Optimized Structures

20	
2a	

B3LYP-D3 SCF energy:	-309.657298 a.u.
B3LYP-D3 enthalpy:	-309.515812 a.u.
B3LYP-D3 free energy:	-309.555289 a.u.
M06 SCF energy in solution:	-309.477372 a.u.
M06 enthalpy in solution:	-309.332672 a.u.
M06 free energy in solution:	-309.383170 a.u.

Cartesian coordinates

A٦	ГOM	Х		Y	Z	
С	-1.36	1304	000000		1.329996000000	-0.000002000000
С	0.009	9781	000000		1.091916000000	-0.000004000000
С	0.51	5512	000000		-0.221399000000	-0.000010000000
С	-0.40	7042	000000		-1.281933000000	0.000001000000
С	-1.78	1284	000000		-1.045760000000	0.000014000000
С	-2.26	5167	000000		0.262783000000	0.000001000000
Η	-1.72	8684	000000		2.353006000000	-0.000015000000
Η	0.694	4691	000000		1.934824000000	-0.000017000000
Η	-0.03	7458	000000		-2.305120000000	0.000003000000
Η	-2.47	2923	000000		-1.884137000000	0.000017000000
Η	-3.33	5165	000000		0.452175000000	0.000003000000
С	1.954	4995	000000		-0.53032000000	-0.000018000000
Η	2.18	8389	000000		-1.595494000000	-0.000042000000
С	2.97	6301	000000		0.335621000000	0.000017000000
Η	2.83	6229	000000		1.413284000000	0.000056000000
Η	4.004	4161	000000		-0.013969000000	0.000011000000

3

B3LYP-D3 SCF energy:	-1191.026542 a.u.
B3LYP-D3 enthalpy:	-1190.568248 a.u.
B3LYP-D3 free energy:	-1190.654630 a.u.
M06 SCF energy in solution:	-1190.535655 a.u.
M06 enthalpy in solution:	-1190.066565 a.u.
M06 free energy in solution:	-1190.174911 a.u.

AT	'ОМ	Х		Y	Z	
С	-1.27	9229	000000		0.020511000000	1.586796000000
С	-0.84	2967	000000		-1.225441000000	0.764842000000
С	-1.48	5126	000000		-1.144155000000	-0.623220000000
0	-1.19	5837	000000		0.035743000000	-1.306734000000
С	-1.47	6597	000000		1.259399000000	-0.614132000000
С	-0.88	9909	000000		2.374285000000	-1.464560000000
Η	-1.21	6986	000000		3.340258000000	-1.050804000000
0	0.52	3993	000000		2.272087000000	-1.447097000000
С	1.15	8574	000000		3.279899000000	-2.205155000000
Η	2.23	6263	000000		3.118336000000	-2.114209000000
Η	0.87	7139	000000		3.229130000000	-3.269441000000

Η	0.915040000000	4.287512000000	-1.830008000000
Н	-1.273157000000	2.282310000000	-2.493067000000
С	-0.924748000000	1.294498000000	0.824318000000
Η	0.165176000000	1.389469000000	0.788881000000
0	-1.51478000000	2.441539000000	1.424492000000
С	-0.650697000000	3.154113000000	2.298990000000
Η	-1.219428000000	4.014080000000	2.665025000000
Η	0.242634000000	3.517228000000	1.767296000000
Η	-0.334897000000	2.533891000000	3.144957000000
Η	-2.565087000000	1.403108000000	-0.555955000000
Η	-1.154819000000	-1.951095000000	-1.277219000000
0	-2.916461000000	-1.260498000000	-0.414554000000
С	-3.653561000000	-1.780960000000	-1.438010000000
0	-3.182652000000	-2.233418000000	-2.453880000000
С	-5.124254000000	-1.711182000000	-1.102547000000
Η	-5.701972000000	-2.188184000000	-1.894856000000
Η	-5.316381000000	-2.204026000000	-0.144180000000
Η	-5.428641000000	-0.664212000000	-0.997995000000
Η	-1.264283000000	-2.117324000000	1.244750000000
0	-0.634207000000	0.090434000000	2.851278000000
С	-1.122506000000	-0.827951000000	3.809421000000
Η	-0.622869000000	-0.595234000000	4.753501000000
Η	-2.211115000000	-0.731206000000	3.946615000000
Η	-0.897197000000	-1.872308000000	3.543666000000
Η	-2.370608000000	-0.005743000000	1.727110000000
С	1.476613000000	-0.892424000000	-0.227527000000
С	0.663546000000	-1.365250000000	0.730019000000
Η	1.088776000000	-1.837972000000	1.613187000000
С	2.944928000000	-0.964962000000	-0.239227000000
С	3.686345000000	-1.862007000000	0.550354000000
С	3.648275000000	-0.086662000000	-1.082929000000
С	5.078322000000	-1.865067000000	0.510563000000
Η	3.167308000000	-2.573488000000	1.186675000000
C	5.041552000000	-0.08820600000	-1.122681000000
Н	3.083794000000	0.609050000000	-1.699691000000
С	5.763657000000	-0.977010000000	-0.324035000000
Н	5.632469000000	-2.569294000000	1.12601000000
Н	5.56420900000	0.603188000000	-1.778868000000
Н	6.849887000000	-0.98471000000	-0.356156000000
Н	1.040979000000	-0.348423000000	-1.060938000000

II

B3LYP-D3 SCF energy:	-881.886481 a.u.
B3LYP-D3 enthalpy:	-881.563622 a.u.
B3LYP-D3 free energy:	-881.634300 a.u.
M06 SCF energy in solution:	-881.578555 a.u.
M06 enthalpy in solution:	-881.247829 a.u.
M06 free energy in solution:	-881.336912 a.u.

Cartesian	coordinates	5	
ATOM	Х	Y	Ζ

0	0.604318000000	-1.824143000000	-0.511287000000
0	3.206002000000	-1.113901000000	0.585324000000
0	1.771723000000	1.654591000000	-0.549131000000
0	-0.859628000000	1.930340000000	0.609574000000
0	-2.648291000000	-0.144268000000	-0.331386000000
0	-3.457604000000	-1.646794000000	1.160714000000
С	-0.748457000000	-1.642742000000	-0.441003000000
Η	-1.272998000000	-2.572485000000	-0.248494000000
С	-1.298453000000	-0.375364000000	0.150631000000
Η	-1.343252000000	-0.432243000000	1.247935000000
С	-0.482427000000	0.854600000000	-0.235684000000
Η	-0.688600000000	1.095922000000	-1.288608000000
С	1.006657000000	0.548127000000	-0.085187000000
Η	1.218541000000	0.337658000000	0.969122000000
С	1.383843000000	-0.687720000000	-0.913706000000
Η	1.178486000000	-0.474679000000	-1.974164000000
С	-3.639934000000	-0.827458000000	0.287107000000
С	-4.984563000000	-0.418171000000	-0.266930000000
Η	-5.154218000000	0.646879000000	-0.076957000000
Η	-5.768221000000	-1.010346000000	0.206634000000
Η	-5.00408000000	-0.564830000000	-1.351571000000
С	2.850255000000	-1.059833000000	-0.783622000000
Η	3.012462000000	-2.034941000000	-1.269930000000
Η	3.450573000000	-0.303186000000	-1.312447000000
С	4.538383000000	-1.539909000000	0.786208000000
Η	4.716420000000	-1.540053000000	1.864679000000
Η	4.702471000000	-2.556980000000	0.395848000000
Η	5.261376000000	-0.862124000000	0.302914000000
С	2.593373000000	2.245268000000	0.450460000000
Η	3.151534000000	3.049216000000	-0.037616000000
Η	1.986922000000	2.668326000000	1.263236000000
Η	3.295793000000	1.512319000000	0.869391000000
С	-0.984593000000	3.178816000000	-0.053994000000
Η	-1.788286000000	3.152394000000	-0.806095000000
Η	-1.243622000000	3.914733000000	0.712577000000
Η	-0.047971000000	3.474147000000	-0.542583000000

Ш

B3LYP-D3 SCF energy:	-881.888056 a.u.
B3LYP-D3 enthalpy:	-881.566074 a.u.
B3LYP-D3 free energy:	-881.636778 a.u.
M06 SCF energy in solution:	-881.581808 a.u.
M06 enthalpy in solution:	-881.251907 a.u.
M06 free energy in solution:	-881.341213 a.u.

Car	rtesian	coord	inates			
AT	ЮM	Х	Y	Y Z		
С	0.47	57300	00000	-1.69691600000	0 -0.20824900000	0
С	-0.70	28290	00000	-1.4591050000	0 -1.08820500000	0
С	-1.50	03440	00000	-0.21634000000	0 -0.92086500000	0
0	-0.71	59660	00000	0.91392700000	0 -0.66996100000	0

С	0.252548000000	0.743948000000	0.373538000000
С	0.929718000000	2.085375000000	0.593198000000
Η	1.520864000000	2.034525000000	1.521426000000
0	1.759986000000	2.388337000000	-0.512609000000
С	2.333320000000	3.676852000000	-0.426340000000
Η	2.956341000000	3.811597000000	-1.314371000000
Η	1.562198000000	4.463381000000	-0.406928000000
Η	2.962209000000	3.785612000000	0.473036000000
Η	0.150855000000	2.854072000000	0.718762000000
С	1.239303000000	-0.377575000000	0.003043000000
Η	1.729763000000	-0.114174000000	-0.939847000000
0	2.186048000000	-0.535496000000	1.053982000000
С	3.515262000000	-0.175826000000	0.697903000000
Η	4.120262000000	-0.275789000000	1.603551000000
Η	3.566174000000	0.857150000000	0.331613000000
Η	3.914936000000	-0.847174000000	-0.076223000000
Η	-0.256999000000	0.471624000000	1.309843000000
Η	-2.113408000000	0.025192000000	-1.789151000000
0	-2.404250000000	-0.434555000000	0.219193000000
С	-3.613834000000	0.189860000000	0.177905000000
0	-4.021865000000	0.831316000000	-0.762348000000
С	-4.365220000000	-0.048490000000	1.467223000000
Η	-5.356869000000	0.400276000000	1.399691000000
Η	-4.447490000000	-1.122558000000	1.66160000000
Η	-3.812429000000	0.393545000000	2.303090000000
Η	-1.061966000000	-2.260263000000	-1.723642000000
0	1.301278000000	-2.692572000000	-0.798266000000
С	1.963783000000	-3.536800000000	0.131985000000
Η	2.555053000000	-4.243321000000	-0.457405000000
Η	2.623548000000	-2.973616000000	0.801741000000
Η	1.243766000000	-4.103220000000	0.744283000000
Η	0.136720000000	-2.034413000000	0.792185000000

IV

B3LYP-D3 SCF energy:	-1191.608795 a.u.
B3LYP-D3 enthalpy:	-1191.139790 a.u.
B3LYP-D3 free energy:	-1191.227365 a.u.
M06 SCF energy in solution:	-1191.118629 a.u.
M06 enthalpy in solution:	-1190.638521 a.u.
M06 free energy in solution:	-1190.748098 a.u.

Cartesian	n coordii	nates	
ATOM	X	Y	Z

AI	UN	Λ		T	L	
С	-0.62	9974(000000		-0.731003000000	-1.170521000000
С	0.31	95420	00000		0.066887000000	-0.253243000000
С	-0.39	86000	000000		1.327070000000	0.228784000000
0	-1.59	80480	000000		1.036052000000	0.883853000000
С	-2.54	64650	000000		0.276041000000	0.121436000000
С	-3.72	57220	000000		-0.006193000000	1.036367000000
Η	-4.54	88420	000000		-0.415940000000	0.430687000000
0	-3.32	9106	000000		-0.928184000000	2.034957000000

С	-4.366197000000	-1.227794000000	2.944160000000
Η	-3.967017000000	-1.949065000000	3.662401000000
Η	-4.703495000000	-0.330878000000	3.488761000000
Η	-5.239086000000	-1.672512000000	2.437513000000
Η	-4.059927000000	0.940767000000	1.489469000000
С	-1.946962000000	-1.020671000000	-0.456089000000
Η	-1.771311000000	-1.727390000000	0.362486000000
0	-2.921291000000	-1.531661000000	-1.357800000000
С	-3.042726000000	-2.946822000000	-1.343455000000
Η	-3.819158000000	-3.200789000000	-2.071144000000
Η	-3.352077000000	-3.309280000000	-0.350745000000
Η	-2.101846000000	-3.433301000000	-1.624977000000
Η	-2.905444000000	0.881831000000	-0.722963000000
Η	0.197165000000	1.897758000000	0.941878000000
0	-0.641634000000	2.150432000000	-0.938076000000
С	-0.724769000000	3.498226000000	-0.743291000000
0	-0.527119000000	4.046279000000	0.314647000000
С	-1.084881000000	4.185631000000	-2.038653000000
Η	-1.102034000000	5.265189000000	-1.886124000000
Η	-0.359565000000	3.925211000000	-2.816195000000
Η	-2.066955000000	3.840747000000	-2.379464000000
Η	1.196177000000	0.378741000000	-0.831311000000
0	-0.058386000000	-1.973717000000	-1.575724000000
С	0.767159000000	-1.879210000000	-2.723599000000
Η	1.133161000000	-2.887927000000	-2.933618000000
Η	0.202468000000	-1.513626000000	-3.594848000000
Η	1.631683000000	-1.217731000000	-2.564355000000
Η	-0.862122000000	-0.128147000000	-2.060433000000
С	2.027942000000	-0.192223000000	1.607395000000
С	0.796287000000	-0.762472000000	0.975079000000
Η	0.968980000000	-1.788576000000	0.631642000000
Η	-0.016571000000	-0.801617000000	1.707282000000
С	3.334471000000	-0.337770000000	1.080878000000
С	3.613593000000	-1.131134000000	-0.071590000000
С	4.438044000000	0.323351000000	1.695854000000
С	4.904576000000	-1.242886000000	-0.568282000000
Η	2.804363000000	-1.664226000000	-0.559953000000
С	5.723245000000	0.204306000000	1.190885000000
Η	4.254519000000	0.934293000000	2.576734000000
С	5.970072000000	-0.577687000000	0.052887000000
Η	5.088945000000	-1.855790000000	-1.447289000000
Η	6.544167000000	0.721910000000	1.680693000000
Η	6.978145000000	-0.668904000000	-0.341440000000
Η	1.908542000000	0.431755000000	2.490439000000

\mathbf{IV}^+

B3LYP-D3 SCF energy:	-1191.386689 a.u.
B3LYP-D3 enthalpy:	-1190.915292 a.u.
B3LYP-D3 free energy:	-1191.000707 a.u.
M06 SCF energy in solution:	-1190.920331 a.u.
M06 enthalpy in solution:	-1190.437888 a.u.

M06 free energy in solution:

-1190.545944 a.u.

