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Supplementary Figures

Supplementary Figure 1. Batch correction of the chronic lymphocytic leukemia (CLL) and
healthy donor (HD) CyTOF dataset. a-b: UMAPs based on 36 markers for the panel 1 data
before and after batch correction, generated using equal sampling of each batch to a total of
50,000 cells. c: Earth mover’s distance (EMD) density plots for uncorrected and corrected data,
per marker, per self-organizing map (SOM) node. The EMD reduction was 0.66 and the MAD
score was 0.02. d-f: Same as a-c but for panel 2 and its 34 markers. The EMD reduction was
0.66 and the MAD score was 0.02. g-i: Same as a-c but for the co-batch correction of panels 1
and 2 and the 15 overlapping markers, using 25,000 cells per panel. The EMD reduction was
0.83 and the MAD score was 0.01.
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Supplementary Figure 2. Batch correction of the chronic lymphocytic leukemia (CLL) and
healthy donor (HD) CyTOF dataset. aa-bg: UMAPs based on 36 markers for the panel 1 data
before (aa-ag) and after (ba-bg) batch correction, generated using equal sampling of each batch
to a total of 50,000 cells. Each plot contains cells from a single batch in color and the remaining
batches in grey. da-eg: Same as aa-bg but for panel 2 and its 34 markers. ga-hb: Same as
aa-bg but for the co-batch correction of panels 1 and 2 and the 15 overlapping markers, using
25,000 cells per panel.
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Supplementary Figure 3. Batch correction of the chronic lymphocytic leukemia (CLL) and
healthy donor (HD) CyTOF dataset. All plots are colored by the labels assigned after clustering
of the corrected and imputed dataset using the 23 lineage markers. The plots include B, CLL,
and poor-quality cells. a-b: UMAPs based on 36 markers for the panel 1 data before and after
batch correction, generated using equal sampling of each batch to a total of 50,000 cells. 32
cells (one randomly selected cell per cluster label) have been traced between the two plots
(marked with 1A-32A). c-d: Same as a-b but for panel 2 and its 34 markers. Traced cells are
marked with 1B-32B. e-f: Same as a-b but for the co-batch correction of panels 1 and 2 and the
15 overlapping markers, using 25,000 cells per panel. Traced cells are marked with 1C-32C. g:
UMAP of the same 50,000 cells as in e-f, but after panel merging through imputation using all
55 markers. The traced cells are marked with 1C-32C.
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Supplementary Figure 4. Clustering results for the chronic lymphocytic leukemia (CLL) and
healthy donor (HD) CyTOF dataset. a: UMAP for up to 4,000 cells from each of the 128 samples
based on expression of the 23 clustering markers after removal of B, CLL, and poor-quality
cells. b-g: Same as in a, but colored by expression of CD3, CD33, CD56, CD4, CD8, and
HLA-DR.
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Supplementary Figure 5. Analysis of differential abundance within the T and NKT cell
compartment in chronic lymphocytic leukemia (CLL) and healthy donor (HD) CyTOF data. a-b:
Relative proportions of selected T and NKT cell populations for HD (n = 20), CLL time point 1
(T1) (n = 52), and CLL time point 2 (T2) (n = 56) samples: Naive CD8+ T cells and CD8+
terminally differentiated effector memory (TEMRA) cells. FDR values provided for significant
comparisons. The box plots show the medians (solid line in boxes), 25th and 75th percentiles as
lower and upper hinges of the boxes, and whiskers extend to the furthest data point within 1.5 *
interquartile range from the hinges. Data points beyond this threshold are shown as circles. c:
Scatter plot for the relative proportions of the paired (n = 52) CLL T1 and T2 patients in
HLA-DR+ effector memory (EM) CD8+ T cells. False discovery rate (FDR) values provided for
significant comparisons between CLL T2 vs. T1.
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Supplementary Figure 6. Cross-platform data integration. a-f: UMAP plot for the uncorrected
dataset consisting of 6,776 cells from each of the CITE-seq, CyTOF, and spectral flow cytometry
(SFC) datasets faceted by technology and colored by major immune lineage markers; CD3,
CD4, CD8, CD14, CD19, and CD56, respectively. g-l: Same as in a-f, but for the corrected
dataset.
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Supplementary Figure 7. Computational requirements of cyCombine and four other batch
correction tools for a dataset with 38 markers and seven batches. a: Runtime in minutes (notice
log scale on y axis) and b: Memory usage in GB. 40 cores and 100 gb memory were used for
the system. In both panels, data are presented as mean values +/- SD based on n = 3 runs for
the given combination of dataset size and tool.
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Supplementary Figure 8. Density plots for selected markers in the datasets without technical
replicates before and after batch correction using iMUBAC (subsampled healthy donor samples)
and cyCombine (full datasets), respectively. Markers were specifically selected to provide
insights into where the tools differ in performance. Batches are indicated on the y axes. a-b:
Expression of CCR7 and LAG3 in the Krieg1 data. c-d: Expression of CD8a and CD45RO in the
Krieg2 data. e-f: Expression of CD11b and CD14 in the Krieg3 data. g-h: Expression of CD4
and CD38 in the OgishiCyTOF data. i-j: Expression of CD3 and CD8 in the OgishiSFC data. k-l:
Expression of CD127 and T-bet in the DFCI1 data. m-n: Expression of CD4 and XCL1 in the
DFCI2 data.
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Supplementary Figure 9. Density plots for selected markers in the datasets with technical
replicates before and after batch correction using CytoNorm (without samples used as technical
replicates), CytofRUV (full datasets), CytofBatchAdjust (full datasets), iMUBAC (subsampled
healthy donor samples), and cyCombine (full datasets), respectively. Markers were specifically
selected to provide insights into where the tools differ in performance. Batches are indicated on
the y axes. a-b: Expression of CD197 and HLA-DR in the DFCIb3 data. c-d: Expression of
CD66 and MAPKAPK2 in the Van Gassen data. e-f: Expression of CD45RA and pRb in the
Trussart data.
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Supplementary Figure 10. Manual pre-gating strategy for the chronic lymphocytic leukemia
(CLL) and healthy donor (HD) CyTOF dataset, exemplified by a single HD sample. Pre-gating
was carried out in four steps using FlowJo version 10 (Tree Star Inc). The percentage of events
within gates is indicated relative to the number of “parent” events. a: Gating of cells based on
the measurements for Beads and DNA1. b: Gating of intact cells based on the measurements
for DNA2 and DNA1. c: Gating of intact singlets based on the measurements for Event length
and DNA1. d: Gating of live intact singlets based on the measurements for Viability and DNA1.
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Supplementary Discussion
Panel merging
Previous work by Abdelaal et al. (2019)1 suggested approaches for 1) designing panels with an
optimal overlap for imputation and 2) imputation based on the median expressions of markers in
k-Nearest Neighbors (kNN). Their tool, CyTOFmerge1 was developed for designing experiments
that allow for integration of multi-panel data, and not for merging pre-designed panels. As such,
the tool handles low variance markers quite well, but intuitively, median-based imputation is not
optimal for multimodal distributions. Lee et al.2 presented a flow cytometry method for merging
purposes, but this works only for two files at a time, relies on domain knowledge, and has only
been tested on lymphocyte data. CytoBackBone3 offers a solution more similar to the
cyCombine panel merging module. For combining and integrating datasets, approaches like
QFMatch4, SIC5, and MetaCyto6 have also been presented. However, these are focused on
combining the results of complete analyses and not on allowing truly integrated analysis from
start to end. A thorough evaluation and discussion of the panel merging module of cyCombine
and the existing alternatives is included in a vignette at https://biosurf.org/cyCombine.

