
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Distribution of GC% difference between matching kmers of 
different lengths, calculated on all alignments for RFAM families. 



 
 
 
 
 
 
 

 
 
 
 
 
 
Supplementary Figure 2. (a) Significant matches between each possible query-
database combination for the four DENV serotypes, identified by SHAPEwarp, either 
in SHAPE-only (orange) or SHAPE+sequence (red) mode. (b) Structure models for 
known Flavivirus RNA elements, automatically generated by the SHAPEwarp+cm-
builder pipeline. Structures were generated using R2R. One-sided covariations were 
inferred from R2R output. Base-pairs showing significant covariation (as determined 
by R-scape) are boxed in green (E-value < 0.05) and violet (E-value < 0.1) 
respectively.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3. Heatmap depicting the conservation of known Flavivirus 
RNA structural elements, determined by using curated covariance models (CMs) from 
RFAM, as compared to CMs automatically built by the SHAPEwarp+cm-builder 
pipeline. The size of circles represents the fraction of genomes belonging to each 
species, that have been matched by each CM with an E-value cutoff of 0.01. Circles 
are colored according to the average fraction of base-pairs supporting each of the 
analyzed structures in each species.



 
 
 

 
 
 
 
 
Supplementary Figure 4. (top) Aligned SHAPE reactivity profiles for one of the 
identified structurally-conserved regions in CoVs (CoV Motif #2). SHAPE reactivities 
have been capped to 2. (bottom) Structure model for CoV Motif #2. Structure was 
generated using R2R. One-sided covariations were inferred from R2R output. Base-
pairs showing significant covariation (as determined by R-scape) are boxed in green 
(E-value < 0.05) and violet (E-value < 0.1) respectively. The inset illustrates base-pairs 
having significant RNA-RNA chimera support from in vivo COMRADES, boxed in blue.  



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Supplementary Figure 5. (top) Aligned SHAPE reactivity profiles for one of the 
identified structurally-conserved regions in CoVs (CoV Motif #3). SHAPE reactivities 
have been capped to 2. (bottom) Structure model for CoV Motif #3. Structure was 
generated using R2R. One-sided covariations were inferred from R2R output. Base-
pairs showing significant covariation (as determined by R-scape) are boxed in green 
(E-value < 0.05) and violet (E-value < 0.1) respectively. The inset illustrates base-pairs 
having significant RNA-RNA chimera support from in vivo COMRADES, boxed in blue.   



 
 
 
Supplementary Figure 6. (top) Reactivities for two coexisting structures, 
deconvoluted by DRACO for SARS-CoV-2 genome probed with DMS (Morandi et al, 
2021). Reactivities have been overlaid onto the structure of CoV Motif #3 identified by 
the SHAPEwarp+cm-builder pipeline, corresponding to the major conformation (left), 
or onto the alternative structure inferred directly from the deconvoluted DMS reactivity 
profile, corresponding to the minor conformation (right). Reactivities are shown only 
for the bases falling within the window identified by DRACO to form two structures.  
(bottom) Structure model for the alternative conformation of CoV Motif #3. Structure 
was generated using R2R. One-sided covariations were inferred from R2R output. 
Base-pairs showing significant covariation (as determined by R-scape) are boxed in 
green (E-value < 0.05) and violet (E-value < 0.1) respectively. The inset illustrates 
base-pairs having significant RNA-RNA chimera support from in vivo COMRADES, 
boxed in blue.   



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Supplementary Figure 7. (left) Structure model for one of the identified structurally-
conserved regions in ZIKV (ZIKV Motif #1). Structure was generated using R2R. One-
sided covariations were inferred from R2R output. Base-pairs showing significant 
covariation (as determined by R-scape) are boxed in green (E-value < 0.05) and violet 
(E-value < 0.1) respectively. The inset illustrates base-pairs having significant RNA-
RNA chimera support from in vivo COMRADES, boxed in blue. (right) Aligned SHAPE 
reactivity profiles for ZIKV Motif #1. SHAPE reactivities have been capped to 2. 