Ca	rtesian coordinates		
AT	YOM X	Y Z	
С	0.622528000000	-0.486492000000	1.052085000000
С	-0.254458000000	0.264484000000	0.038814000000
С	0.457102000000	1.518077000000	-0.493277000000
0	1.727398000000	1.247483000000	-0.962249000000
С	2.61813000000	0.607136000000	-0.020580000000
С	3.948784000000	0.423122000000	-0.727807000000
Η	4.710806000000	0.150153000000	0.018884000000
0	3.812770000000	-0.585898000000	-1.709661000000
С	4.988889000000	-0.758776000000	-2.485359000000
Η	4.785717000000	-1.560662000000	-3.198860000000
Η	5.24490900000	0.158499000000	-3.036323000000
Η	5.848259000000	-1.043250000000	-1.858665000000
Η	4.24181900000	1.381925000000	-1.182320000000
С	2.021747000000	-0.723456000000	0.481766000000
Η	1.950485000000	-1.419774000000	-0.361640000000
0	2.864543000000	-1.242982000000	1.497614000000
С	3.577041000000	-2.423728000000	1.128254000000
Н	4.253849000000	-2.648855000000	1.955395000000
Н	4.15346000000	-2.272245000000	0.208014000000
Н	2.89015900000	-3.269701000000	0.982463000000
Н	2.76950000000	1.271377000000	0.839703000000
Н	-0.097880000000	1.959161000000	-1.325403000000
0	0 536924000000	2 503451000000	0 563872000000
č	-0.602673000000	3 217447000000	0.786792000000
0	-1 647074000000	2.972987000000	0.217508000000
č	-0 371979000000	4 308251000000	1 796075000000
Н	-1 320901000000	4 786457000000	2.039353000000
Н	0.091946000000	3 898698000000	2.698626000000
н	0.319989000000	5.049032000000	1 381102000000
н	-1 17659600000	0 568772000000	0.535332000000
$\hat{0}$	-0.051294000000	-1.697060000000000000000000000000000000000	1 378495000000
C	0.170775000000	-2 178973000000	2 708576000000
н	-0.38166300000	-2.17838000000	2.700570000000
и П	1 23286000000	2 351372000000	2.790557000000
н Ц	0.215203000000	1.465406000000	2.895059000000
и П	0.71240000000	0 1/72/00/00000	1 0/7005000000
II C	1.04056600000	0.147249000000	1.947003000000
C	-1.940300000000	0 677528000000	-1.093011000000
С U	-0.01131000000	-0.077336000000	-1.104224000000
п	-0.39918100000	0.562927000000	-0.80480900000
п	0.130902000000	-0.302827000000	-1.932323000000
C	-3.10303900000		
C	-3.240203000000	-1.42/20100000	1 728506000000
C	-4.3/0003000000	-0.213/23000000	-1./3039000000
	-4.4/4882000000	-1.720039000000	0.033337000000
н С	-2.32/04200000	-1./41030000000	1 120224000000
	-3.39812200000	-0.528/6/000000	-1.18982400000
п	-4.30/01000000	0.575550000000	-2.030433000000

-5.647518000000	-1.284117000000	-0.006981000000
-4.547458000000	-2.299658000000	1.553825000000
-6.515885000000	-0.194897000000	-1.661929000000
-6.613546000000	-1.528852000000	0.426163000000
-1.987073000000	0.301711000000	-2.588871000000
	-5.647518000000 -4.547458000000 -6.515885000000 -6.613546000000 -1.987073000000	-5.647518000000-1.284117000000-4.547458000000-2.299658000000-6.515885000000-0.194897000000-6.613546000000-1.528852000000-1.9870730000000.301711000000

V

B3LYP-D3 SCF energy:	-6154.532662 a.u.
B3LYP-D3 enthalpy:	-6153.418440 a.u.
B3LYP-D3 free energy:	-6153.593743 a.u.
M06 SCF energy in solution:	-6155.742011 a.u.
M06 enthalpy in solution:	-6154.598729 a.u.
M06 free energy in solution:	-6154.819241 a.u.

AT	OM	Х		Y	Z		
С	5.11	151600	00000	-	-0.941113000	000	-1.081271000000
С	4.16	544000	00000	-	-0.851284000	000	0.124708000000
С	5.40	872400	00000		1.5851920000	000	-0.808995000000
С	5.13	899300	00000		0.4121870000	000	-1.786005000000
Η	6.12	2421700	00000		-1.181941000	000	-0.73067000000
Η	6.49	63910	00000		1.6565880000	000	-0.675128000000
Η	4.16	6664500	00000		0.5610510000	000	-2.261493000000
0	4.78	3479500	00000		1.470304000	000	0.481298000000
0	6.16	5900300	00000		0.4596090000	000	-2.776219000000
0	4.65	5866500	00000		-1.961169000	000	-1.972172000000
С	4.87	597100	00000		2.8877440000	000	-1.395098000000
Η	5.39	671300	00000		3.0855700000	000	-2.346224000000
Η	5.07	7929500	00000		3.7222750000	000	-0.705672000000
0	3.48	3748000	00000		2.722292000	000	-1.597444000000
С	2.86	6823600	00000		3.7125690000	000	-2.389811000000
Η	1.84	1538200	00000		3.366150000	000	-2.554930000000
Η	2.86	5327300	00000		4.6936410000	000	-1.886147000000
Η	3.37	7374300	00000		3.824560000	000	-3.363287000000
С	5.67	592400	00000		0.5201850000	000	-4.105687000000
Η	5.06	5421800	00000		-0.358246000	000	-4.352512000000
Η	6.54	1831900	00000		0.550392000	000	-4.765386000000
Η	5.06	5968900	00000		1.4234250000	000	-4.273906000000
С	5.70	194100	00000	-	-2.722991000	000	-2.554097000000
Η	6.25	5918100	00000		-3.292678000	000	-1.792358000000
Η	5.23	8095600	00000		-3.429067000	000	-3.244711000000
Η	6.41	079200	00000		-2.092778000	000	-3.105277000000
С	4.71	892300	00000		0.218500000	000	1.067967000000
С	2.72	2828900	00000	-	-0.490716000	000	-0.324006000000
Η	2.70)852100	00000		0.5044590000	000	-0.763409000000
Η	2.45	5461300	00000		-1.173681000	000	-1.126794000000
С	1.71	674000	00000	-	-0.581530000	000	0.792207000000
С	1.54	402200	00000		0.5106390000	000	1.748094000000
С	1.20	121800	00000		0.2460410000	000	3.105006000000
С	1.59	236600	00000		1.8680280000	000	1.322129000000
С	0.92	2012800	00000		1.2768270000	000	3.985597000000

Η	1.199265000000	-0.785500000000	3.444925000000
С	1.289598000000	2.897593000000	2.222946000000
Н	1.928433000000	2.111661000000	0.320277000000
С	0.950667000000	2.610524000000	3.540109000000
Н	0.673985000000	1.054066000000	5.020605000000
Н	1.309888000000	3.925719000000	1.877224000000
Н	0.714640000000	3.417727000000	4.228091000000
Н	4.163406000000	-1.811613000000	0.651755000000
C	-2.108019000000	-3.801600000000	-1.717879000000
Ċ	-2.268785000000	-2.584021000000	-1.038151000000
Ĉ	-3.257685000000	-1.716516000000	-1.511228000000
Ċ	-4.046591000000	-1.972834000000	-2.638636000000
Ĉ	-3.829243000000	-3.179698000000	-3.307349000000
Ĉ	-2.878375000000	-4.091094000000	-2.842478000000
Ċ	-4.559745000000	0.444088000000	-2.683446000000
Ĉ	-3.757205000000	0.562638000000	-1.548906000000
Ċ	-3.210485000000	1.764718000000	-1.100259000000
Ĉ	-3.515442000000	2.924309000000	-1.821800000000
Ĉ	-4.313248000000	2.845395000000	-2.964360000000
Č	-4.824026000000	1.618554000000	-3.395527000000
Н	-1.364697000000	-4.514275000000	-1.38067600000
Н	-4.408098000000	-3.422355000000	-4.192005000000
Н	-2.733017000000	-5.032221000000	-3.364945000000
Н	-3.110150000000	3.879531000000	-1.506564000000
Н	-4.535360000000	3.747140000000	-3.527791000000
Н	-5.435527000000	1.584881000000	-4.290949000000
С	-5.125462000000	-0.944025000000	-3.000442000000
0	-3.456879000000	-0.556491000000	-0.797163000000
Р	-2.091394000000	1.652535000000	0.348825000000
Р	-1.194478000000	-2.057999000000	0.371677000000
С	-1.51334000000	3.390110000000	0.545909000000
С	-1.884132000000	4.192521000000	1.632260000000
С	-0.610905000000	3.894166000000	-0.407830000000
С	-1.358833000000	5.481082000000	1.766897000000
Η	-2.575720000000	3.813952000000	2.377948000000
С	-0.101151000000	5.184402000000	-0.275116000000
Η	-0.299680000000	3.259426000000	-1.234107000000
С	-0.469342000000	5.980954000000	0.814872000000
Η	-1.648432000000	6.092675000000	2.617600000000
Η	0.595904000000	5.562439000000	-1.018312000000
Η	-0.062881000000	6.983487000000	0.921124000000
С	-3.24507000000	1.405812000000	1.758927000000
С	-2.714706000000	0.898683000000	2.954066000000
С	-4.61310300000	1.705413000000	1.687985000000
С	-3.537472000000	0.706126000000	4.063302000000
Η	-1.659664000000	0.646392000000	3.008167000000
С	-5.43700000000	1.497298000000	2.795382000000
Η	-5.034261000000	2.097850000000	0.766978000000
С	-4.900376000000	0.999842000000	3.985125000000
Н	-3.116896000000	0.301287000000	4.978693000000
Η	-6.497728000000	1.725400000000	2.728486000000

Η	-5.543454000000	0.835424000000	4.845855000000
С	0.096763000000	-3.372811000000	0.320119000000
С	0.282049000000	-4.360137000000	1.294997000000
С	1.002801000000	-3.293168000000	-0.753438000000
С	1.373972000000	-5.230990000000	1.213396000000
Η	-0.414863000000	-4.452656000000	2.121383000000
С	2.094393000000	-4.154248000000	-0.827429000000
Η	0.862490000000	-2.528582000000	-1.51320000000
С	2.285978000000	-5.123394000000	0.163085000000
Η	1.511745000000	-5.989089000000	1.979994000000
Η	2.811662000000	-4.035438000000	-1.633659000000
Η	3.144422000000	-5.788171000000	0.116841000000
С	-2.203380000000	-2.414328000000	1.868474000000
С	-1.574807000000	-2.344051000000	3.124095000000
С	-3.582480000000	-2.657286000000	1.817636000000
С	-2.298873000000	-2.550474000000	4.295879000000
Η	-0.512947000000	-2.127534000000	3.180383000000
С	-4.312309000000	-2.833928000000	2.995062000000
Η	-4.091614000000	-2.708124000000	0.861246000000
С	-3.674320000000	-2.791144000000	4.234840000000
Η	-1.792176000000	-2.508773000000	5.256691000000
Η	-5.383111000000	-3.010360000000	2.939280000000
Η	-4.244682000000	-2.935904000000	5.148334000000
Pd	-0.232675000000	0.116765000000	0.278969000000
Br	0.259316000000	0.832013000000	-2.294798000000
0	6.072212000000	-0.142543000000	1.501080000000
С	6.166981000000	-0.995889000000	2.542859000000
С	7.615437000000	-1.239208000000	2.902011000000
0	5.213472000000	-1.494456000000	3.104599000000
Η	8.148826000000	-1.653722000000	2.039979000000
Η	8.100299000000	-0.292275000000	3.160994000000
Η	7.670975000000	-1.931069000000	3.743292000000
Η	4.108211000000	0.326672000000	1.963137000000
Η	1.695603000000	-1.566147000000	1.260489000000
С	-6.350178000000	-1.186845000000	-2.072899000000
Η	-7.133449000000	-0.448182000000	-2.278412000000
Η	-6.759615000000	-2.189990000000	-2.239054000000
Η	-6.065547000000	-1.100117000000	-1.019413000000
С	-5.572660000000	-1.065304000000	-4.464518000000
Η	-6.00209000000	-2.052918000000	-4.659001000000
Η	-6.354492000000	-0.333751000000	-4.690510000000
Η	-4.736430000000	-0.905852000000	-5.152926000000

VI

B3LYP-D3 SCF energy:	-3763.372711 a.u.
B3LYP-D3 enthalpy:	-3762.898155 a.u.
B3LYP-D3 free energy:	-3762.988090 a.u.
M06 SCF energy in solution:	-3765.191157 a.u.
M06 enthalpy in solution:	-3764.705105 a.u.
M06 free energy in solution:	-3764.817901 a.u.

Car	tesian coordinates		
AT	OM X	Y Z	
С	1.093367000000	0.784195000000	1.233918000000
С	0.162397000000	0.572611000000	0.018419000000
С	0.908963000000	0.937204000000	-1.268067000000
0	2.120786000000	0.280544000000	-1.407959000000
С	3.044582000000	0.435345000000	-0.317307000000
С	4.260371000000	-0.415350000000	-0.641467000000
Н	5.058262000000	-0.168798000000	0.075634000000
0	3.907633000000	-1.782577000000	-0.553474000000
C	4.984141000000	-2.645297000000	-0.852491000000
H	4.614795000000	-3.668941000000	-0.748170000000
Н	5 349205000000	-2 500573000000	-1 882391000000
н	5 831115000000	-2 497307000000	-0.161886000000
н	4 610622000000	-0.165580000000	-1 656001000000
C	2 417129000000	0.051151000000	1.033323000000
н	2 239918000000	-1.03055/000000	1.035325000000
$\hat{0}$	3 369632000000	0.410655000000	2 021003000000
C	3.307032000000	0.417055000000	2.0210/3000000
с u	<i>A</i> 231774000000	-0.483438000000	3.114601000000
11 Ц	4.231774000000	1 497965000000	2 77587000000
п	2 50766000000	-1.46/603000000	2.773870000000
п	2.30/00900000	-0.332493000000	5.055459000000
п	3.3044/100000	1.48490400000	-0.200040000000
П	0.321/89000000	0.091280000000	-2.154/5/000000
0 C	1.1/0029000000	2.37594100000	-1.29430000000
C	0.165205000000	3.1646/8000000	-1./3405000000
0	-0.924839000000	2.74754900000	-2.0/0308000000
C	0.5856//000000	4.614186000000	-1./4419100000
H	-0.240583000000	5.2305/300000	-2.099589000000
Н	0.8/810600000	4.923496000000	-0.735294000000
Н	1.458561000000	4.744778000000	-2.391888000000
Н	-0.682686000000	1.260384000000	0.107045000000
0	0.518902000000	0.316006000000	2.445611000000
С	-0.551784000000	1.111356000000	2.932632000000
Η	-0.814799000000	0.711827000000	3.915413000000
Η	-0.247831000000	2.164107000000	3.043773000000
Η	-1.43861000000	1.061779000000	2.287200000000
Η	1.317667000000	1.859182000000	1.326548000000
С	-0.366132000000	-0.875293000000	-0.076302000000
Η	-0.473597000000	-1.288183000000	0.930321000000
Η	0.356106000000	-1.497911000000	-0.613357000000
С	-2.830238000000	-0.268505000000	0.004975000000
С	-3.310485000000	-0.833066000000	1.195286000000
С	-3.309796000000	0.983749000000	-0.398478000000
С	-4.249858000000	-0.155892000000	1.968916000000
Н	-2.955960000000	-1.814600000000	1.496380000000
С	-4.247266000000	1.665337000000	0.382547000000
Н	-2.923492000000	1.442072000000	-1.304547000000
С	-4.719753000000	1.098494000000	1.566039000000
Н	-4.618342000000	-0.606971000000	2.886431000000
Н	-4.606275000000	2.639157000000	0.060581000000

Η	-5.452583000000	1.626055000000	2.170758000000
С	-1.725669000000	-0.923462000000	-0.785051000000
Br	-2.162513000000	-2.849993000000	-1.162670000000
Η	-1.663626000000	-0.484813000000	-1.782033000000

VII

-1191.607511 a.u.
-1191.138600 a.u.
-1191.225205 a.u.
-1191.118302 a.u.
-1190.638281 a.u.
-1190.747229 a.u.