In the analysis of the chronic lymphocytic leukemia (CLL) data in this article, we rely on panel
merging for clustering and visualization of data generated from the same samples using two
different panels. To illustrate the impact of the panel merging step on the information content in
the samples, Supplementary Figure 3 shows the final clusters on UMAPs generated at
different analysis stages. In this figure, it can be seen that some of the clusters obtained with the
final, integrated dataset are not well-separated when considering only the markers available in a
single panel. One example is the clear combination of the myeloid clusters in Supplementary
Figure 3a-b, which is caused by the lack of multiple important myeloid markers, such as
CD123, CD11b, and CD1c, in panel 1. Similarly, in Supplementary Figure 3c-d, we observe a
combination of CD8+ T cell types of the effector memory (EM) and terminally differentiated
effector memory (TEMRA) compartments, most likely caused by the lack of CD45RO in panel 2.
Both of these separation failures are visible in the co-batch corrected set with only 15 markers,
shown in Supplementary Figure 3e-f. However, when considering the final, integrated set in
Supplementary Figure 3g, we observe both a clear separation of the myeloid populations -
similar to what is observed for panel 2 alone - and a good definition of CD8+ T cell subtypes - as
in panel 1. This shows that while there are discrepancies between the clusters that can be
obtained with and without the use of panel merging, the final clusters have real biological
measurements supporting their existence.

Analysis of CLL data
Given that CLL can severely affect bone-marrow production of immune and hematopoietic
cells7,8, immune dysfunction in CLL is to be expected. The focus of our analysis was to identify
features of the immune system that differentiate CLL patients from healthy donors (HDs) and
patients sampled at different times relative to treatment initiation. After integrating the two
panels of the CLL dataset, we compared the overall frequency for each of the 29 populations in
cells originating from panel 1 and panel 2, respectively. We observed a very strong Pearson
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correlation of 0.9996 making it reasonable to assume that any merged sample may be
considered as a single combined sample for differential abundance analysis.