 
 
 
 

 
 
 
 
 
 

Supplementary Figure 8. (top) Aligned SHAPE reactivity profiles for one of the 
identified structurally-conserved regions in ZIKV (ZIKV Motif #3). SHAPE reactivities 
have been capped to 2. (bottom) Structure model for ZIKV Motif #3. Structure was 
generated using R2R. One-sided covariations were inferred from R2R output. Base-
pairs showing significant covariation (as determined by R-scape) are boxed in green 
(E-value < 0.05) and violet (E-value < 0.1) respectively. The inset illustrates base-pairs 
having significant RNA-RNA chimera support from in vivo COMRADES, boxed in blue.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 9. (left) Structure model for one of the identified structurally-
conserved regions in ZIKV (ZIKV Motif #3). Structure was generated using R2R. One-
sided covariations were inferred from R2R output. Base-pairs showing significant 
covariation (as determined by R-scape) are boxed in green (E-value < 0.05) and violet 
(E-value < 0.1) respectively. The inset illustrates base-pairs having significant RNA-
RNA chimera support from in vivo COMRADES, boxed in blue. (right) Aligned SHAPE 
reactivity profiles for ZIKV Motif #3. SHAPE reactivities have been capped to 2.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 10. (left) Structure model for one of the identified structurally-
conserved regions in ZIKV (ZIKV Motif #4). Structure was generated using R2R. One-
sided covariations were inferred from R2R output. Base-pairs showing significant 
covariation (as determined by R-scape) are boxed in green (E-value < 0.05) and violet 
(E-value < 0.1) respectively. This motif does not show any significant support by 
COMRADES, most likely as a consequence of its limited size. (right) Aligned SHAPE 
reactivity profiles for ZIKV Motif #4. SHAPE reactivities have been capped to 2.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 11. (left) Structure model for one of the identified structurally-
conserved regions in ZIKV (ZIKV Motif #5). Structure was generated using R2R. One-
sided covariations were inferred from R2R output. Base-pairs showing significant 
covariation (as determined by R-scape) are boxed in green (E-value < 0.05) and violet 
(E-value < 0.1) respectively. The inset illustrates base-pairs having significant RNA-
RNA chimera support from in vivo COMRADES, boxed in blue. (right) Aligned SHAPE 
reactivity profiles for ZIKV Motif #5. SHAPE reactivities have been capped to 2.  



 
 
 
 
 
 
 
 
 
 

 
 
 
 
Supplementary Figure 12. Heatmap depicting the conservation of the newly 
identified Flavivirus and CoV RNA structural elements, determined by using CMs 
automatically built by the SHAPEwarp+cm-builder pipeline. The size of circles 
represents the fraction of genomes belonging to each species, that have been 
matched by each CM with an E-value cutoff of 0.01. Circles are colored according to 
the average fraction of base-pairs supporting each of the analyzed structures in each 
species.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 13. Significant matches identified by querying E. coli 16S 
rRNA or SARS-CoV-2 probed with 2A3 with NAI-derived reactivity profiles from the 
same RNAs, identified by SHAPEwarp. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Note 1 
 

 
 

 
 

   



The SHAPEwarp method can be divided into 3 main steps: 
 

  1.   Kmer lookup 
  2.   Kmer grouping 
  3.   Seed extension 

 
Let’s consider a query RNA of length m, composed of a set q = {q0,…,qm-1} of SHAPE 
reactivities, and a sequence q’ = {q’0,…,q’m-1} of nucleobases. Similarly, let’s consider a 
target database RNA of length n, composed of a set d = {d0,…,dn-1} of SHAPE reactivities, 
and a sequence d’ = {d’0,…,d’n-1} of nucleobases. During the kmer lookup step, all the 
possible kmers in q are searched inside d:  

 
Algorithm 1   Kmer lookup 

  

Output: array M of kmer-match index pairs 
 

1: for base ← 0 to n – 1 do 
2:      kmer ← q[base .. base + kmerLen] 
3:      kmerSeq ← q'[base .. base + kmerLen] 

  
4:      if gini(kmer) < minGini do 
5:         continue 
6:      end if 

  
7:      dists ← MASS(d,kmer) 
8:      mean ← mean(dists) 
9:      sd ← sd(dists) 

  
10:      for i ← 0 to length(dists) – 1 do 
11:           if dists[i] ≥	mean – 3 × sd do 
12:              continue 
13:           end if 
  
14:          matchSeq ← d'[i .. i + kmerLen] 
15:          kmerGCcontent ← GCcontent(kmerSeq) 
16:          matchGCcontent ← GCcontent(matchSeq) 
  
17:           if abs(kmerGCcontent – matchGCcontent) > maxGCdiff do 
18:              continue 
19:           end if 
  
20:           push(M, [base,i]) 
21:      end for 
22: end for 

  