AT	'OM	X	Y	Z		
С	-1.382	905000000		1.346037000000		0.591966000000
С	-0.234	903000000		1.043873000000		-0.389116000000
С	0.045	102000000		-0.461384000000		-0.431153000000
0	-1.104	154000000		-1.20630600000)	-0.700512000000
С	-2.169	723000000		-1.025151000000	1	0.237828000000
С	-3.309	355000000		-1.935577000000	1	-0.186444000000
Η	-4.058	20000000		-1.955643000000)	0.620019000000
0	-3.878	96900000		-1.449263000000)	-1.387509000000
С	-4.946	682000000		-2.249928000000	1	-1.845535000000
Η	-5.322	32000000		-1.79240900000)	-2.764961000000
Η	-4.619	823000000		-3.27897200000)	-2.067354000000
Η	-5.766	701000000		-2.299752000000)	-1.109502000000
Η	-2.913	94900000		-2.95447400000)	-0.326041000000
С	-2.600	156000000		0.448616000000		0.322148000000
Η	-3.073	057000000		0.712319000000		-0.632652000000
0	-3.542	059000000		0.509820000000		1.384414000000
С	-4.521	112000000		1.529504000000		1.267617000000
Η	-5.237	848000000		1.367654000000		2.078068000000
Η	-5.054	485000000		1.462202000000		0.306184000000
Η	-4.080	963000000		2.528190000000		1.367895000000
Η	-1.840	018000000		-1.34178100000)	1.237827000000
Η	0.758	365000000		-0.720416000000		-1.213549000000
0	0.615	506000000		-0.832114000000		0.846505000000
С	1.380	541000000		-1.965765000000		0.864367000000
0	1.623	242000000		-2.632591000000		-0.111405000000
С	1.901	19100000		-2.229263000000		2.256226000000
Η	2.164	82000000		-3.28402000000		2.348884000000
Η	2.805	043000000		-1.628485000000		2.405131000000
Η	1.169	247000000		-1.943908000000		3.015878000000
Η	-0.564	515000000		1.285313000000		-1.408367000000
0	-1.714	387000000		2.737624000000		0.651498000000
С	-2.101	995000000		3.361890000000		-0.561788000000
Η	-2.402	742000000		4.378312000000		-0.294398000000
Η	-1.277	60900000		3.424058000000		-1.286530000000
Η	-2.953	017000000		2.862818000000		-1.045113000000
Η	-1.043	37600000		1.122489000000		1.609339000000

С	2.170645000000	1.593867000000	-0.973111000000
С	1.025496000000	1.877216000000	-0.054593000000
Η	1.289109000000	1.691047000000	0.989731000000
Η	0.744177000000	2.936917000000	-0.113965000000
С	3.382755000000	0.945838000000	-0.639179000000
С	3.721381000000	0.546801000000	0.688592000000
С	4.339383000000	0.662186000000	-1.660101000000
С	4.921615000000	-0.092706000000	0.961355000000
Η	3.028373000000	0.744668000000	1.499044000000
С	5.533461000000	0.019624000000	-1.376083000000
Η	4.111321000000	0.954502000000	-2.682511000000
С	5.838049000000	-0.366605000000	-0.063039000000
Η	5.153679000000	-0.381308000000	1.983949000000
Η	6.236611000000	-0.187656000000	-2.178609000000
Η	6.774028000000	-0.871144000000	0.158174000000
Η	2.023695000000	1.857671000000	-2.020238000000

LPd(I)Br

380777 a.u.
239963 a.u.
356307 a.u.
580791 a.u.
)22257 a.u.
)69362 a.u.

ΌM	Х		Y	-	Z	
-3.32	23416	6000000		1.777532	000000	-1.29265000000
-2.13	39371	000000		1.391704	000000	-0.646186000000
-1.04	5988	000000		2.257843	000000	-0.749216000000
-1.05	55117	000000		3.450200	000000	-1.478883000000
-2.24	19339	000000		3.792289	000000	-2.119555000000
-3.37	3655	000000		2.968541	000000	-2.017116000000
1.40	6161	000000		3.294086	000000	-1.537028000000
1.28	0206	000000		2.118588	000000	-0.795113000000
2.26	5559	000000		1.130467	000000	-0.716941000000
3.46	51286	000000		1.355345	000000	-1.412204000000
3.62	3704	000000		2.520720	000000	-2.163646000000
2.60	6446	000000		3.477162	000000	-2.232025000000
-4.19	96460	000000)	1.136116	000000	-1.24947100000
-2.31	10847	/000000)	4.703373	000000	-2.705068000000
-4.29	94502	2000000)	3.252226	000000	-2.518458000000
4.25	51898	000000		0.613207	000000	-1.378467000000
4.54	9970	000000		2.683614	000000	-2.70701000000
2.75	6443	000000		4.368392	000000	-2.832034000000
0.23	4431	000000		4.283223	000000	-1.480394000000
0.11	1394	000000		1.876962	000000	-0.098294000000
1.83	2948	000000		-0.4163010	000000	0.180372000000
-1.87	9730	000000		-0.253352	000000	0.153965000000
3.39	1402	000000		-1.393822	000000	0.078689000000
4.48	8783	000000		-1.110303	000000	0.909556000000
	OM -3.32 -2.13 -1.04 -1.05 -2.24 -3.37 1.40 1.28 2.26 3.46 3.62 2.60 -4.19 -2.31 -4.29 4.25 4.54 2.75 0.23 0.11 1.83 -1.87 3.39 4.48	OM X -3.323416 -2.139371 -1.045988 -1.055117 -2.249339 -3.373655 1.406161 1.280206 2.265559 3.461286 3.623704 2.606446 -4.196460 -2.310847 -4.294502 4.251898 4.549970 2.756443 0.234431 0.111394 1.832948 -1.879730 3.391402 4.488783	OM X -3.323416000000 -2.139371000000 -1.045988000000 -1.055117000000 -2.249339000000 -3.373655000000 1.406161000000 2.265559000000 3.461286000000 3.623704000000 2.606446000000 -4.19646000000 -4.19646000000 -4.294502000000 4.549970000000 4.549970000000 2.756443000000 0.234431000000 0.111394000000 1.832948000000 -1.879730000000 3.39140200000 4.488783000000	OM X Y -3.32341600000 -2.139371000000 -2.139371000000 -1.045988000000 -1.045988000000 -1.055117000000 -2.249339000000 -3.373655000000 -3.373655000000 1.406161000000 -3.373655000000 2.265559000000 2.265559000000 3.623704000000 2.606446000000 -4.19646000000 -4.19646000000 -4.294502000000 -4.294502000000 4.549970000000 -2.310847000000 2.756443000000 -3.32948000000 1.832948000000 -3.391402000000 4.488783000000	OM X Y Z -3.32341600000 1.777532 -2.13937100000 1.391704 -1.04598800000 2.257843 -1.05511700000 3.450200 -2.24933900000 3.792289 -3.37365500000 2.9685411 1.406161000000 3.2940860 1.280206000000 2.118588 2.26555900000 1.1304670 3.461286000000 2.5207200 2.606446000000 3.4771620 -4.19646000000 3.252226 4.251898000000 4.703373 -4.294502000000 3.252226 4.251898000000 4.368392 0.234431000000 4.368392 0.234431000000 4.8769622 1.832948000000 -0.4163010 -1.879730000000 -0.253352 3.391402000000 -1.10303	OM X Y Z -3.32341600000 1.777532000000 1.391704000000 -2.13937100000 1.391704000000 1.391704000000 -1.04598800000 2.257843000000 2.257843000000 -2.24933900000 3.792289000000 3.792289000000 -3.37365500000 2.968541000000 1.280206000000 1.28020600000 2.118588000000 2.26555900000 1.30467000000 3.62370400000 2.520720000000 3.62370400000 2.52072000000 3.4512800000 -4.19646000000 3.477162000000 -4.29450200000 -4.19646000000 3.252226000000 4.25189800000 -5.5189800000 0.613207000000 2.75644300000 -2.3443100000 4.283223000000 0.416301000000 -1.139400000 1.87973000000 -0.253352000000 -3.39140200000 -1.10303000000 -1.110303000000

С	3.495800000000	-2.416046000000	-0.876596000000
С	5.672920000000	-1.835474000000	0.780814000000
Н	4.416514000000	-0.326134000000	1.657481000000
С	4.685699000000	-3.136979000000	-1.001882000000
Н	2.647299000000	-2.660988000000	-1.509282000000
С	5.773633000000	-2.849378000000	-0.176411000000
Н	6.515533000000	-1.610947000000	1.429630000000
Н	4.753463000000	-3.930010000000	-1.741425000000
Н	6.696145000000	-3.416008000000	-0.272590000000
С	1.781265000000	0.097361000000	1.943229000000
Ċ	1.270188000000	-0.824680000000	2.868834000000
Ċ	2.251621000000	1.336700000000	2.398510000000
Č	1.251145000000	-0.520271000000	4.228226000000
H	0.876113000000	-1.775148000000	2.518604000000
C	2.219972000000	1.643676000000	3.760393000000
H	2.646558000000	2.061078000000	1.692493000000
C	1.725233000000	0.714779000000	4.676915000000
Н	0.843515000000	-1 237547000000	4 933899000000
н	2 585579000000	2 608147000000	4 103433000000
Н	1 699194000000	0.955095000000	5 736411000000
C	-3 491064000000	-1 102348000000	-0 138928000000
C	-4 643872000000	-0.762981000000	0.591434000000
C	-3 575918000000	-2.083241000000	-1 138194000000
C	-5 85850500000	-1 392378000000	0 322783000000
H	-4 588837000000	-0.009516000000	1 371754000000
C	-4.795892000000	-2.710795000000	-1.40320200000
H	-2.690306000000	-2.371735000000	-1.698461000000
C	-5.936230000000	-2.367893000000	-0.676145000000
Η	-6.743140000000	-1.123500000000	0.894089000000
Η	-4.846571000000	-3.473958000000	-2.174730000000
Н	-6.882856000000	-2.860834000000	-0.881421000000
С	-1.934257000000	0.068774000000	1.965018000000
C	-2.207272000000	-1.018394000000	2.813371000000
C	-1.673981000000	1.323706000000	2.529917000000
C	-2.247411000000	-0.844509000000	4.195124000000
Η	-2.407065000000	-1.998580000000	2.388323000000
С	-1.701076000000	1.490674000000	3.915712000000
Η	-1.451726000000	2.173973000000	1.895435000000
С	-1.994873000000	0.412538000000	4.750757000000
Н	-2.473395000000	-1.691464000000	4.837652000000
Н	-1.491157000000	2.468266000000	4.340829000000
Н	-2.019892000000	0.548091000000	5.828645000000
Pd	-0.065763000000	-1.476930000000	-0.70442000000
Br	0.022048000000	-3.366464000000	-2.315105000000
С	0.270830000000	5.290234000000	-2.638410000000
Н	-0.560031000000	5.998267000000	-2.561271000000
Н	1.191791000000	5.880534000000	-2.606926000000
Η	0.211985000000	4.788682000000	-3.609971000000
С	0.317843000000	5.056004000000	-0.133592000000
Η	1.245901000000	5.637142000000	-0.088033000000
Η	-0.531417000000	5.741833000000	-0.036855000000

H 0.302922000000 4.366530000000 0.716224000000

$[LPd(0)Br]^{-1}$

B3LYP-D3 SCF energy:	-4962.937662 a.u.
B3LYP-D3 enthalpy:	-4962.299272 a.u.
B3LYP-D3 free energy:	-4962.414909 a.u.
M06 SCF energy in solution:	-4964.685544 a.u.
M06 enthalpy in solution:	-4964.029360 a.u.
M06 free energy in solution:	-4964.175882 a.u.
B3LYP-D3 free energy: M06 SCF energy in solution: M06 enthalpy in solution: M06 free energy in solution:	-4962.414909 a.u. -4964.685544 a.u. -4964.029360 a.u. -4964.175882 a.u

AT	'OM X	X	Y	Z			
С	-3.2429	0400000		1.8468800000	000	-1.39419	2000000
С	-2.0946	65000000		1.4102370000	000	-0.71235	2000000
С	-0.9662	38000000		2.2439820000	000	-0.79677	8000000
С	-0.9332	4400000		3.4430270000	000	-1.51954	6000000
С	-2.0960	7800000		3.8296240000	000	-2.19166	2000000
С	-3.2429	7700000		3.0358530000	000	-2.12326	5000000
С	1.5213	0700000		3.2275760000	000	-1.55541	0000000
С	1.3642	8100000		2.0468310000	000	-0.82391	4000000
С	2.3344	6700000		1.0339660000	000	-0.75370	4000000
С	3.5249	4400000		1.2543390000	000	-1.46310	8000000
С	3.7106	8700000		2.4192440000	000	-2.21000	3000000
С	2.7177	9100000		3.4002280000	000	-2.25979	2000000
Η	-4.1392	9200000		1.2371740000	000	-1.37105	8000000
Η	-2.1138	8000000		4.7472100000	000	-2.77099	8000000
Η	-4.1442	239000000		3.3445510000	000	-2.64758	2000000
Η	4.3037	0400000		0.4990040000	000	-1.44119	9000000
Η	4.6382	1500000		2.5637970000	000	-2.75891	2000000
Η	2.8812	4000000		4.2972840000	000	-2.84852	9000000
С	0.3751	33000000		4.2429770000	000	-1.47888	2000000
0	0.1814	27000000		1.8467210000	000	-0.13566	4000000
Р	1.8883	98000000		-0.5349020000	000	0.13047	5000000
Р	-1.9303	72000000		-0.2644600000	000	0.08728	2000000
С	3.4903	58000000		-1.4763260000	000	0.01818	8000000
С	4.6565	62000000		-1.1723870000	000	0.73906	2000000
С	3.4930	38000000		-2.5786440000	000	-0.85203	7000000
С	5.8087	33000000		-1.9448360000	000	0.58261	3000000
Η	4.6607	8400000		-0.3318160000	000	1.42814	3000000
С	4.6506	05000000		-3.3453200000	000	-1.01244	5000000
Η	2.5767	4800000		-2.8415760000	000	-1.38045	8000000
С	5.8088	1400000		-3.0310160000	000	-0.29826	1000000
Η	6.7057	8600000		-1.7011660000	000	1.14866	3000000
Η	4.6387	6900000		-4.1973980000	000	-1.68795	5000000
Η	6.7064	26000000		-3.6343140000	000	-0.41818	9000000
С	1.9395	95000000		0.0595990000	000	1.89094	5000000
С	1.2509	95000000		-0.7042100000	000	2.84580	2000000
С	2.5914	8600000		1.2290510000	000	2.31086	1000000
С	1.2330	13000000		-0.3226190000	000	4.18657	7000000
Η	0.6995	74000000		-1.5815940000	000	2.51856	4000000
С	2.5630	36000000		1.6197290000	000	3.65202	8000000

Η	3.116241000000	1.843487000000	1.584099000000
С	1.887477000000	0.842279000000	4.594387000000
Η	0.673979000000	-0.914934000000	4.905090000000
Η	3.067587000000	2.533958000000	3.958622000000
Η	1.856447000000	1.150320000000	5.637202000000
С	-3.641990000000	-0.954781000000	-0.164007000000
С	-4.789470000000	-0.499023000000	0.507383000000
С	-3.760036000000	-2.016521000000	-1.073889000000
С	-6.033300000000	-1.082559000000	0.264276000000
Η	-4.703676000000	0.313435000000	1.224699000000
С	-5.008714000000	-2.596228000000	-1.319333000000
Η	-2.865267000000	-2.401193000000	-1.562798000000
С	-6.144997000000	-2.131889000000	-0.654356000000
Η	-6.914631000000	-0.721608000000	0.790912000000
Η	-5.085873000000	-3.421417000000	-2.023266000000
Η	-7.114242000000	-2.589595000000	-0.841810000000
С	-2.030145000000	0.149211000000	1.894110000000
С	-2.315275000000	-0.904397000000	2.782956000000
С	-1.752360000000	1.413318000000	2.433750000000
С	-2.346073000000	-0.694240000000	4.159667000000
Η	-2.518380000000	-1.895541000000	2.384477000000
С	-1.766207000000	1.619923000000	3.815128000000
Η	-1.521682000000	2.245059000000	1.777240000000
С	-2.069966000000	0.572425000000	4.684746000000
Η	-2.578310000000	-1.522913000000	4.825388000000
Η	-1.535849000000	2.606738000000	4.210439000000
Η	-2.080403000000	0.736027000000	5.759891000000
Pd	-0.091198000000	-1.426554000000	-0.563651000000
Br	-0.237144000000	-3.547267000000	-2.076651000000
С	0.461588000000	4.972898000000	-0.108484000000
Η	1.403302000000	5.530373000000	-0.034673000000
Η	-0.373801000000	5.675096000000	0.001384000000
Η	0.421957000000	4.256227000000	0.716915000000
С	0.450589000000	5.288512000000	-2.600163000000
Η	-0.365081000000	6.013341000000	-2.508669000000
Η	1.386872000000	5.852918000000	-2.538419000000
Η	0.391190000000	4.821278000000	-3.588901000000

LPd(0)

B3LYP-D3 SCF energy:	-2391.415774 a.u.
B3LYP-D3 enthalpy:	-2390.778772 a.u.
B3LYP-D3 free energy:	-2390.889101 a.u.
M06 SCF energy in solution:	-2390.515212 a.u.
M06 enthalpy in solution:	-2389.861065 a.u.
M06 free energy in solution:	-2390.001281 a.u.