In this analysis, we found that, compared to HDs, close-to-treatment time point 2 (T2) CLL
patients had higher amounts of T and NKT cells as well as hematopoietic stem cells (HSCs)
(CD34+) (Figure 2). For HD vs. CLL time point 1 (T1), similar patterns were observed, but the
difference in HSC frequencies was not statistically significant. However, when comparing CLL
T2 vs. CLL T1 while accounting for the paired samples, the HSCs were significantly more
abundant (logFC = 0.7) at CLL T2. Additionally, the most dramatic difference for HD vs. CLL T2
was also the HSCs (logFC = 1.2).

It is currently debated whether the absolute T cell counts in CLL are higher9–11 or lower12 than
those found in HDs. Our results show a higher proportion of T and NKT cells in CLL patients,
compared to HD, which is in line with the majority of the published works. Furthermore, the
effects of CLL on the T cell compartment are also widely discussed9–14, and in order to
investigate the T and NKT cell compartment more deeply, we considered the populations as
“daughters” of their overall type, meaning that proportions were relative to the parent set of T
and NKT clusters. This was done to account for the compositional nature of the data, which
means that changes in overall cell type proportions can mask population-specific differences
(when one population increases in frequency, the sum of frequencies of the rest of the
populations will go down).

Within the group of T and NKT cells, we found that when comparing HD vs. CLL T1, the CLL
samples had lower proportions of HLA-DR+ effector memory (EM) CD4+ T cells, and for CLL T2
vs. HD, we observed significantly lower levels of naive CD8+ T cells (Supplementary Figure
5a) and higher abundances of CD8+ terminally differentiated effector memory (TEMRA) cells in
the CLL samples (Supplementary Figure 5b). Previous studies have also reported a general
decrease in the naive T cell compartment for CLL patients12,13. Skews towards CD8+ EM T and
TEMRA cells among CLL patients have also been reported12,15, as well as a general increase in
antigen-experienced11 or memory T cells13, as seen here, indicative of a low output of naive T
cells.

Within the CLL patients, additional significant changes were detected. Overall, the two
populations of HLA-DR+ EM CD8+ and CD4+ T cells constituted larger proportions of the total T
and NKT cell compartment at T2 (Figure 2f and Supplementary Figure 5c), whereas the naive
CD8+ T cells were less abundant at T2.

Elston et al. (2019)13 associated a subpopulation of CD4+PD-1+HLA-DR+ T cells to progression
in CLL, and specifically mentioned that this is most frequent in the EM compartment. PD-1+
expression patterns have also been discussed in relation to replicative senescence, which is
associated with more aggressive disease in CLL patients12. In our cohort, we found PD-1 to be
most highly expressed by the two HLA-DR+ EM T cell subsets, indicating that these clusters
may actually encompass the PD-1+ fraction as well, supporting existing results. Within the
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CD4+ cluster, there was also a significantly higher median expression of PD-1 in CLL T2
samples compared to HDs (logFC = 0.47) (Figure 2g).

Taken together, our analysis of CLL patients shows that applying cyCombine to a multi-batch
dataset enables co-analysis leading to the identification of characteristics commonly ascribed to
the CLL immunophenotype, as well as novel cellular phenotypes only detectable when
combining large panels.

Benchmarking
For data integration purposes, the total size of datasets may be very large. This means that that
ideal batch correction tool has good scaling in terms of runtime and memory usage. We
investigated this for the four tools we tested and compared to cyCombine (Supplementary
Figure 7). All the tools scaled approximately linearly in their memory usage, with cyCombine
showing medium usage. In terms of runtime, cyCombine scales approximately linearly and three
of the other included tools have similar runtime scaling.

For the benchmark test, we aimed to test all tools on as many of the datasets used in the
publications as possible. For several of those (Van Gassen and Trussart), and for the DFCIb3
dataset, we note that many samples are technical replicates, which is perhaps not an ideal test
for batch correction methods, as biological variance is expected to be very close to zero. This
means that all the variance between those batches would be subject to removal, which is
essentially only half the challenge (the other half being conservation of biological variance). We
also noted that some of the included tools are not geared for correction of samples with
non-identical panels. The DFCI dataset is composed of two different panels, and HLA-DR was
labeled with different metal isotopes in the two panel. Because the tools read samples directly
from the FCS format, it is hard to process such cases and the issue must be addressed by
either altering the actual FCS files, or editing the source code of the tools. cyCombine is more
flexible since it works on R data.frames, which are straightforward to edit.
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