 
Here, all the possible kmers of q are enumerated by sliding a kmerLen-long window along q 
in 1 nt steps. Kmers are first filtered by structural complexity, so that kmers having a Gini 
coefficient < minGini, are discarded. Kmers passing this initial filtering are searched inside 
the database RNA d by taking advantage of the Mueen’s Algorithm for Similarity Search 
(MASS) [1,2]. A full description of MASS is available from reference [1], along with several 
implementations in different languages. For completeness, the pseudocode of the MASS 
algorithm used by SHAPEwarp is listed below: 
 

Algorithm 2   MASS (Mueen's Algorithm for Similarity Search) 

  

Output: array dists of distances of kmer to each position of the database profile d 
 
1: kmerMean = mean(kmer) 
2: kmerSd = sd(kmer) 

  
3: for i ← 0 to length(d) – kmerLen – 1 do 
4:      push(dMean, mean(d[i .. i + kmerLen])) 
5:      push(dSd, sd(d[i .. i + kmerLen])) 



6: end for 
  
7: for i ← length(d) + 1 to kmerLen – 1 do 
8:      unshift(dMean, 1) 
9:      unshift(dSd, 0) 

10: end for 
  
11: kmer = reverse(kmer) 

  
12: for i ← 0 to n – kmerLen do 
13:      push(kmer, 0) 
14: end for 

  
15: D = fft(d) 
16: K = fft(kmer) 
17: Z = D ×	K 
18: z = ifft(Z) 

  
19: dists = 2 × (kmerLen – (z[kmerLen – 1 .. n] – kmerLen ×  

 
dMean[kmerLen – 1 .. n] ×	kmerMean) / (dSd[kmerLen – 1 .. n]	×	
kmerSd)) 

20: dists = sqrt(dists) 
  

 
 

 
The MASS algorithm returns a list of distances dists = {dist0,dist1,…,distn-kmerLen-1} of the 
searched kmer to each position of d. Positions having a distance lower than	the mean of the 
distances minus 3 s.d. are considered matches. For each database match, the GC% content 
is compared to that of the query kmer, and matches having a GC% differing by more than 
maxGCdiff from that of the kmer, are discarded. Additional filtering steps might optionally 
be performed. The kmer lookup returns a list M of kmer-match index pairs.  

During the kmer grouping step, kmers are combined into high scoring groups 
(HSGs). HSGs are defined as groups of consecutive kmer-match pairs, residing on the same 
diagonal, within a maximum allowed distance to each other. Therefore, similarly to 
BLAST’s high scoring pairs (HSPs), HSGs define sub-segments of a query-database pair 
that share a high degree of similarity and can be aligned without gaps. Main difference 
between HSGs and HSPs is that HSGs can include any number of kmer matches. Each 
HSG is defined by a start and end position, qseedstart

 and qseedend
, within the query RNA, 

such that 0 ≤ qseedstart
 < qseedend

 ≤ m – 1, and a corresponding start and end position, dseedstart
 

and dseedend
, within the database RNA, such that 0 ≤ dseedstart 

< dseedend
 ≤ n – 1. The initial 

score h of the seed is calculated as: 
 

ℎ = # 𝑆%𝑞!""#!"#$" + 𝑘, 𝑑!""#!"#$" 	+ 𝑘,

$!%%&%'&%$!%%&!"#$"

&'(

 

 
S is the scoring function, defined as: 
 

𝑆%𝑞) , 𝑑*, = -
𝑆#)++%𝑞) , 𝑑*, < 0.5, 											𝑚𝑎𝑝%𝑆#)++%𝑞) , 𝑑*,, −0.5, 0,𝑚,)-, 𝑚,./,
𝑆#)++%𝑞) , 𝑑*, ≥ 0.5, −𝑚𝑎𝑝%𝑆#)++%𝑞) , 𝑑*,, 0, 𝑟,./ , |𝑚0

,./9, |𝑚
0
,)-9,

 

 
where rmax is a threshold value for capping SHAPE reactivities, m = [mmin,mmax] is the 
range of match score values,  m’ = [m’min,m’max] is the range of mismatch score values, and 
Sdiff(qi,dj) is the reactivity difference between the i-th base of the query and the j-th base of 
the database, calculated as: 
 

𝑆#)++%𝑞) , 𝑑*, = :
𝑞) > 1	 ∧ 𝑑* > 1,																													0	
𝑞) < 1	 ∨ 𝑑* < 1,																	9𝑞) − 𝑑*9
𝑞) = 𝑁𝑎𝑁	 ∨ 𝑑* = 𝑁𝑎𝑁,								𝑚0

,)-

 

(1) 

(2) 

(3) 



 
and map() is a function linearly mapping a reactivity difference x, from the old range 
[omin,omax], to the new range [nmin,nmax]: 
 