A٦	OM	Х	Y	Z	
С	-3.49	94590	00000	1.711883000000	-0.910352000000
С	-2.30	59540	00000	1.110297000000	-0.486547000000
С	-1.27	68890	00000	1.962271000000	-0.052985000000

С	-1.395547000000	3.355625000000	-0.019778000000
С	-2.594933000000	3.916105000000	-0.470300000000
С	-3.637618000000	3.100374000000	-0.912139000000
С	1.064903000000	3.459363000000	0.094215000000
С	1.067221000000	2.059458000000	0.041626000000
C	2.195383000000	1.302569000000	-0.321092000000
Ċ	3.365433000000	2.013643000000	-0.630961000000
C	3 388607000000	3 406952000000	-0 597851000000
C	2.246246000000	4 125347000000	-0 242461000000
Н	-4 320448000000	1 089039000000	-1 249446000000
н	-2 725300000000	4 992918000000	-0.471346000000
н	-4 566500000000	3 548898000000	-1 253320000000
н	4 260276000000	1 472778000000	-0.917577000000
н	4.3030/000000	3 93630500000	
п п	2 28304000000	5.930303000000	-0.830079000000
Γ	2.283949000000	<i>J</i> .209138000000 <i>A</i> .140040000000	-0.223300000000
	-0.221431000000	4.140049000000	0.374034000000
D	-0.095178000000	1.38190300000	0.308087000000
P	2.004/33000000	-0.54111000000	-0.49/42000000
P	-2.005334000000	-0./18483000000	-0.512354000000
C	3.752505000000	-0.993447000000	-1.101562000000
C	4.8/6392000000	-1.089563000000	-0.264911000000
C	3.901346000000	-1.248832000000	-2.472333000000
C	6.122157000000	-1.430/3/000000	-0.792742000000
H	4.7/3476000000	-0.900096000000	0.799774000000
C	5.149/95000000	-1.581259000000	-3.002044000000
Η	3.028260000000	-1.192213000000	-3.118847000000
С	6.261524000000	-1.674640000000	-2.162226000000
Η	6.984863000000	-1.505856000000	-0.135641000000
Η	5.251492000000	-1.776867000000	-4.066302000000
Η	7.232401000000	-1.942328000000	-2.570955000000
С	2.120264000000	-1.149442000000	1.248689000000
С	2.273538000000	-2.532378000000	1.449663000000
С	1.957504000000	-0.319550000000	2.364650000000
С	2.285231000000	-3.067123000000	2.735947000000
Η	2.387529000000	-3.189796000000	0.591039000000
С	1.949952000000	-0.859738000000	3.653345000000
Η	1.836515000000	0.750638000000	2.235617000000
С	2.119515000000	-2.230589000000	3.844419000000
Η	2.415570000000	-4.137597000000	2.873724000000
Η	1.812844000000	-0.203015000000	4.508423000000
Η	2.116822000000	-2.647414000000	4.848128000000
С	-3.638756000000	-1.36056000000	-1.095061000000
С	-4.744198000000	-1.580518000000	-0.258996000000
С	-3.759808000000	-1.633648000000	-2.466521000000
С	-5.944927000000	-2.058409000000	-0.787308000000
Н	-4.666412000000	-1.382595000000	0.805751000000
С	-4.964233000000	-2.098663000000	-2.996314000000
Н	-2.898854000000	-1.483823000000	-3.114689000000
С	-6.059140000000	-2.31419100000	-2.156069000000
Η	-6.792537000000	-2.230345000000	-0.128693000000
Н	-5.043909000000	-2.303221000000	-4.06080900000

Η	-6.995014000000	-2.686610000000	-2.564433000000
С	-2.014111000000	-1.098701000000	1.298797000000
С	-1.318763000000	-2.230833000000	1.748061000000
С	-2.666201000000	-0.285517000000	2.238786000000
С	-1.287811000000	-2.551719000000	3.104983000000
Η	-0.774003000000	-2.841140000000	1.033409000000
С	-2.629168000000	-0.604140000000	3.597676000000
Η	-3.196761000000	0.603613000000	1.910051000000
С	-1.941396000000	-1.738802000000	4.033064000000
Η	-0.727063000000	-3.419757000000	3.437415000000
Η	-3.134794000000	0.037087000000	4.315418000000
Η	-1.905682000000	-1.981936000000	5.091909000000
Pd	0.061579000000	-1.160159000000	-1.397875000000
С	-0.266680000000	5.628436000000	0.200803000000
Η	-1.185678000000	6.091476000000	0.572991000000
Η	0.566007000000	6.168406000000	0.661889000000
Η	-0.218228000000	5.774023000000	-0.883519000000
С	-0.289961000000	4.009777000000	2.123493000000
Η	0.562172000000	4.522493000000	2.584426000000
Η	-1.216376000000	4.458805000000	2.499688000000
Η	-0.269052000000	2.959666000000	2.430241000000

LPd(II)HBr

 B3LYP-D3 SCF energy:
 -4963.473285 a.u.

 B3LYP-D3 enthalpy:
 -4962.824303 a.u.

 B3LYP-D3 free energy:
 -4962.937482 a.u.

 M06 SCF energy in solution:
 -4965.172525 a.u.

 M06 enthalpy in solution:
 -4964.505621 a.u.

 M06 free energy in solution:
 -4964.650993 a.u.

A7	ГОМ	Х	Y	Z	
С	-3.29	38340000	00	1.873286000000	-0.485300000000
С	-2.10	92680000	00	1.299286000000	-0.009810000000
С	-1.04	85170000	00	2.162811000000	0.281676000000
С	-1.10	50640000	00	3.549792000000	0.144073000000
С	-2.30	39660000	00	4.087778000000	-0.336005000000
С	-3.38	37650000	00	3.257130000000	-0.647223000000
С	1.36	36450000	00	3.539969000000	0.131943000000
С	1.29	05620000	00	2.148128000000	0.237956000000
С	2.32	40390000	00	1.280508000000	-0.139106000000
С	3.51	22680000	00	1.861756000000	-0.603862000000
С	3.62	70990000	00	3.248866000000	-0.699418000000
С	2.56	02660000	00	4.079574000000	-0.348954000000
Η	-4.13	307430000	00	1.237676000000	-0.752586000000
Η	-2.40)21930000	00	5.159133000000	-0.474935000000
Η	-4.30)27790000	00	3.693213000000	-1.027772000000
Η	4.33	59340000	00	1.231681000000	-0.919806000000
Η	4.55	04170000	00	3.686076000000	-1.068208000000
Η	2.66	571240000	00	5.153554000000	-0.456855000000
С	0.13	42790000	00	4.344974000000	0.576249000000

0	0.129321000000	1.571690000000	0.713695000000
Р	1.958952000000	-0.530677000000	-0.229627000000
Р	-1.751116000000	-0.501584000000	0.098344000000
С	3.533567000000	-1.265364000000	-0.849773000000
С	4.683244000000	-1.237830000000	-0.038107000000
С	3.609772000000	-1.862119000000	-2.114265000000
C	5.883511000000	-1.779472000000	-0.492769000000
H	4.635892000000	-0.793495000000	0.951949000000
С	4.813445000000	-2.411450000000	-2.565128000000
Н	2.726687000000	-1.899256000000	-2.743748000000
С	5.950642000000	-2.368990000000	-1.759255000000
H	6.764684000000	-1.746541000000	0.142305000000
Н	4.855489000000	-2.874531000000	-3.547053000000
Н	6.885542000000	-2.796869000000	-2.111225000000
С	1,988315000000	-1.135195000000	1.510810000000
Č	2.146744000000	-2.516525000000	1.713226000000
Ċ	1.888439000000	-0.289906000000	2.622181000000
Ċ	2.234139000000	-3.036471000000	3.002470000000
H	2.225931000000	-3.183292000000	0.858393000000
C	1.965734000000	-0.816150000000	3.913123000000
H	1.755306000000	0.777158000000	2.488885000000
C	2.147973000000	-2.185136000000	4.106969000000
H	2.369608000000	-4.105365000000	3.144489000000
Н	1.879525000000	-0.151030000000	4.767583000000
Н	2.212284000000	-2.589228000000	5.113587000000
С	-3.361734000000	-1.341792000000	-0.182151000000
С	-4.473806000000	-1.051410000000	0.626865000000
С	-3.463866000000	-2.342159000000	-1.157478000000
С	-5.675248000000	-1.733491000000	0.444834000000
Η	-4.393576000000	-0.298335000000	1.406241000000
С	-4.667262000000	-3.031020000000	-1.329780000000
Н	-2.613981000000	-2.562770000000	-1.792980000000
С	-5.773063000000	-2.725485000000	-0.536093000000
Η	-6.531122000000	-1.498182000000	1.072012000000
Η	-4.737939000000	-3.801720000000	-2.092391000000
Η	-6.709050000000	-3.260067000000	-0.676076000000
С	-1.566119000000	-0.790579000000	1.912043000000
С	-1.223782000000	-2.087163000000	2.323181000000
С	-1.824398000000	0.184509000000	2.884390000000
С	-1.164082000000	-2.407547000000	3.677485000000
Н	-1.004113000000	-2.848624000000	1.579243000000
С	-1.753312000000	-0.135520000000	4.242092000000
Н	-2.092532000000	1.193283000000	2.586804000000
С	-1.430582000000	-1.432427000000	4.641698000000
Н	-0.893296000000	-3.414747000000	3.980201000000
Η	-1.958458000000	0.630207000000	4.986008000000
Η	-1.378938000000	-1.681992000000	5.698178000000
Br	-1.491823000000	-0.55407000000	-3.445802000000
Pd	0.076041000000	-0.755909000000	-1.515262000000
Η	1.136859000000	-0.700468000000	-2.656114000000
С	0.139661000000	4.425160000000	2.129191000000

Η	1.035380000000	4.950710000000	2.479530000000
Η	-0.745685000000	4.965821000000	2.482559000000
Η	0.130697000000	3.424967000000	2.573672000000
С	0.137482000000	5.768239000000	0.001340000000
Η	-0.741341000000	6.323034000000	0.343958000000
Η	1.014966000000	6.323776000000	0.346584000000
Η	0.138304000000	5.759494000000	-1.093518000000

TS1

B3LYP-D3 SCF energy:	-6154.512184 a.u.
B3LYP-D3 enthalpy:	-6153.403906 a.u.
B3LYP-D3 free energy:	-6153.577604 a.u.
M06 SCF energy in solution:	-6155.721220 a.u.
M06 enthalpy in solution:	-6154.583871 a.u.
M06 free energy in solution:	-6154.803467 a.u.

AT	ЮM	Х		Y	Ζ				
	(2	2.324314	4000000	-0.532	204000	0000	0.83661	9000000
Η	1.30	380	9000000	-0.82	5215000	000	-0.4359	95700000	0
Η	2.96	6459	3000000	-1.28	6316000	000	0.3894	13000000	0
С	1.69	953	2000000	-0.87	5557000	000	2.0552	23900000)
С	1.80	043	900000	-2.20	3714000	000	2.6878	37800000)
С	2.28	377	5000000	-3.33	9887000	000	2.0114	0900000)
С	1.37	421	1000000	-2.35	1564000	000	4.0181	0200000)
С	2.33	647	0000000	-4.57	7716000	000	2.6469	2700000)
Η	2.60	026	3000000	-3.26	3855000	000	0.9750)5500000	0
С	1.43	258	5000000	-3.58	9163000	000	4.6549	5200000)
Η	0.97	'339	6000000	-1.48	7934000	000	4.5404	18900000	0
С	1.91	195	0000000	-4.70	9455000	000	3.9727	2500000)
Η	2.71	145	4000000	-5.44	2918000	000	2.1056	50100000	0
Η	1.09	230	5000000	-3.68	1189000	000	5.6828	39300000	0
Η	1.95	308	5000000	-5.67	6273000	000	4.4670)1700000	0
С	-3.23	8612	1000000	2.73	9883000	000	2.2251	7800000)
С	-2.74	322	9000000) 1.92	1182000	000	1.1998	35900000)
С	-3.63	3780	8000000	1.02	1859000	000	0.6052	21300000)
С	-4.98	3223	4000000	0.91	6648000	000	0.9850	4300000)
С	-5.42	2378	9000000	1.73	3639000	000	2.0288	36600000)
С	-4.55	5967	3000000	2.63	9221000	000	2.6461	4100000)
С	-5.06	5723	3000000	-1.22	9677000	0000	-0.245	73200000	0
С	-3.72	2138	9000000	-1.02	3451000	0000	-0.5608	8000000	0
С	-2.89	634	4000000	-2.03	7093000	0000	-1.066	55000000	0
С	-3.44	635	8000000	-3.31	1408000	0000	-1.2472	20700000	0
С	-4.77	/825	2000000	-3.55	1907000	0000	-0.913	86800000	0
С	-5.57	719	7000000	-2.52	0421000	0000	-0.417	51600000	0
Η	-2.56	5805	8000000) 3.43	8002000	000	2.7191	0300000	0
Η	-6.45	5369	3000000) 1.67	5110000	000	2.3634	1200000	0
Η	-4.92	2276	4000000) 3.27	0137000	000	3.4526	50600000	0
Η	-2.82	2672	7000000) -4.11	6358000	0000	-1.628	21800000	0
Η	-5.19	9741	6000000) -4.54	5356000	0000	-1.043	96100000	0
Н	-6.61	248	9000000) -2.72	8766000	0000	-0.170	53700000	0
С	-5.891777000000	-0.010822000000	0.172894000000						
--------	-----------------	-----------------	-----------------						
0	-3.151481000000	0.221523000000	-0.412773000000						
Р	-1.125197000000	-1.666261000000	-1.316928000000						
Р	-0.993126000000	1.971508000000	0.601859000000						
С	-0.394343000000	-3.249245000000	-1.911551000000						
С	-0.299745000000	-3.577026000000	-3.271385000000						
С	0.128550000000	-4.134188000000	-0.952815000000						
С	0.323802000000	-4.762925000000	-3.667006000000						
Η	-0.697927000000	-2.900536000000	-4.021546000000						
С	0.742422000000	-5.321157000000	-1.351492000000						
H	0.068604000000	-3.882715000000	0.103181000000						
C	0.847800000000	-5 634671000000	-2.709781000000						
Н	0 401974000000	-5 002840000000	-4 72408000000						
Н	1 147473000000	-5 992917000000	-0 599384000000						
н	1 337597000000	-6 553581000000	-3 020914000000						
C	-1.056781000000	-0 568894000000	-2 78974000000						
C	0.2036/3000000	-0.300074000000	-2.707740000000						
C	2 20530100000	0.12226000000	3 45772600000						
C	-2.203301000000	-0.122200000000	-3.43772000000						
С U	1 106222000000	0.707505000000	-4.337937000000						
пС	2.001597000000	-0.401423000000	-2.750007000000						
	-2.09138/00000	0.739779000000	-4.33080400000						
П	-3.18/81000000	-0.442326000000	-5.12809200000						
	-0.834260000000	1.154926000000	-4.99356000000						
н	1.290827000000	1.055201000000	-4.0398/000000						
H	-2.990074000000	1.088218000000	-5.053162000000						
H	-0./49843000000	1.831436000000	-5.83993000000						
C	-0.106313000000	2.604299000000	2.091863000000						
C	0.870574000000	3.611824000000	2.016247000000						
C	-0.271184000000	1.920104000000	3.312479000000						
C	1.643294000000	3.943617000000	3.132253000000						
Н	1.041203000000	4.133655000000	1.080093000000						
С	0.501329000000	2.256533000000	4.424531000000						
Η	-0.991851000000	1.109466000000	3.380034000000						
С	1.458238000000	3.273081000000	4.342521000000						
Η	2.390679000000	4.729022000000	3.051760000000						
Η	0.354445000000	1.718784000000	5.357874000000						
Η	2.057587000000	3.533915000000	5.210796000000						
С	-1.059655000000	3.446690000000	-0.519390000000						
С	-0.855579000000	3.210849000000	-1.885359000000						
С	-1.328747000000	4.759092000000	-0.091111000000						
С	-0.903348000000	4.260786000000	-2.806958000000						
Η	-0.648245000000	2.206349000000	-2.235699000000						
С	-1.372927000000	5.807791000000	-1.008370000000						
Η	-1.496488000000	4.959106000000	0.963277000000						
С	-1.158600000000	5.559949000000	-2.370403000000						
Η	-0.720497000000	4.052467000000	-3.856477000000						
Η	-1.578207000000	6.818610000000	-0.664634000000						
Η	-1.190260000000	6.380161000000	-3.083089000000						
Pd	0.074568000000	-1.00250000000	0.556284000000						
Br	-1.689739000000	-1.442722000000	2.315163000000						
С	2.760289000000	0.897984000000	0.557394000000						

С	4.292557000000	1.018706000000	0.781429000000
С	2.450762000000	1.340015000000	-0.875170000000
Η	2.235381000000	1.574257000000	1.233699000000
С	5.070846000000	0.252311000000	-0.293923000000
0	4.698764000000	0.494237000000	2.036223000000
Η	4.571455000000	2.080084000000	0.709625000000
0	3.116099000000	0.546402000000	-1.807605000000
Η	1.391017000000	1.254541000000	-1.113690000000
0	2.810336000000	2.740953000000	-0.940247000000
С	4.546753000000	0.524846000000	-1.716612000000
Η	4.989783000000	-0.822708000000	-0.091402000000
0	6.437538000000	0.639343000000	-0.323473000000
С	4.348919000000	1.299234000000	3.150602000000
С	2.463228000000	3.434636000000	-2.061430000000
С	5.028309000000	-0.542013000000	-2.700269000000
Η	4.940652000000	1.500210000000	-2.036254000000
С	7.299993000000	-0.163184000000	0.472553000000
Η	4.816098000000	0.840414000000	4.025630000000
Η	4.726131000000	2.327515000000	3.035556000000
Η	3.265153000000	1.345058000000	3.311716000000
0	2.063262000000	2.921891000000	-3.079718000000
С	2.596579000000	4.918413000000	-1.827579000000
Η	6.118300000000	-0.469366000000	-2.761685000000
0	4.744588000000	-1.872497000000	-2.303192000000
Η	4.598350000000	-0.327633000000	-3.690920000000
Η	8.311286000000	0.224976000000	0.320313000000
Η	7.270201000000	-1.216143000000	0.152329000000
Η	7.036872000000	-0.106391000000	1.534113000000
Η	3.408895000000	5.145747000000	-1.133292000000
Η	2.745381000000	5.426552000000	-2.781790000000
Η	1.653617000000	5.272644000000	-1.392568000000
С	3.430251000000	-2.341675000000	-2.576102000000
Η	3.459931000000	-3.432912000000	-2.507781000000
Η	2.691966000000	-1.964687000000	-1.860213000000
Η	3.101601000000	-2.057274000000	-3.587077000000
Η	1.400639000000	-0.062620000000	2.712645000000
С	-6.308038000000	0.746162000000	-1.121135000000
Η	-6.931195000000	0.103470000000	-1.754081000000
Η	-6.875113000000	1.648984000000	-0.866852000000
Η	-5.426766000000	1.047486000000	-1.696701000000
С	-7.158226000000	-0.408159000000	0.946817000000
Η	-7.750058000000	0.475680000000	1.202574000000
Η	-7.802463000000	-1.046242000000	0.334400000000
Η	-6.911694000000	-0.943124000000	1.869636000000

B3LYP-D3 SCF energy:	-6154.491513 a.u.
B3LYP-D3 enthalpy:	-6153.384566 a.u.
B3LYP-D3 free energy:	-6153.559930 a.u.
M06 SCF energy in solution:	-6155.691230 a.u.
M06 enthalpy in solution:	-6154.555179 a.u.

M06 free energy in solution:

-6154.776243 a.u.

Car	tesian	coordinates				
AT	OM	Х	Y	Z		
С	-2.27	0286000000		0.879976000	000	0.218524000000
Η	-0.96	7435000000		0.504159000	0000	0.349038000000
Η	-2.43	0643000000		0.425666000	0000	-0.759859000000
С	-2.33	2911000000		2.285226000	000	0.224415000000
С	4.28	9828000000		2.690593000	000	0.863308000000
С	3.398	8822000000		1.610807000	000	0.773945000000
С	3.94	5001000000		0.335193000	000	0.545018000000
С	5.32	1683000000		0.116654000	000	0.400842000000
С	6.16	9648000000		1.224191000	000	0.472653000000
С	5.66	0251000000		2.501424000	000	0.707986000000
С	4.76	714000000		-2.075391000	000	-0.600305000000
С	3.419	9030000000		-1.764254000	000	-0.398368000000
С	2.374	440700000		-2.449995000	000	-1.039231000000
С	2.719	9677000000		-3.483456000	000	-1.918195000000
С	4.05	6685000000		-3.794121000	000	-2.160744000000
С	5.07	1108000000		-3.094748000	000	-1.507529000000
Η	3.90	2244000000		3.689719000	000	1.029599000000
Η	7.23	963000000		1.095435000	000	0.352132000000
Η	6.33	3718000000		3.351611000	000	0.766701000000
Η	1.93	8141000000		-4.030765000	0000	-2.434226000000
Η	4.30	8841000000		-4.587530000	0000	-2.858604000000
Η	6.10	5204000000		-3.356165000	0000	-1.703295000000
С	5.79′	7833000000		-1.331773000	000	0.253662000000
0	3.08	8874000000		-0.748192000	0000	0.485291000000
Р	0.623	3915000000		-1.988404000	000	-0.667792000000
Р	1.572	2372000000		1.879129000	000	0.838603000000
С	-0.37	2173000000		-2.854910000	0000	-1.937786000000
С	-1.44	9110000000		-3.697014000	0000	-1.628420000000
С	-0.12	6608000000		-2.503886000	0000	-3.280098000000
С	-2.24	2926000000		-4.215361000	0000	-2.655655000000
Η	-1.69	7447000000		-3.929145000	0000	-0.599812000000
С	-0.91	7603000000		-3.035315000	0000	-4.296690000000
Η	0.67	1492000000		-1.803337000	0000	-3.516038000000
С	-1.97	5207000000		-3.898765000	0000	-3.988020000000
Η	-3.07	4436000000		-4.868868000	0000	-2.404253000000
Η	-0.71	261000000		-2.768181000	0000	-5.330173000000
Η	-2.59	1432000000		-4.311941000	0000	-4.782761000000
С	0.41′	7672000000		-2.906901000	000	0.922635000000
С	0.282	206000000		-2.176944000	000	2.111548000000
С	0.48	1125000000		-4.306990000	000	0.985647000000
С	0.17	7113000000		-2.833989000	000	3.339318000000
Η	0.25	9179000000		-1.092094000	0000	2.073059000000
С	0.370	0356000000		-4.962837000	000	2.210202000000
Η	0.60	3425000000		-4.884698000	0000	0.074086000000
С	0.213	3627000000		-4.228460000	000	3.389249000000
Η	0.07	5101000000		-2.247431000	0000	4.248350000000
Η	0.40	170700000		-6.048415000	0000	2.244523000000

Η	0.127763000000	-4.743749000000	4.342682000000
С	1.393805000000	3.685445000000	0.577753000000
С	1.349387000000	4.634124000000	1.610312000000
С	1.313405000000	4.110195000000	-0.759138000000
С	1.217536000000	5.991532000000	1.309024000000
Η	1.418348000000	4.315965000000	2.646414000000
С	1.201095000000	5.468001000000	-1.052528000000
Η	1.338441000000	3.374509000000	-1.559301000000
С	1.146385000000	6.409595000000	-0.021621000000
Η	1.177996000000	6.721057000000	2.114031000000
Η	1.129126000000	5.785035000000	-2.088214000000
Η	1.044301000000	7.466538000000	-0.254136000000
С	1.121069000000	1.581865000000	2.595951000000
С	-0.113377000000	2.053732000000	3.080925000000
С	1.887091000000	0.738344000000	3.414819000000
С	-0.566429000000	1.687097000000	4.347344000000
Η	-0.714687000000	2.713172000000	2.463982000000
С	1.428286000000	0.369529000000	4.681265000000
Η	2.838023000000	0.355732000000	3.058964000000
С	0.199918000000	0.837476000000	5.151649000000
Η	-1.515451000000	2.072118000000	4.712133000000
Η	2.035139000000	-0.286757000000	5.299461000000
Η	-0.154007000000	0.552082000000	6.138605000000
Pd	0.533852000000	0.331558000000	-0.556152000000
Br	1.963270000000	0.762569000000	-2.715360000000
С	-2.972667000000	0.095656000000	1.333167000000
С	-4.488412000000	0.421978000000	1.414500000000
С	-2.865155000000	-1.400563000000	1.032779000000
Η	-2.497737000000	0.288805000000	2.300692000000
С	-5.139066000000	0.141013000000	0.062979000000
0	-4.763506000000	1.775809000000	1.750208000000
Η	-4.946176000000	-0.235113000000	2.166885000000
0	-3.454869000000	-1.738744000000	-0.173819000000
Η	-1.835587000000	-1.732247000000	0.950669000000
0	-3.458916000000	-2.085632000000	2.170014000000
С	-4.770417000000	-1.260398000000	-0.485841000000
Η	-4.802583000000	0.909121000000	-0.641612000000
0	-6.558993000000	0.137033000000	0.140731000000
С	-4.591781000000	2.081436000000	3.120008000000
С	-3.240543000000	-3.421858000000	2.277787000000
С	-4.833569000000	-1.278310000000	-2.008326000000
Η	-5.509392000000	-1.964132000000	-0.079873000000
С	-7.170946000000	1.383300000000	-0.158356000000
Η	-4.90787000000	3.119296000000	3.255297000000
Η	-5.207733000000	1.431287000000	3.760497000000
Η	-3.542825000000	1.988308000000	3.440292000000
0	-2.680808000000	-4.097384000000	1.446188000000
С	-3.769015000000	-3.934457000000	3.596503000000
Η	-5.869844000000	-1.092851000000	-2.334478000000
0	-3.963330000000	-0.270088000000	-2.490463000000
Η	-4.517248000000	-2.268965000000	-2.365673000000

Η	-8.251395000000	1.216509000000	-0.116191000000
Η	-6.903178000000	1.727606000000	-1.169647000000
Η	-6.888148000000	2.157148000000	0.563641000000
Η	-3.100194000000	-3.597764000000	4.396698000000
Η	-4.765146000000	-3.531901000000	3.801214000000
Η	-3.790362000000	-5.024851000000	3.580747000000
С	-3.725414000000	-0.333961000000	-3.883255000000
Η	-3.062553000000	0.500803000000	-4.125541000000
Η	-3.233583000000	-1.276355000000	-4.162303000000
Η	-4.659944000000	-0.229619000000	-4.458911000000
С	5.804037000000	-1.980245000000	1.668069000000
Η	6.108894000000	-3.030882000000	1.601384000000
Η	6.503649000000	-1.450558000000	2.325163000000
Η	4.808133000000	-1.941842000000	2.120424000000
С	7.213124000000	-1.419974000000	-0.336718000000
Η	7.260561000000	-0.972555000000	-1.334879000000
Η	7.935225000000	-0.911141000000	0.309013000000
Η	7.537948000000	-2.462458000000	-0.405865000000
С	-2.088348000000	3.133316000000	-0.910289000000
С	-1.633479000000	2.638258000000	-2.158003000000
С	-2.302421000000	4.526565000000	-0.789706000000
С	-1.409970000000	3.499732000000	-3.223907000000
Η	-1.41441000000	1.582722000000	-2.280272000000
С	-2.099017000000	5.381028000000	-1.866879000000
Η	-2.634386000000	4.927219000000	0.165252000000
С	-1.651896000000	4.873067000000	-3.091004000000
Η	-1.025971000000	3.098853000000	-4.157627000000
Η	-2.273690000000	6.447273000000	-1.750012000000
Η	-1.478659000000	5.54172000000	-3.929972000000
Η	-2.545763000000	2.789138000000	1.162066000000

B3LYP-D3 SCF energy:	-6154.496156 a.u.
B3LYP-D3 enthalpy:	-6153.383166 a.u.
B3LYP-D3 free energy:	-6153.555615 a.u.
M06 SCF energy in solution:	-6155.703990 a.u.
M06 enthalpy in solution:	-6154.562085 a.u.
M06 free energy in solution:	-6154.780640 a.u.

Cartesian coordinates ATOM X Y

~						
A	ГОМ	Х		Y	Z	
С	-5.16	96200	000000		-1.120351000000	0.151320000000
С	-4.14	03230	00000		0.005512000000	0.342689000000
С	-3.71	59800	00000		-2.579308000000	1.595159000000
С	-4.47	44310	000000		-2.47500000000	0.260151000000
Η	-5.92	272120	000000		-1.049910000000	0.946488000000
Η	-4.45	05360	000000		-2.589212000000	2.412263000000
Η	-3.75	81710	000000		-2.567743000000	-0.561660000000
0	-2.82	218420	000000		-1.467333000000	1.779018000000
0	-5.42	99670	000000		-3.531741000000	0.213131000000
0	-5.78	377800	00000		-0.954874000000	-1.120398000000

С	-2.877874000000	-3.842441000000	1.686228000000
Η	-3.553107000000	-4.70860000000	1.776933000000
Η	-2.253112000000	-3.795257000000	2.590590000000
0	-2.079028000000	-3.94950600000	0.526666000000
С	-1.145138000000	-5.011405000000	0.595511000000
Н	-0.649212000000	-5.058053000000	-0.372714000000
Н	-0.393758000000	-4.829061000000	1.377649000000
Н	-1.645445000000	-5.97378000000	0.795330000000
С	-5.182414000000	-4.478372000000	-0.818074000000
H	-5.290238000000	-4.020975000000	-1.812372000000
Н	-5.928609000000	-5.270218000000	-0.705422000000
Н	-4.174988000000	-4.907461000000	-0.734047000000
C	-7.160703000000	-1.312311000000	-1.162619000000
H	-7 761095000000	-0.671829000000	-0 496643000000
Н	-7 492324000000	-1 155507000000	-2 192939000000
н	-7 315479000000	-2 35916900000	-0.879373000000
C	-3 388929000000	-0 204919000000	1 659255000000
C	-3.120831000000	0.07/52/000000	-0.829922000000
ц	2 28738000000	0.074524000000	0.6/102/000000
н	-2.207307000000	-0.273381000000	-0.041024000000 -1.742572000000
C	2 500/0500000	1 /63388000000	1 032338000000
с u	-2.590495000000	0.054457000000	-1.032338000000
	-4.08002000000	2 717025000000	0.40837000000
C	3.700707000000	2 388002000000	0.344237000000
C	<i>3.232727000000</i> <i>4.234044000000</i>	2.388992000000	0.382830000000
C	4.234044000000	1.590081000000	0.420912000000
C	5.010752000000	2.091945000000	0.369133000000
C	5.060574000000	2.981843000000	0.330710000000
C	5.009574000000	4.006422000000	0.319183000000
C	<i>J.91092100000</i> <i>4.52576</i> 000000	-0.070469000000	-0.382201000000
C	4.323708000000	-0.818/03000000	-0.279022000000
C	5.79552000000	-1.8218/8000000	-0.923200000000
C	4.515005000000	-2.704941000000	-1./4420100000
C	5.89518000000	-2.5/5254000000	-1.88088900000
	6.59119400000	-1.56927000000	-1.2095/6000000
H	2.99084100000	4.530/38000000	0.312873000000
H	7.071573000000	3.229840000000	0.296925000000
H	5.39/08/000000	5.043653000000	0.282533000000
H	3.99093000000	-3.48/3/1000000	-2.283362000000
H	6.43551200000	-3.261449000000	-2.530904000000
H	7.666127000000	-1.490605000000	-1.33240000000
C	6.55181000000	0.437945000000	0.459331000000
0	3.80652400000	0.077273000000	0.490036000000
P	1.958686000000	-1.762436000000	-0.741091000000
P	1.45657800000	1.921008000000	0.247745000000
C	1.419993000000	-3.329939000000	-1.564283000000
C	1.925411000000	-4.587251000000	-1.191462000000
C	0.458511000000	-3.254150000000	-2.580354000000
С	1.502102000000	-5.742824000000	-1.846911000000
Н	2.650271000000	-4.658627000000	-0.384931000000
С	0.019319000000	-4.415932000000	-3.223206000000
Η	0.053326000000	-2.283912000000	-2.859708000000