𝑚𝑎𝑝(𝑥, 𝑜,)-, 𝑜,./ , 𝑛,)-, 𝑛,./) = (𝑥 − 𝑜,)-) × (𝑛,./ − 𝑛,)-) ÷ (𝑜,./ − 𝑜,)-) +	𝑛,)- 
 
Essentially, the scoring function takes the absolute SHAPE reactivity difference between 
two bases qi and dj, and maps it to a different range, depending on whether the difference 
is < 0.5 (match), or ≥ 0.5 (mismatch). When the reactivity of both qi and dj exceeds 1, bases 
are assumed to be highly reactive, and the difference is set to 0, independently of their real 
value. This additional condition allows handling SHAPE data that has been normalized 
using methods such as box-plot normalization or 2-8% normalization (see 
https://rnaframework-docs.readthedocs.io/en/latest/rf-norm/ for additional details). In 
these normalization schemes, certain extremely reactive bases will have exceptionally high 
SHAPE reactivities following data normalization. However, even relatively small variations 
in the reactivity of these bases would result into (apparent) large reactivity differences that 
would be heavily penalized.  

If sequence is taken into account, the scoring function S is modified as follows: 
 

𝑆%𝑞) , 𝑑*, = -
𝑆#)++%𝑞) , 𝑑*, < 0.5, 											𝑚𝑎𝑝%𝑆#)++%𝑞) , 𝑑*,, −0.5, 0,𝑚,)-, 𝑚,./,
𝑆#)++%𝑞) , 𝑑*, ≥ 0.5, −𝑚𝑎𝑝%𝑆#)++%𝑞) , 𝑑*,, 0, 𝑟,./ , |𝑚0

,./9, |𝑚
0
,)-9,

+ 	𝐼%𝑞′) , 𝑑′*, 

 
where I is the sequence scoring function, defined as: 
 

𝐼%𝑞′) , 𝑑′*, = -
𝑞′) = 𝑑′* , 𝑠	
𝑞′) ≠ 𝑑0* , 𝑠′ 

 
with s and s’ being respectively the score of a sequence match and mismatch. Each HSG 
represents the seed (the starting point) of an alignment, that will be further extended, both 
upstream and downstream, in two separate phases. HSGs having a score h ≤	0 are discarded. 

The seed extension step uses a semi-global alignment algorithm, that incorporates 
features of both dynamic time warping, and Gotoh’s Smith-Waterman Affine Gap method 
[3]. The first phase of the seed extension occurs upstream of the seed match, between 
positions {qupstart

,...,qupend
} of the query RNA, and positions {dupstart

,...,dupend
} of the 

database RNA, where: 
 

𝑞12!"#$" = 	𝑚𝑎𝑥%0, 𝑞!""#!"#$" 	− 	𝑙,						∧ 					𝑞12%'& = 𝑚𝑎𝑥%0, 𝑞!""#!"#$" 	− 	1, 
𝑑12!"#$" = 	𝑚𝑎𝑥%0, 𝑑!""#!"#$" 	− 	𝑙,						∧ 					𝑑12%'& = 𝑚𝑎𝑥%0, 𝑑!""#!"#$" 	− 	1, 

 
l is the length of the extension area, defined as: 
 

𝑙 = 𝑚𝑖𝑛%𝑞!""#!"#$" , 𝑑!""#!"#$", + 𝑙
0 

 
where: 
 

𝑙0 = 𝑚𝑎𝑥(⌊𝑙 × 𝑡⌋, 10)					∧ 				0	 ≤ 	𝑡	 ≤ 	1 
 
with t	being the maximum tolerated fractional length difference between the query and the 
database RNA. The downstream extension, instead, occurs between positions 
{qdownstart

,...,qdownend
} of the query RNA, and positions {ddownstart

,...,ddownend
} of the database 

RNA, where: 
 

𝑞#34-!"#$" = 𝑚𝑖𝑛%𝑞!""#%'& + 	1,𝑚 − 1, 				∧ 				𝑞#34-%'& = 𝑚𝑖𝑛%𝑞!""#%'& + 𝑙 − 	1,𝑚 − 1, 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



𝑑#34-!"#$" = 𝑚𝑖𝑛%𝑑!""#%'& + 1, 𝑛 − 1, 				∧ 			𝑑#34-%'& = 𝑚𝑖𝑛%𝑑!""#%'& + 𝑙 − 	1, 𝑛 − 1, 
 
In this case, l is defined as: 
 