C	0.545840000000	-5.657918000000	-2.865430000000
Η	1.906203000000	-6.709430000000	-1.556796000000
Η	-0.731068000000	-4.345603000000	-4.006115000000
Н	0.209530000000	-6.559437000000	-3.371091000000
С	1.700142000000	-2.184142000000	1.040556000000
С	0.424678000000	-1.944749000000	1.576429000000
C	2.699968000000	-2.709764000000	1.870643000000
Ċ	0 156802000000	-2.222556000000	2,916022000000
Н	-0 364478000000	-1 536073000000	0.953967000000
C	2 429201000000	-2 989563000000	3 212409000000
н	3 695301000000	-2 892202000000	1 475063000000
$\hat{\mathbf{C}}$	1 158//9000000	-2.072202000000	3 737566000000
н		-1 99818100000	3 308537000000
п п	3 21/156000000	3 30330600000	3.508557000000
п	5.21450000000	-3.393300000000	3.040941000000
п	0.933393000000	-2.93034000000	4./83303000000
C	0.752025000000	5.5/4088000000	-0.10090000000
C	0.370315000000	4.548905000000	0.777391000000
C	0.628535000000	3.8835/2000000	-1.533941000000
C	-0.08632/000000	5.802032000000	0.361748000000
H	0.45050/000000	4.334199000000	1.838236000000
С	0.190996000000	5.142554000000	-1.946533000000
Η	0.870877000000	3.127026000000	-2.274310000000
С	-0.168823000000	6.104855000000	-1.000140000000
Η	-0.370692000000	6.543232000000	1.104078000000
Η	0.109584000000	5.360850000000	-3.007511000000
Η	-0.521010000000	7.081795000000	-1.320836000000
С	0.962426000000	1.627181000000	2.001098000000
С	-0.36200000000	1.862579000000	2.410333000000
С	1.855343000000	1.055556000000	2.920916000000
С	-0.771477000000	1.562479000000	3.710008000000
Η	-1.081003000000	2.307347000000	1.728119000000
С	1.438212000000	0.739785000000	4.213750000000
Н	2.875861000000	0.837825000000	2.630090000000
C	0.127072000000	0.996390000000	4.616456000000
Ĥ	-1 792163000000	1 786010000000	4 002374000000
Н	2 142944000000	0 284277000000	4 903861000000
н	-0.19309000000	0.75510000000	5 626685000000
Pd	0.893053000000	0.75510000000	-1 20216000000
Br	-0.9/30/3000000	0.227472000000	-2.945675000000
	4 30038000000	0.737789000000	2.745075000000
C	4.30938000000	1 22281000000	2.78042000000
C	-4.460196000000	1.25261000000	3.231828000000
	-3.43/43900000	1.23913000000	4.39980400000
	-5.9251/2000000	2.203814000000	2.738412000000
H	-6.391292000000	0.803808000000	4.11468000000
H	-5.02/983000000	0.669390000000	5.2269/8000000
H	-5.593641000000	2.290168000000	4./18890000000
H	-2.5/2306000000	0.505238000000	1.772214000000
C	6.615771000000	-0.048791000000	1.935162000000
Η	7.257333000000	-0.934073000000	2.013464000000
Η	7.024988000000	0.740063000000	2.576573000000
Η	5.620565000000	-0.312859000000	2.305560000000

7.971946000000	0.778470000000	-0.013338000000
8.415787000000	1.551982000000	0.620973000000
8.621764000000	-0.099304000000	0.057965000000
7.977882000000	1.132423000000	-1.049613000000
-3.423449000000	2.546815000000	-1.471720000000
-4.681173000000	2.336999000000	-2.092551000000
-2.993989000000	3.879543000000	-1.260634000000
-5.455599000000	3.419140000000	-2.494319000000
-5.051066000000	1.326374000000	-2.234557000000
-3.774562000000	4.953470000000	-1.664339000000
-2.043515000000	4.053131000000	-0.770124000000
-5.008047000000	4.73034000000	-2.288957000000
-6.417720000000	3.243918000000	-2.96892000000
-3.422183000000	5.966695000000	-1.490881000000
-5.619203000000	5.570677000000	-2.607447000000
-1.710281000000	1.741741000000	-0.463641000000
	$\begin{array}{r} 7.971946000000\\ 8.415787000000\\ 8.621764000000\\ 7.977882000000\\ -3.423449000000\\ -4.681173000000\\ -2.993989000000\\ -5.455599000000\\ -5.051066000000\\ -3.774562000000\\ -3.774562000000\\ -2.043515000000\\ -5.008047000000\\ -6.417720000000\\ -3.422183000000\\ -5.619203000000\\ -1.710281000000\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

B3LYP-D3 SCF energy:	-1191.554034 a.u.
B3LYP-D3 enthalpy:	-1191.088457 a.u.
B3LYP-D3 free energy:	-1191.178125 a.u.
M06 SCF energy in solution:	-1191.060768 a.u.
M06 enthalpy in solution:	-1190.583985 a.u.
M06 free energy in solution:	-1190.695270 a.u.

Cartesian coordinates

AT	ЮM	Х		Y	Z		
0	-0.15	58749	900000		0.0491710000	00	1.478978000000
0	-1.81	16648	3000000		-2.3113060000	00	1.785888000000
0	-0.27	77798	3000000		-2.4778470000	00	-1.180356000000
0	2.56	64805	5000000		-1.9856600000	00	-0.918740000000
0	3.05	51254	000000		0.75031100000	00	-0.13808000000
0	3.98	88084	000000		1.2586290000	00	1.861222000000
С	1.04	1603	000000		0.64565200000	00	1.243771000000
Η	1.36	58512	2000000		1.21655700000	00	2.105401000000
С	2.10	6548	000000		-0.1386270000	00	0.514841000000
Η	2.67	2859	000000		-0.7574150000	00	1.225010000000
С	1.55	5189	000000		-1.0491490000	00	-0.579046000000
Η	1.29	01978	3000000		-0.4309840000	00	-1.450278000000
С	0.28	6712	000000		-1.7515280000	00	-0.094518000000
Η	0.53	39110	000000		-2.4173600000	00	0.738860000000
С	-0.72	20051	000000		-0.7000330000	00	0.387707000000
Η	-0.93	31186	5000000		-0.0147650000	00	-0.441221000000
С	3.95	4184	000000		1.37148200000	00	0.655277000000
С	4.88	9123	000000		2.21792800000	00	-0.175885000000
Η	5.40)5304	000000		1.5924490000	00	-0.911207000000
Η	5.61	3616	5000000		2.7070010000	00	0.475898000000
Η	4.31	6394	000000		2.9694410000	00	-0.729658000000
С	-2.04	4213	3000000		-1.2726650000	00	0.848497000000
Η	-2.63	39317	7000000		-0.4597190000	00	1.291442000000
Η	-2.58	35041	000000		-1.6510490000	00	-0.032655000000

С	-3.015740000000	-2.816446000000	2.335835000000
Η	-2.740677000000	-3.609135000000	3.036740000000
Η	-3.573663000000	-2.036181000000	2.877896000000
Η	-3.676502000000	-3.237215000000	1.559629000000
С	-0.523007000000	-3.849600000000	-0.895854000000
Η	-1.011303000000	-4.269821000000	-1.779651000000
Η	0.416732000000	-4.390477000000	-0.713110000000
Η	-1.177566000000	-3.964733000000	-0.022591000000
С	2.667932000000	-2.259791000000	-2.307749000000
Η	2.954371000000	-1.358140000000	-2.871649000000
Η	3.456446000000	-3.009505000000	-2.419284000000
Η	1.728465000000	-2.651902000000	-2.714682000000
С	-3.198179000000	1.413840000000	-2.129675000000
С	-2.008506000000	1.925409000000	-1.619422000000
С	-1.945213000000	2.462319000000	-0.314890000000
С	-3.139602000000	2.497048000000	0.434419000000
С	-4.330608000000	1.987318000000	-0.077602000000
С	-4.366537000000	1.434783000000	-1.360976000000
Η	-3.216936000000	1.001719000000	-3.135398000000
Η	-1.115150000000	1.917008000000	-2.237871000000
Η	-3.117848000000	2.911774000000	1.439603000000
Η	-5.233415000000	2.018528000000	0.527200000000
Η	-5.29420600000	1.035940000000	-1.761929000000
С	-0.704776000000	2.938286000000	0.285065000000
Η	-0.820725000000	3.523203000000	1.196827000000
С	0.558779000000	2.601949000000	-0.099622000000
Η	0.762724000000	2.066637000000	-1.021698000000
Η	1.417619000000	3.082711000000	0.356034000000

TS4'

B3LYP-D3 SCF energy:	-1191.554025 a.u.
B3LYP-D3 enthalpy:	-1191.088355 a.u.
B3LYP-D3 free energy:	-1191.176145 a.u.
M06 SCF energy in solution:	-1191.055642 a.u.
M06 enthalpy in solution:	-1190.578760 a.u.
M06 free energy in solution:	-1190.688900 a.u.

Cartesian coordinates

Ca	rtesiar	1 COOI	dinates								
A'	ГОМ	Х		Y		Ζ					
С	1.53	7083	000000		1.24934	15000	0000	0.46	7794(0000	00
С	2.07	0591	000000	(0.25333	39000	0000	-0.58	26030	0000	00
С	1.01	4984	000000	-	0.62335	57000	0000	-1.15	0329	0000	00
С	0.12	6139	000000	-	0.77883	32000	0000	1.08	29320	0000	00
С	0.25	5162	000000	(0.74904	12000	0000	1.15	96620	0000	00
Η	2.58	86671	000000		0.77153	30000	0000	-1.39	24070	0000	00
Η	2.30)7932	000000		1.35571	13000	0000	1.24	45270)000	00
Η	0.97	/8590	000000	-	1.2485	36000	0000	1.59	05080	0000	00
Η	-0.60)5555	000000		1.1872	59000	0000	0.63	99400	0000	00
0	0.12	26890	000000	-	1.2062	52000	0000	-0.29	97114	0000	00
0	0.23	35037	000000		1.10258	84000	0000	2.53	39190)000	00
0	1.24	6268	000000		2.51706	58000	0000	-0.11	26780	0000	00

С	-1.171536000000	-1.272219000000	1.718985000000
Η	-2.021679000000	-0.924567000000	1.112838000000
Η	-1.240399000000	-0.820739000000	2.711810000000
0	-1.209477000000	-2.673428000000	1.914944000000
С	-1.60702000000	-3.430418000000	0.781167000000
Η	-1.766839000000	-4.454197000000	1.133222000000
Η	-2.54526000000	-3.046261000000	0.353361000000
Η	-0.844890000000	-3.430961000000	-0.007395000000
С	-0.065751000000	2.468650000000	2.772284000000
Η	-1.026953000000	2.751118000000	2.315927000000
Η	0.710336000000	3.138737000000	2.378691000000
Η	-0.132006000000	2.589084000000	3.856735000000
С	2.384319000000	3.338609000000	-0.308786000000
Η	2.026085000000	4.273858000000	-0.746039000000
Η	2.890688000000	3.555641000000	0.644849000000
Η	3.116137000000	2.887389000000	-0.995183000000
0	3.081102000000	-0.554039000000	0.144209000000
С	3.977360000000	-1.216890000000	-0.624029000000
0	4.011032000000	-1.149246000000	-1.834243000000
С	4.904067000000	-2.044615000000	0.234949000000
Η	5.364966000000	-1.421633000000	1.007654000000
Η	4.328955000000	-2.825455000000	0.744371000000
Η	5.671303000000	-2.500205000000	-0.391986000000
Η	1.288775000000	-1.282028000000	-1.96780000000
С	-1.228936000000	1.373573000000	-1.820648000000
С	-0.267061000000	0.777933000000	-2.584881000000
Η	-0.464928000000	-0.133239000000	-3.139421000000
Η	0.590539000000	1.354090000000	-2.917155000000
С	-2.460336000000	0.759686000000	-1.347186000000
С	-2.871266000000	-0.540220000000	-1.715651000000
С	-3.273632000000	1.465341000000	-0.433704000000
С	-4.034524000000	-1.098049000000	-1.196901000000
Η	-2.262659000000	-1.123174000000	-2.399184000000
С	-4.433941000000	0.902211000000	0.092013000000
Η	-2.976417000000	2.467895000000	-0.132590000000
С	-4.823247000000	-0.384854000000	-0.286311000000
Η	-4.327414000000	-2.100925000000	-1.497506000000
Η	-5.035119000000	1.467812000000	0.799288000000
Η	-5.726497000000	-0.828879000000	0.122436000000
Η	-1.005916000000	2.357529000000	-1.414330000000

TS4"

B3LYP-D3 SCF energy:	-1191.548729 a.u.
B3LYP-D3 enthalpy:	-1191.083498 a.u.
B3LYP-D3 free energy:	-1191.171851 a.u.
M06 SCF energy in solution:	-1191.053026 a.u.
M06 enthalpy in solution:	-1190.576581 a.u.
M06 free energy in solution:	-1190.687468 a.u.

Cartesian coordinates ATOM X Y Z

7.

U	1.190660000000	-1.505359000000	-0.358206000000
0	3.815873000000	-2.196244000000	0.693774000000
0	4.031131000000	0.772430000000	-0.863844000000
0	2.018221000000	2.518518000000	0.291998000000
0	-0.653457000000	1.639023000000	-0.313845000000
0	-1.520029000000	1.718498000000	1.785403000000
С	0.144070000000	-0.616932000000	-0.451705000000
Η	-0.477353000000	-0.691785000000	-1.344938000000
С	0.406758000000	0.756437000000	0.100841000000
Η	0.461394000000	0.741654000000	1.194538000000
С	1.724451000000	1.334592000000	-0.431582000000
Н	1.607601000000	1.552007000000	-1.503934000000
С	2.835491000000	0.299487000000	-0.251076000000
H	2.982772000000	0.134722000000	0.821955000000
С	2.444346000000	-1.037558000000	-0.896855000000
H	2.337238000000	-0.884481000000	-1.983007000000
С	-1.539371000000	2.056682000000	0.620630000000
C	-2.581083000000	2.951746000000	-0.001795000000
H	-2.145678000000	3.590160000000	-0.774140000000
Н	-3.052585000000	3.552118000000	0.777866000000
Н	-3.344009000000	2.316304000000	-0.466226000000
С	3.481379000000	-2.125053000000	-0.679520000000
H	3.067035000000	-3.083010000000	-1.032104000000
Н	4.370345000000	-1.886924000000	-1.285025000000
С	4.713839000000	-3.248335000000	0.982688000000
Н	4.914556000000	-3.213577000000	2.056617000000
Н	4.283198000000	-4.230518000000	0.730210000000
Н	5.664738000000	-3.136025000000	0.435904000000
С	5.124013000000	0.905142000000	0.036547000000
Н	5.984088000000	1.224369000000	-0.558870000000
Η	4.915717000000	1.662782000000	0.804941000000
Η	5.352214000000	-0.049875000000	0.528659000000
С	2.534574000000	3.576810000000	-0.500732000000
Н	1.800226000000	3.909076000000	-1.251041000000
Н	2.740242000000	4.406140000000	0.181933000000
Η	3.459721000000	3.285118000000	-1.012650000000
С	-2.439243000000	-2.152530000000	0.366919000000
С	-1.383321000000	-1.675593000000	1.082210000000
Η	-1.445034000000	-0.756975000000	1.657515000000
Η	-0.532168000000	-2.315598000000	1.288717000000
Н	-2.326514000000	-3.119336000000	-0.123840000000
С	-3.699365000000	-1.464909000000	0.098839000000
С	-4.084092000000	-0.275891000000	0.756089000000
С	-4.585826000000	-2.000229000000	-0.857889000000
С	-5.28975000000	0.349685000000	0.450747000000
Н	-3.439372000000	0.158658000000	1.512393000000
С	-5.791937000000	-1.37271000000	-1.161579000000
Η	-4.313946000000	-2.919752000000	-1.371914000000
С	-6.150649000000	-0.190138000000	-0.511191000000
Η	-5.564633000000	1.261752000000	0.975140000000
Η	-6.453024000000	-1.807349000000	-1.907119000000

Н -7.091669000000 0.301182000000 -0.743331000000

1	$\Gamma S5$

B3LYP-D3 SCF energy:	-881.870877 a.u.
B3LYP-D3 enthalpy:	-881.550156 a.u.
B3LYP-D3 free energy:	-881.621782 a.u.
M06 SCF energy in solution:	-881.561155 a.u.
M06 enthalpy in solution:	-881.232643 a.u.
M06 free energy in solution:	-881.321971 a.u.

Cartesian coordinates					
AT	OM X Y	Z			
	C 2.3243140	00000 -0.5320400	00000 0.836619000000		
Η	1.303809000000	-0.825215000000	-0.435957000000		
Η	2.964593000000	-1.286316000000	0.389430000000		
С	1.699532000000	-0.875557000000	2.055239000000		
С	1.800439000000	-2.203714000000	2.687878000000		
С	2.283775000000	-3.339887000000	2.011409000000		
С	1.374211000000	-2.351564000000	4.018102000000		
С	2.336470000000	-4.577716000000	2.646927000000		
Η	2.600263000000	-3.263855000000	0.975055000000		
С	1.432585000000	-3.589163000000	4.654952000000		
Η	0.973396000000	-1.487934000000	4.540489000000		
С	1.911950000000	-4.709455000000	3.972725000000		
Η	2.711454000000	-5.442918000000	2.105601000000		
Η	1.092305000000	-3.681189000000	5.682893000000		
Η	1.953085000000	-5.676273000000	4.467017000000		
С	-3.236121000000	2.739883000000	2.225178000000		
С	-2.743229000000	1.921182000000	1.199859000000		
С	-3.637808000000	1.021859000000	0.605213000000		
С	-4.982234000000	0.916648000000	0.985043000000		
С	-5.423789000000	1.733639000000	2.028866000000		
С	-4.559673000000	2.639221000000	2.646141000000		
С	-5.067233000000	-1.229677000000	-0.245732000000		
С	-3.721389000000	-1.023451000000	-0.56080000000		
С	-2.896344000000	-2.037093000000	-1.066550000000		
С	-3.446358000000	-3.311408000000	-1.247207000000		
С	-4.778252000000	-3.551907000000	-0.913868000000		
С	-5.577197000000	-2.520421000000	-0.417616000000		
Η	-2.568058000000	3.438002000000	2.719103000000		
Η	-6.453693000000	1.675110000000	2.363412000000		
Η	-4.922764000000	3.270137000000	3.452606000000		
Η	-2.826727000000	-4.116358000000	-1.628218000000		
Η	-5.197416000000	-4.545356000000	-1.043961000000		
Η	-6.612489000000	-2.728766000000	-0.170537000000		
С	-5.891777000000	-0.010822000000	0.172894000000		
0	-3.151481000000	0.221523000000	-0.412773000000		
Р	-1.125197000000	-1.666261000000	-1.316928000000		
Р	-0.993126000000	1.971508000000	0.601859000000		
С	-0.394343000000	-3.249245000000	-1.911551000000		
С	-0.299745000000	-3.577026000000	-3.271385000000		

С	0.128550000000	-4.134188000000	-0.952815000000
С	0.323802000000	-4.762925000000	-3.667006000000
Η	-0.697927000000	-2.900536000000	-4.021546000000
С	0.742422000000	-5.321157000000	-1.351492000000
Η	0.068604000000	-3.882715000000	0.103181000000
С	0.847800000000	-5.634671000000	-2.709781000000
Η	0.401974000000	-5.002840000000	-4.724080000000
Η	1.147473000000	-5.992917000000	-0.599384000000
Η	1.337597000000	-6.553581000000	-3.020914000000
С	-1.056781000000	-0.568894000000	-2.789740000000
С	0.203643000000	-0.144107000000	-3.240095000000
С	-2.205301000000	-0.122260000000	-3.457726000000
С	0.315963000000	0.707503000000	-4.337937000000
Η	1.106322000000	-0.461425000000	-2.730007000000
С	-2.091587000000	0.739779000000	-4.550804000000
Η	-3.18781000000	-0.442326000000	-3.128092000000
С	-0.834260000000	1.154926000000	-4.993560000000
Η	1.296827000000	1.055201000000	-4.639876000000
Η	-2.990074000000	1.088218000000	-5.053162000000
Η	-0.749843000000	1.831436000000	-5.839930000000
С	-0.106313000000	2.604299000000	2.091863000000
С	0.870574000000	3.611824000000	2.016247000000
С	-0.271184000000	1.920104000000	3.312479000000
С	1.643294000000	3.943617000000	3.132253000000
Η	1.041203000000	4.133655000000	1.080093000000
С	0.501329000000	2.256533000000	4.424531000000
Η	-0.991851000000	1.109466000000	3.380034000000
С	1.458238000000	3.273081000000	4.342521000000
Η	2.390679000000	4.729022000000	3.051760000000
Η	0.354445000000	1.718784000000	5.357874000000
Η	2.057587000000	3.533915000000	5.210796000000
С	-1.059655000000	3.446690000000	-0.519390000000
С	-0.855579000000	3.210849000000	-1.885359000000
С	-1.328747000000	4.759092000000	-0.091111000000
С	-0.903348000000	4.260786000000	-2.806958000000
Η	-0.648245000000	2.206349000000	-2.235699000000
С	-1.372927000000	5.807791000000	-1.008370000000
Η	-1.496488000000	4.959106000000	0.963277000000
С	-1.158600000000	5.559949000000	-2.370403000000
Η	-0.720497000000	4.052467000000	-3.856477000000
Η	-1.578207000000	6.818610000000	-0.664634000000
Η	-1.190260000000	6.380161000000	-3.083089000000
Pd	0.074568000000	-1.00250000000	0.556284000000
Br	-1.689739000000	-1.442722000000	2.315163000000
С	2.760289000000	0.897984000000	0.557394000000
С	4.292557000000	1.018706000000	0.781429000000
С	2.450762000000	1.340015000000	-0.875170000000
Η	2.235381000000	1.574257000000	1.233699000000
С	5.070846000000	0.252311000000	-0.293923000000
0	4.698764000000	0.494237000000	2.036223000000
Η	4.571455000000	2.080084000000	0.709625000000

0	3.116099000000	0.546402000000	-1.807605000000
Η	1.391017000000	1.254541000000	-1.113690000000
0	2.810336000000	2.740953000000	-0.940247000000
С	4.546753000000	0.524846000000	-1.716612000000
Η	4.989783000000	-0.822708000000	-0.091402000000
0	6.437538000000	0.639343000000	-0.323473000000
С	4.348919000000	1.299234000000	3.150602000000
С	2.463228000000	3.434636000000	-2.06143000000
С	5.028309000000	-0.542013000000	-2.700269000000
Η	4.940652000000	1.500210000000	-2.036254000000
С	7.299993000000	-0.163184000000	0.472553000000
Η	4.816098000000	0.840414000000	4.025630000000
Η	4.726131000000	2.327515000000	3.035556000000
Η	3.265153000000	1.345058000000	3.311716000000
0	2.063262000000	2.921891000000	-3.079718000000
С	2.596579000000	4.918413000000	-1.827579000000
Η	6.118300000000	-0.469366000000	-2.761685000000
0	4.744588000000	-1.872497000000	-2.303192000000
Η	4.598350000000	-0.327633000000	-3.690920000000
Η	8.311286000000	0.224976000000	0.320313000000
Η	7.270201000000	-1.216143000000	0.152329000000
Η	7.036872000000	-0.106391000000	1.534113000000
Η	3.408895000000	5.145747000000	-1.133292000000
Η	2.745381000000	5.426552000000	-2.781790000000
Η	1.653617000000	5.272644000000	-1.392568000000
С	3.430251000000	-2.341675000000	-2.576102000000
Η	3.459931000000	-3.432912000000	-2.507781000000
Η	2.691966000000	-1.964687000000	-1.860213000000
Η	3.101601000000	-2.057274000000	-3.587077000000
Η	1.400639000000	-0.062620000000	2.712645000000
С	-6.308038000000	0.746162000000	-1.121135000000
Η	-6.931195000000	0.103470000000	-1.754081000000
Η	-6.875113000000	1.648984000000	-0.866852000000
Η	-5.426766000000	1.047486000000	-1.696701000000
С	-7.158226000000	-0.408159000000	0.946817000000
Η	-7.750058000000	0.475680000000	1.202574000000
Η	-7.802463000000	-1.046242000000	0.334400000000
Η	-6.911694000000	-0.943124000000	1.869636000000

B3LYP-D3 SCF energy:	-1191.557238 a.u.
B3LYP-D3 enthalpy:	-1191.091870 a.u.
B3LYP-D3 free energy:	-1191.181100 a.u.
M06 SCF energy in solution:	-1191.064177 a.u.
M06 enthalpy in solution:	-1190.587613 a.u.
M06 free energy in solution:	-1190.698585 a.u.

Cartesian coordinates ATOM X Y Z C -0.465812000000 -0.565987000000 -1.323270000000 C 0.160218000000 0.513592000000 -0.495153000000

С	-0.762433000000	1.452868000000	0.198384000000
0	-1.818031000000	0.804694000000	0.846017000000
С	-2.552964000000	-0.118712000000	0.032827000000
С	-3.630671000000	-0.726059000000	0.915386000000
Η	-4.328560000000	-1.292392000000	0.280145000000
0	-3.022138000000	-1.573636000000	1.872671000000
С	-3.954768000000	-2.156384000000	2.757627000000
Η	-3.392167000000	-2.794817000000	3.444092000000
Η	-4.495232000000	-1.393440000000	3.341134000000
Η	-4.696939000000	-2.772009000000	2.222513000000
Η	-4.184597000000	0.087694000000	1.409991000000
С	-1.643892000000	-1.200601000000	-0.577705000000
Η	-1.255702000000	-1.825199000000	0.233162000000
0	-2.457829000000	-1.962332000000	-1.457355000000
С	-2.18661000000	-3.357059000000	-1.437135000000
Η	-2.875942000000	-3.819824000000	-2.149366000000
Η	-2.366957000000	-3.78098000000	-0.437386000000
Η	-1.153149000000	-3.568518000000	-1.735489000000
Η	-3.044784000000	0.423857000000	-0.787437000000
Η	-0.265339000000	2.058685000000	0.955185000000
0	-1.306962000000	2.359642000000	-0.822878000000
С	-1.606941000000	3.627996000000	-0.429044000000
0	-1.381270000000	4.074967000000	0.671576000000
С	-2.246763000000	4.387745000000	-1.568096000000
Η	-2.427421000000	5.419011000000	-1.262834000000
Η	-1.597647000000	4.361654000000	-2.449141000000
Η	-3.192604000000	3.909829000000	-1.844849000000
Η	1.130976000000	0.897999000000	-0.789369000000
0	0.456506000000	-1.607589000000	-1.660284000000
С	1.277225000000	-1.308545000000	-2.777253000000
Η	1.893378000000	-2.192973000000	-2.960941000000
Η	0.672466000000	-1.099490000000	-3.672910000000
Η	1.941646000000	-0.452823000000	-2.589424000000
Η	-0.87662000000	-0.140174000000	-2.259596000000
С	2.131463000000	0.031044000000	1.793308000000
С	1.003710000000	-0.659096000000	1.473468000000
Η	1.032661000000	-1.514847000000	0.807906000000
Η	0.083332000000	-0.518456000000	2.030359000000
С	3.423305000000	-0.090689000000	1.124029000000
С	3.610442000000	-0.899670000000	-0.017980000000
С	4.528867000000	0.639560000000	1.602595000000
С	4.852174000000	-0.976256000000	-0.640837000000
Η	2.772191000000	-1.458025000000	-0.422070000000
С	5.772003000000	0.559019000000	0.979001000000
Η	4.404006000000	1.274580000000	2.476970000000
С	5.941169000000	-0.250143000000	-0.146809000000
Η	4.972637000000	-1.603943000000	-1.520476000000
Η	6.609696000000	1.130442000000	1.370403000000
Η	6.908938000000	-0.312169000000	-0.637016000000
Η	2.071199000000	0.794634000000	2.568429000000

В	3LYP-D3 SCF energ	gy:	-1191.554503 a.u.
B3LYP-D3 enthalpy:			-1191.089089 a.u.
B3LYP-D3 free energy:			-1191.178061 a.u.
M06 SCF energy in solution:			-1191.061139 a.u.
Μ	106 enthalpy in solut	ion:	-1190.584507 a.u.
Μ	106 free energy in so	lution:	-1190.695555 a.u.
Ca	rtesian coordinates		
AT	OM X Y	7 7.	
C	0.738151000000	-0 584285000000	1 01064900000
C	-0 106049000000	0.114508000000	-0.00506800000
C	0.508785000000	1 305724000000	-0.657928000000
$\hat{0}$	1 794544000000	1.030128000000	-1 160132000000
C	2 602307000000	0.44537000000	0.205447000000
C	2.092397000000 4.027486000000	0.445575000000	0.203447000000
ц	4.027480000000	0.23780000000	0.137306000000
\cap	4.789387000000	0.011388000000	1 821251000000
C	5.925501000000	-0.82379000000	-1.851551000000
	3.10470000000	-1.004933000000	-2.384383000000
п	4.928344000000	-1.84419400000	-5.202574000000
п	5.548812000000	-0.109703000000	-5.1/808900000
п	5.908882000000	-1.239239000000	-1.940/3000000
H	4.31013000000	1.1/4598000000	-1.405/5600000
	2.1152/4000000	-0.862074000000	0.374225000000
H	1.9/3493000000	-1.5/809100000	-0.442133000000
0	3.022593000000	-1.366575000000	1.34935000000
C	3.60204000000	-2.619234000000	1.00662900000
Н	4.319536000000	-2.860416000000	1.796153000000
Η	4.120426000000	-2.567799000000	0.040480000000
Η	2.840322000000	-3.411100000000	0.959802000000
Η	2.855219000000	1.149635000000	0.623297000000
Η	-0.081652000000	1.680681000000	-1.492088000000
0	0.661126000000	2.384841000000	0.320557000000
С	-0.182174000000	3.440296000000	0.235441000000
0	-1.085147000000	3.537573000000	-0.566771000000
С	0.156134000000	4.465312000000	1.293384000000
Η	-0.520589000000	5.315847000000	1.205694000000
Η	0.065178000000	4.016865000000	2.288541000000
Η	1.193585000000	4.794922000000	1.177560000000
Η	-0.725888000000	-0.517313000000	-0.632450000000
0	0.088005000000	-1.790239000000	1.400899000000
С	0.329803000000	-2.180730000000	2.746071000000
Η	-0.202533000000	-3.124045000000	2.896463000000
Η	1.397668000000	-2.322554000000	2.943487000000
Η	-0.064685000000	-1.434991000000	3.454519000000
Η	0.904097000000	0.062255000000	1.888937000000
С	-3.793473000000	-0.167620000000	-0.131827000000
С	-4.932273000000	0.115297000000	-0.910478000000
С	-5.672124000000	-0.905097000000	-1.503522000000
С	-5.28340000000	-2.236931000000	-1.342158000000
С	-4.144927000000	-2.53467000000	-0.586529000000

С	-3.405663000000	-1.517589000000	0.010945000000
Η	-5.236917000000	1.151088000000	-1.042603000000
Η	-6.550508000000	-0.661084000000	-2.095526000000
Η	-5.855655000000	-3.034891000000	-1.807739000000
Η	-3.826211000000	-3.567456000000	-0.469668000000
Η	-2.507594000000	-1.768271000000	0.568914000000
С	-3.044179000000	0.932870000000	0.471586000000
Η	-3.268659000000	1.930267000000	0.097552000000
С	-2.048005000000	0.798401000000	1.380027000000
Η	-1.549458000000	1.670078000000	1.788619000000
Η	-1.835797000000	-0.146537000000	1.86850900000
TS	8		
В	3LYP-D3 SCF energ	gy:	-1191.550971 a.u.
В	3LYP-D3 enthalpy:		-1191.085368 a.u.
В	3LYP-D3 free energ	y:	-1191.173100 a.u.
Μ	106 SCF energy in so	olution:	-1191.057882 a.u.
Μ	106 enthalpy in solut	ion:	-1190.581114 a.u.
Μ	106 free energy in so	lution:	-1190.691200 a.u.