𝑙 = 𝑚𝑖𝑛%𝑛 − 𝑑!""#%'& , 𝑚 − 𝑞!""#%'&, + 𝑙
0 

 
For both the upstream and downstream extensions, three matrices are then defined: 
 
 -  the score matrix, F   
 -  the query matrix, Q   
 -  the database matrix, D   

 
The score matrix F is initialized as follows: 
 

𝐹(0,0) = R
	𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚	𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛,																		ℎ	
𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚	𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛, 𝑠12

	

𝐹(0,1) = 𝐹(1,0) = 𝑚𝑎𝑥(ℎ + 𝑑 + 𝑒, 0)	
𝐹(0, 𝑗) = 𝑚𝑎𝑥(𝐹(0, 𝑗 − 1) + 𝑒, 0) , 1 < 𝑗 ≤ 𝑛	
𝐹(𝑖, 0) = 𝑚𝑎𝑥(𝐹(𝑖, 0 − 1) + 𝑒, 0) ,										1 < 𝑖 ≤ 𝑚 

 
where d and e are respectively the gap open penalty and the gap extension penalty, i and j 
are respectively the i-th element of the query and the j-th element of the database, and sup 
is the alignment score for the upstream extension. The remainder of the score matrix is 
then iteratively filled as follows: 
 

𝑄(𝑖, 𝑗) = 	𝑚𝑎𝑥 X
	𝐹(𝑖 − 1, 𝑗) + 	𝑑 + 𝑒
	𝑄(𝑖 − 1, 𝑗) + 𝑒									
	0																																		

	

𝐷(𝑖, 𝑗) 	= 	𝑚𝑎𝑥 X
	𝐹(𝑖, 𝑗 − 1) + 	𝑑 + 𝑒
	𝐷(𝑖, 𝑗 − 1) + 𝑒									
	0																																		

	

𝐹(𝑖, 𝑗) = 	𝑚𝑎𝑥

⎩
⎨

⎧	𝐹(𝑖 − 1, 𝑗 − 1) + 	𝑆%𝑞) , 𝑑*,
	𝑄(𝑖, 𝑗)																																							
	𝐷(𝑖, 𝑗)																																							
	0																																																

 

 
 

1 < 𝑖 < 𝑚			 ∧ 	 		𝑚𝑎𝑥(1, 𝑖 − 𝑤) ≤ 𝑗 ≤ 𝑚𝑎𝑥(𝑖 + 𝑤, 𝑛) 
 
with w being the size of a band around the diagonal inside which the search for the optimal 
alignment will be performed, and S being the scoring function detailed in equation (2) (or 
equation (5) if sequence is taken into account). During the iterative filling of the score 
matrix, an additional matrix is used to store the number of bases for which the score 
dropped-off by more than a user-defined drop-off rate sdrop (with 0 ≤	sdrop	≤	1), since the last 
observed best score. When the score drops below the user-defined threshold for more than 
a user-defined number of bases, the corresponding cell of the score matrix is set to 0, and 
the algorithm skips to the next iteration. Traceback then begins at the cell having the last 
observed best score and ends at F(0,0).  
The final alignment score, salign, corresponds to the score of the alignment returned by the 
downstream extension. The score is further log-scaled as: 
 

𝑠!5.6"# =	𝑠.6)7- ×	
𝑙𝑜𝑔	(𝑚.6)7-)
𝑙𝑜𝑔	(𝑚)  

 
where m is the length of the query and malign is the length of the portion that has been 
successfully aligned.  

(11) 

(12) 

(13) 

(14) 



Significance of the alignment is further evaluated as previously described [4]. Each 
database search performed with a user-defined query will result in a set A of N alignment 
scores, resulting from N seed extensions, so that A = {salign1

, salign2
,…,salignN

}. In order to 
evaluate the significance of each alignment in A, a null model is built by searching the same 
query in a shuffled database, generated by random shuffling the original database, resulting 
in a set A’ of alignment scores. Each score in A is then converted to a z-score: 
 

𝑧 = 	
𝑠𝑠𝑐𝑎𝑙𝑒𝑑 − 𝜇

𝜎  
 
where µ and σ are respectively the mean and standard deviation of A’. Z-scores are then 
converted to the corresponding probabilities by using the extreme value distribution:  
 

𝑃(𝑍 > 	𝑧) = 1 −	𝑒!"
!"#
√%

!&
 

 
where γ is the Euler-Mascheroni constant. From this, the expectation value of identifying 
a match with a score ≥	salign, is calculated as: 
 

𝐸(𝑠#$%&"') = 	𝑃(𝑠#$%&"') 	× 	𝑁	 
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