Cartesian coordinates

	OM	X	amatos	Y	7			
C	-0.04	4167	000000	1	-0 51038300	0000	1 00802200	00000
C	-0.07	1831	000000		0.94133800	00000	0.74912600)0000
C	_1.76	5459	000000		1 33734400	0000	0.64485000)0000
$\hat{0}$	-2.61	535/	000000		0.28831700		0.3319760	00000
C	2.01	0633	000000		0.20031700		0.5317700	00000
C	-2.04	3721	000000		-1.56269700		-1.0801650	00000
с ц	-5.10	5057	000000		2 10350300		1 8873610	00000
\cap	-2.15	53057 52057	000000		2 35774400		-1.8873010	00000
C	-5.0.)6500	000000		-2.33774400		-0.0201910	00000
с u	4.09	00000	000000		3 70135200		0.4500160	00000
н Ц	-4.75	7402			-3.79133200	0000	0.4399100	00000
п	-5.50	01493 0570			-2.03920300		-0.7994000	00000
п	-4.30	19310	000000		-3.91990000		-1.2083970	00000
П	-3.90)4320 2004	000000		-0.93502100		-1.3017400	00000
	-0.93	03904	000000		-1.43003200		0.14026000	
H	-1.35	20701			-2.16/74300		0.8121220	00000
0	-0.19)2/40	000000		-2.09816500	0000	-0.8843030	00000
C	0.50	0544	000000		-3.24/19800	0000	-0.42355900	00000
H	1.00	6202	000000		-3.68100200	10000	-1.2909010	00000
Н	-0.19	95278	000000		-3.98658200	00000	-0.0007740	00000
Н	1.25	4602	000000		-2.99681400	0000	0.33664400)0000
Н	-1.63	32730	000000		-0.14297100)0000	-1.4485210	00000
Η	-2.12	28692	000000		1.77697200	0000	1.57975400)0000
0	-1.96	53025	000000		2.36614000	0000	-0.3973120	00000
С	-1.59	01901	000000		3.62171600	0000	-0.07562000	00000
0	-1.07	72904	000000		3.92849600	0000	0.97848300)0000
С	-1.89	6464	000000		4.57825100	0000	-1.20634000	00000
Η	-1.65	54346	000000		5.59551900	0000	-0.8966520	00000
Η	-1.30)4184	000000		4.31050000	0000	-2.0885250	00000
Η	-2.95	51603	000000)	4.50766000	0000	-1.4878070	00000

тт	0.2002/2000000	1 (01122000000	1 00 000 000000
н	0.309263000000	1.681133000000	1.226093000000
0	-0.303711000000	-0.873012000000	2.378811000000
С	0.651009000000	-0.370972000000	3.295455000000
Η	0.412669000000	-0.809583000000	4.268301000000
Η	1.676197000000	-0.661099000000	3.011852000000
Η	0.615077000000	0.724589000000	3.386192000000
Η	1.010444000000	-0.721143000000	0.782586000000
С	2.122834000000	1.480354000000	-0.951905000000
С	0.840707000000	1.194322000000	-1.326862000000
Η	0.156395000000	1.989384000000	-1.594628000000
Η	0.556742000000	0.196431000000	-1.642179000000
С	3.188438000000	0.518171000000	-0.700887000000
С	3.061843000000	-0.859523000000	-0.989074000000
С	4.403849000000	0.963234000000	-0.141476000000
С	4.098929000000	-1.743901000000	-0.712703000000
Η	2.141394000000	-1.234338000000	-1.423655000000
С	5.442103000000	0.075687000000	0.131222000000
Η	4.524794000000	2.020198000000	0.085264000000
С	5.295115000000	-1.284492000000	-0.150188000000
Η	3.976770000000	-2.799753000000	-0.941149000000
Η	6.367175000000	0.445502000000	0.565731000000
Η	6.103166000000	-1.979052000000	0.062271000000
Η	2.372281000000	2.519895000000	-0.740637000000

 B3LYP-D3 SCF energy:
 -6154.490635 a.u.

 B3LYP-D3 enthalpy:
 -6153.378407 a.u.

 B3LYP-D3 free energy:
 -6153.552065 a.u

 M06 SCF energy in solution:
 -6155.702391 a.u.

 M06 enthalpy in solution:
 -6154.561213 a.u.

 M06 free energy in solution:
 -6154.780507 a.u.

Cartesian coordinates

AT	YOM X	Y	Z
С	-1.820486000000	1.591434000000	-1.124098000000
С	4.715848000000	2.627558000000	0.316920000000
С	3.816677000000	1.549775000000	0.350952000000
С	4.357816000000	0.263806000000	0.204139000000
С	5.717775000000	0.017788000000	-0.023405000000
С	6.572806000000	1.121471000000	-0.076761000000
С	6.077027000000	2.414545000000	0.105553000000
С	5.048629000000	-2.184317000000	-0.912263000000
С	3.730176000000	-1.841286000000	-0.603956000000
С	2.607941000000	-2.492412000000	-1.135611000000
С	2.845822000000	-3.525464000000	-2.052742000000
С	4.150847000000	-3.872583000000	-2.407509000000
С	5.243520000000	-3.213042000000	-1.840191000000
Η	4.343253000000	3.639369000000	0.433791000000
Η	7.633184000000	0.979538000000	-0.256270000000
Η	6.756177000000	3.261955000000	0.073772000000

Η	2.007620000000	-4.052817000000	-2.495953000000
Η	4.318030000000	-4.669373000000	-3.127017000000
Η	6.248395000000	-3.508703000000	-2.122417000000
С	6.154288000000	-1.446882000000	-0.148026000000
0	3.490862000000	-0.805780000000	0.28100000000
Р	0.948361000000	-1.847656000000	-0.651594000000
Р	1.979186000000	1.766316000000	0.426775000000
С	-0.201361000000	-3.108113000000	-1.371642000000
С	-0.216607000000	-4.452376000000	-0.967390000000
С	-1.12161900000	-2.679205000000	-2.338618000000
С	-1.143074000000	-5.345047000000	-1.505759000000
Η	0.497659000000	-4.796194000000	-0.224010000000
С	-2.055024000000	-3.572120000000	-2.873468000000
Η	-1.099108000000	-1.647797000000	-2.677281000000
С	-2.069986000000	-4.903658000000	-2.455716000000
Η	-1.146639000000	-6.383078000000	-1.182077000000
Η	-2.769649000000	-3.221139000000	-3.613291000000
Η	-2.797338000000	-5.597983000000	-2.869011000000
С	0.904611000000	-2.270763000000	1.150573000000
С	-0.031154000000	-1.594784000000	1.944859000000
С	1.772105000000	-3.189534000000	1.760321000000
С	-0.097323000000	-1.824788000000	3.317590000000
Η	-0.70945000000	-0.881016000000	1.493722000000
С	1.712131000000	-3.414511000000	3.137640000000
Η	2.511144000000	-3.717606000000	1.164167000000
С	0.780229000000	-2.728816000000	3.920587000000
Η	-0.818225000000	-1.272569000000	3.911666000000
Η	2.399397000000	-4.120028000000	3.598468000000
Η	0.744408000000	-2.891868000000	4.994938000000
С	1.826015000000	3.596454000000	0.198526000000
С	1.754019000000	4.525433000000	1.247577000000
С	1.737484000000	4.057686000000	-1.126752000000
С	1.591952000000	5.886843000000	0.975387000000
Η	1.816947000000	4.186152000000	2.276944000000
С	1.598414000000	5.418515000000	-1.396439000000
Η	1.741054000000	3.337273000000	-1.941779000000
С	1.520495000000	6.336886000000	-0.345232000000
Η	1.528805000000	6.595654000000	1.797263000000
Η	1.522891000000	5.757650000000	-2.425884000000
Η	1.396105000000	7.396413000000	-0.554115000000
С	1.572178000000	1.537699000000	2.209548000000
С	0.267075000000	1.846250000000	2.632528000000
С	2.472828000000	1.004094000000	3.139824000000
С	-0.122228000000	1.654009000000	3.956292000000
Η	-0.452683000000	2.254296000000	1.926573000000
С	2.078691000000	0.792831000000	4.463225000000
Η	3.483112000000	0.751215000000	2.833961000000
С	0.787937000000	1.124012000000	4.876216000000
Η	-1.135356000000	1.905486000000	4.251874000000
Η	2.786579000000	0.369716000000	5.171330000000
Η	0.486929000000	0.961355000000	5.908036000000

Pd	0.750098000000	0.473127000000	-1.052704000000
Br	-0.455575000000	1.010167000000	-3.281246000000
Η	-1.117644000000	1.554192000000	-0.293023000000
С	6.234265000000	-2.053590000000	1.282257000000
Η	6.511924000000	-3.112632000000	1.228076000000
Η	6.986227000000	-1.522660000000	1.877474000000
Η	5.270490000000	-1.977038000000	1.795017000000
С	7.523928000000	-1.588792000000	-0.826620000000
Η	8.299188000000	-1.080769000000	-0.244681000000
Η	7.815698000000	-2.641780000000	-0.888122000000
Н	7.517417000000	-1.169974000000	-1.838433000000
С	-2.218213000000	2.929214000000	-1.506947000000
Ċ	-1.625090000000	4.037304000000	-0.867287000000
Ċ	-3.227171000000	3.161502000000	-2.468790000000
Ċ	-2.034963000000	5.333287000000	-1.165169000000
H	-0.837154000000	3.874249000000	-0.140208000000
C	-3 635813000000	4 456677000000	-2.760237000000
н	-3 676036000000	2 319380000000	-2 985365000000
C	-3.040656000000	5 546966000000	-2 111377000000
Н	-1 558356000000	6 171212000000	-0 665834000000
н	-4 412746000000	4 623949000000	-3 501164000000
н	-3 35898600000	6 558608000000	-2 34879600000
C	-2 750416000000	0.413571000000	-1 209953000000
C	-3 970122000000	0.591449000000	-0.265672000000
н	-2 195575000000	-0.48654000000	-0.203072000000
н	-3 134317000000	0.271979000000	-0.941334000000
n C	-4 98806600000	-0.552813000000	-0.445644000000
C	-3 53/71/000000	0.552015000000	1 20002800000
н	-1 466077000000	1 533512000000	-0 521978000000
C	4.455185000000	1.850767000000	0.166881000000
н	-5.91180600000	-0.281/33000000	0.100001000000
$\hat{0}$	-5 256907000000	-0.201433000000	-1 833/83000000
0	3 102552000000	0.53030600000	1 777302000000
0	4 67533000000	1 172236000000	1.727392000000
ц	2 70013000000	1.172230000000	1.349398000000
C	4 066147000000	1.572071000000	1.548245000000
с ц	3 57087600000	2 18053600000	0.387067000000
\cap	5 468384000000	-2.18055000000	-0.387007000000
C	-6 596077000000	-2.832477000000	-2 1/6288000000
C	4 41607800000	1 052020000000	2.140288000000
с u	4.410978000000	1.352053000000	2 186310000000
n C	-4.909987000000	-1.312097000000	2.180319000000
C	5 080115000000	-2.832382000000	2.319734000000
с u	7 201508000000	-4.033373000000	-0.337170000000
н ц	-7.301398000000	-0.272880000000	-1.808903000000
и Ц	6 88320500000	-1.12402000000 2 00/611000000	-3.230037000000 1.60/032000000
п С	5 7003/2000000	-2.00401100000 2.202407000000	-1.074030000000
	3 311020000000	2.27247100000	3.7.50514000000
U U	-3.31172900000	2.32324000000	2.53000000000
п Ц	-4.3249/100000	-3.32713/000000	2.313003000000
11 0	-3.000034000000	-2.32330900000	J.204002000000
U	-2.322917000000	-3.44821000000	1.302707000000

-4.918581000000	-3.832876000000	-1.625611000000
-5.901306000000	-4.747587000000	-0.443790000000
-4.157818000000	-4.455223000000	-0.139546000000
-5.487303000000	2.967724000000	4.579621000000
-6.406966000000	2.757099000000	3.055258000000
-6.166725000000	1.375272000000	4.125854000000
-1.939148000000	-4.575124000000	2.129597000000
-1.223742000000	-4.994276000000	1.423102000000
-1.408583000000	-4.290039000000	3.048140000000
-2.700117000000	-5.335783000000	2.372052000000
	-4.91858100000 -5.90130600000 -4.15781800000 -5.48730300000 -6.40696600000 -6.16672500000 -1.93914800000 -1.22374200000 -1.40858300000 -2.700117000000	-4.918581000000-3.832876000000-5.901306000000-4.747587000000-4.157818000000-4.455223000000-5.4873030000002.967724000000-6.4069660000002.757099000000-6.1667250000001.375272000000-1.939148000000-4.575124000000-1.223742000000-4.994276000000-1.408583000000-5.335783000000

References

- (1) Still, W. C.; Kahn, M.; Mitra, A., Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. *The Journal of Organic Chemistry* **1978**, *43*, 2923-2925.
- (2) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., Nmr Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29, 2176-2179.
- (3) Ayers, B. J.; Hollinshead, J.; Saville, A. W.; Nakagawa, S.; Adachi, I.; Kato, A.; Izumori, K.; Bartholomew, B.; Fleet, G. W. J.; Nash, R. J., Iteamine, the First Alkaloid Isolated from Itea Virginica L. Inflorescence. *Phytochemistry* **2014**, *100*, 126-131.
- Li, L.; Franckowiak, E. A.; Xu, Y.; McClain, E.; Du, W., Efficient Synthesis of B-(1,6)-Linked Oligosaccharides through Microwave-Assisted Glycosylation. *J. Polym. Sci. A Polym. Chem.* 2013, 51, 3693-3699.
- (5) Camponovo, J.; Hadad, C.; Ruiz, J.; Cloutet, E.; Gatard, S.; Muzart, J.; Bouquillon, S.; Astruc, D.,
 "Click" Glycodendrimers Containing 27, 81, and 243 Modified Xylopyranoside Termini. *The Journal of Organic Chemistry* 2009, 74, 5071-5074.
- (6) Xin-Rong Zhu, Y. Z. P. W. S.-B. Y. R. C. Y.-Q. Z., <P>Synthesis of Two Metabolites of Edaravone </P>. *Journal of Chinese Pharmaceutical Sciences* **2010**, *19*, 307-311.
- (7) Adelhorst, K.; Whitesides, G. M., Large-Scale Synthesis of B-L-Fucopyranosyl Phosphate and the Preparation of Gdp-B-L-Fucose. *Carbohydrate Research* **1993**, *242*, 69-76.
- (8) Fürstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.; Mynott, R., Ring-Closing Alkyne Metathesis. Application to the Total Synthesis of Sophorolipid Lactone. J. Org. Chem. 2000, 65, 8758-8762.
- (9) Yuan, X.; Cheng, S.; Shi, Y.; Xue, W., Photocatalytic Synthesis of Glycosyl Bromides. *Synthesis* 2014, 46, 331-335.
- (10) Zhao, J.; Wei, S.; Ma, X.; Shao, H., A Mild and Environmentally Benign Method for the Synthesis of Glycals in Peg-600/H20. *Green Chemistry* **2009**, *11*, 1124-1127.
- (11) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y., Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature. *J. Am. Chem. Soc.* **2017**, *139*, 18307-18312.
- (12) Cismesia, M. A.; Yoon, T. P., Characterizing Chain Processes in Visible Light Photoredox Catalysis. *Chem. Sci.* **2015**, *6*, 5426-5434.
- (13) (a) Hatchard, C. G.; Parker, C. A.; Bowen, E. J., A New Sensitive Chemical Actinometer Ii. Potassium Ferrioxalate as a Standard Chemical Actinometer. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* 1956, 235, 518-536; (b) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R., Chemical Actinometry (Iupac Technical Report). *Pure and Applied Chemistry* 2004, 76, 2105-2146.

- (14) Lee, G. S.; Kim, D.; Hong, S. H., Pd-Catalyzed Formal Mizoroki–Heck Coupling of Unactivated Alkyl Chlorides. *Nat. Commun.* 2021, *12*, 991
- (15) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- (16) (a) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phy. Rev. B* 1988, *37*, 785; (b) Becke, A. D., Density Functional Thermochemistry. Iii. The Role of Exact Exchange. *J. Chem. Phys.* 1993, *98*, 5648-5652.
- (17) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (Dft-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104.
- (18) Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215-241.
- (19) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396.
- (20) Funes-Ardoiz, I.; Paton, R. S., Goodvibes: Version 2.0. 3. 2018.
- (21) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J. Phys. Chem. B 2011, 115, 14556-14562.
- (22) (a) Grimme, S., Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. *J. Chem. Theory Comput.* 2019, *15*, 2847-2862; (b) Pracht, P.; Bohle, F.; Grimme, S., Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. *Phys. Chem. Chem. Phys.* 2020, *22*, 7169-7192.

- (23) (a) Grimme, S.; Bannwarth, C.; Shushkov, P., A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z=1–86). *J. Chem. Theory Comput.* 2017, *13*, 1989-2009; (b) Bannwarth, C.; Ehlert, S.; Grimme, S., Gfn2-Xtb—an Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theory Comput.* 2019, *15*, 1652-1671.
- (24) Legault, C. Y., *CYLview20*, Université De Sherbrooke, **2020** *http://www.cylview.org*.